
EtherCAT Master
Cross Platform Stack

Application Developers Manual

to Product P.4500.xx / P.4501.xx / P.4502.xx

Application Developers Manual • Doc.-No.: P.4500.91 / Rev. 1.14

Document file: I:\Texte\Doku\MANUALS\PROGRAM\EtherCAT\Master\EtherCAT Master - Application Developers
Manual_1_14.odt

Date of print: 2023-05-08

Software version: >= Rev 1.11.0

Products covered by this document

Platform CPU Architecture
Order Number

Unlimited Version Trial Version

Windows XP/Vista/7/8+/10/11 X86 / X64 (WoW64) P.4500.01 P.4502.01

Linux X86 P.4500.02 P.4502.02

Linux PPC P.4500.03

Linux ARM P.4500.04 P.4502.04

QNX Neutrino 6.5 and 6.6 PPC P.4500.10

QNX Neutrino 6.5 and 6.6 X86 P.4500.11 P.4502.11

QNX Neutrino 6.5 and 6.6 ARM P.4500.12

QNX Neutrino 7.0 and later X86 / X86_64 P.4500.14 P.4502.14

VxWorks 6.x PPC P.4500.20

VxWorks 6.x X86 P.4500.21

VxWorks 5.x X86 P.4500.22

VxWorks 5.x PPC P.4500.23

RTX 2009/2011/2012 X86 P.4500.30 P.4502.30

RTX64 2014 X64 P.4500.32 P.4502.32

OS-9 5.2 / 6.0 PPC P.4500.40

FreeRTOS ARM

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 3 of 255

Document History

The changes in the document listed below affect changes in the software as well as changes in the
description of the facts, only.

Rev. Chapter Changes versus previous version Date

1.14 4.11 / 4.12 Description of API for AoE communication 2023-04-25

4.12 Description of API for VoE communication 2023-04-25

7.2.1 / 7.2.2 Description of ECM_AOE_DEVICE_INFO / ECM_AOE_STATE. 2023-04-27

7.2.3 Description of new flag ECM_FLAG_SLAVE_CFG_DIAG_DC. 2022-10-27

7.2.19
Revised description of modified default behaviour for member
varibles of ECM_MASTER_DESC for DC drift compensation. 2022-10-27

7.2.30 Description of new flag ECM_FLAG_SLAVE_DIAG_DC. 2022-10-27

7.2.32 Description of the new member lDySysTimeDifference. 2022-10-27

7.2.38
Description of the new feature flags ECM_FEATURE_AOE and
ECM_FEATURE_VOE.

2023-03-22

1.13 4.2.4 Description of ecmUpdateSlave(). 2019-07-17

4.10 New chapter describing the EoE related API. 2021-10-29

4.15.4 Fixed delay of ecmSleep() is millisecond and not microsecond 2022-05-05

5.10 / 5.11 Description of macros ECM_GET_CAP_FRM_XXX. 2022-05-04

5.25 Description of macro ECM_VAR_DT_IS_ENUM. 2019-09-12

6.6 Description of the trace message handler. 2022-05-04

6.7 Description of the frame capture handler 2022-05-04

7.2.7 Corrected and refined description of ECM_COE_OD_LIST. 2021-10-29

7.2.13 Description of ECM_EOE_CONFIG. 2021-10-29

7.2.17 Revised and extended description of ECM_LIB_INIT. 2022-05-04

7.2.30 Description of ECM_FLAG_SLAVE_AUTO_XXX flags. 2019-07-17

7.2.31 Struct ECM_SLAVE_DIAG with local error counters enhanced. 2019-07-17

7.2.37 Added defines of new data types from ETG.1020 V 1.2.0.2 2019-09-12

1.12 3.2 New chapter which describes the link level driver support. 2019-06-05

3.11.1 Described configuration parameter of DC drift compensation. 2018-04-18

3.11.6 Extended description of DC master clock synchronization. 2019-03-27

3.12.4 New chapter describing implementation of built-in profiling. 2018-06-21

4.7.8 Clarification of minimum buffer size for ecmCosSdoUpload() 2018-08-21

4.13.7 / 4.13.9 Description of ecmXxxProfilingData(). 2018-04-20

6.1 Clarified usage of the 2nd argument of ECM_EVENT_LOCAL 2018-07-02

7.2.3
Description of ECM_FLAG_CFG_ENI_ERR_REASON,
ECM_FLAG_CFG_SKIP_COMMENTS and ECM_FLAG_CFG_SKIP_DT

2018-06-25

7.2.11 New member ulExceededCycles in ECM_DEVICE_STATE. 2018-04-18

7.2.19 Add members to configure DC drift compensation process in
ECM_MASTER_DESC. 2018-04-18

Page 4 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Rev. Chapter Changes versus previous version Date

7.2.19 Description of new flags ECM_FLAG_MASTER_XXX 2019-03-27

7.2.27 / 7.2.28 Description of ECM_PROFILING_XXX data types. 2018-06-19

7.2.37 Added table with ECM_VAR_DT_XXX descriptions. 2018-11-26

8.1 New error code ECM_E_NO_LINK. 2018-10-16

1.11 4.5.2 Described missing parameter of ecmGetDataReference(). 2017-03-02

7.2.17 Description of the Linux platform flag ECM_FLAG_SCHED_FIFO. 2017-05-24

7.2.26 Description of ECM_PROC_DATA_TYPE. 2017-03-02

8.1 New error code ECM_E_CYCLE_TIME. 2017-10-06

all Editorial changes. 2018-02-01

1.10 2.6 New chapter with an introduction to Distributed Clocks (DC). 2015-07-10

3.11 New chapter describing implementation details of DC support. 2015-07-10

3.12.3 New chapter describing the DC diagnostic. 2015-07-10

4.5.4 Added exact variable name search in ecmLookupVariable(). 2014-12-11

4.13.1 Description of ecmGetCycleRuntime(). 2015-04-02

4.15.1 Description of ecmBusyWait(). 2015-03-11

4.16.1 Description of ecmDcToUnixTimestamp(). 2015-08-20

5.18 Added server side watchdog for the remote connection. 2014-12-11

6.1 Description of new ECM_LOCAL_XXX events. 2015-04-02

6.4 Description of PFN_ECM_ADJUST_CLOCK. 2015-06-20

7.2.17 Extended documentation of OS specific configuration options. 2015-03-11

7.2.38 Description of the feature flag ECM_FEATURE_MASTER_SYNC. 2014-12-16

8 Description of new return value ECM_FEATURE_MASTER_SYNC. 2014-12-16

all Editorial changes 2015-08-25

1.9 3.13
Chapter completely revised for new Monitoring Mode and
description of the ESDCP support.

2014-04-03

4.13.8 Description of ecmGetSlaveDiag() 2014-04-25

4.15.3 Added missing description of ecmGetClockCycles(). 2014-03-13

4.17 Remote access support completely revised. 2014-04-03

6.1 Description of remote access events. 2014-04-03

7.2.19 Description of the new flags for the master configuration. 2014-04-03

7.2.31 Description of the type ECM_SLAVE_DIAG. 2014-04-25

all Editorial changes 2014-08-01

1.8 1.5 New chapter how to get started. 2014-02-20

3.10.1 New chapter describing SoE implementation details 2014-01-29

4.5.4
Added Regular Expression and case insensitive pattern
matching to ecmLookupVariable().

2014-01-08

4.8 New chapter describing the SoE related API. 2014-01-27

4.16.2 New ECM_ERROR_SOE_ERROR_CODE for ecmFormatError(). 2014-01-27

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 5 of 255

Rev. Chapter Changes versus previous version Date

5 Description of the macros ECM_SOE_XXX 2014-01-27

6.1 Description of SoE events. 2014-01-28

6.5 Description of PFN_ECM_CLOCK_CYCLES. 2014-02-20

7.2.17 Revised and extended description of ECM_LIB_INIT. 2014-02-20

7.2.33 - 7.2.36 Description of of the SoE data types ECM_SOE_XXX 2014-01-28

7.2.38 Revised and extended description of ECM_VERSION. 2014-02-20

N/A Corrected and extended order number 2013-12-10

all Editorial changes 2014-01-22

1.7 2.5.1 New chapter describing ESM changes and AL Status Codes 2013-09-23

3.8.5 New chapter describing Slave-to-Slave Communication 2013-12-04

3.9 New chapter describing Fail Safe over EtherCAT (FsoE) 2013-12-04

4.2 Listed API calls not covered in this manual for completeness 2013-12-03

4.18 New chapter describing the API for the cleanup. 2013-12-03

7.2.32 Description of the new member ucStatusCode. 2013-12-03

all Editorial changes 2013-12-05

1.6 3.10.2 New chapter describing FoE implementation details 2013-06-10

4.16.2
Description of the new types ECM_ERROR_FOE_ERROR_CODE
and ECM_ERROR_COE_EMCY_CODE for ecmFormatError().

2013-06-03

4.9 New chapter describing the FoE related API. 2013-06-05

6.8 New chapter describing the FoE data handler. 2013-06-03

7.2.16 Description of of the type ECM_FOE_STATE. 2013-06-03

8.2 New chapter with FoE error codes. 2013-06-07

all Editorial changes 2013-06-03

1.5 N/A Corrected VxWorks order numbers 2012-08-09

3.7.2 New chapter describing the concept of Cycle Domains. 2013-05-02

3.8.1
New chapter describing the differences between the Framed
Layout and the new Packed Layout for process data.

2012-07-31

4.6.3 Description how to reload an EEPROM. 2012-08-01

4.6.4
Description of the parameter ucEsiEepromDelay and the new
flag ECM_FLAG_ESI_SKIP_CRC_CHECK. 2012-07-30

5
Description of new macros ECM_CHANGE_STATION_ALIAS,
ECM_EEPROM_TO_ECAT, ECM_RELOAD_EEPROM 2012-08-01

7.2.10 Description of new members in ECM_DEVICE_DESC. 2013-04-25

7.2.17 Description of platform specific flags in ECM_LIB_INIT. 2012-08-01

7.2.19 Description of new members / flags in ECM_MASTER_DESC. 2012-07-30

all Editorial changes 2012-07-27

1.4 N/A Added trademark notice. 2011-05-18

1.4 New chapter for limitations of trial version 2011-08-01

3.13 New chapter to describe the Remote Mode. 2011-05-10

Page 6 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Rev. Chapter Changes versus previous version Date

4.3.3 Description of ECM_DEVICE_ERROR_ACK 2011-05-10

4.17 New chapter covering the remote support. 2011-05-10

5 Description of the macros ECM_COE_XXX 2011-05-01

7.2.22 Description of flag ECM_COE_FLAG_COMPLETE_ACCESS 2011-05-01

1.3 N/A Added Reference to 3rd party documentation. 2011-01-15

2.4 Revised description of EtherCAT cable redundancy. 2011-01-28

2.5 New chapter describing the EtherCAT state machine. 2011-01-15

3.4 New chapter covering different use cases. 2011-01-22

3.7.7 New chapter describing the ESI EEPROM support. 2011-01-16

4.2.2-4.2.3
Description of ecmGetSlaveHandleByAddr() and
ecmGetSlaveHandle().

2010-12-19

4.3.3 Description of ecmRequestSlaveState(). 2010-12-19

4.7 New chapter with API for asynchronous CoE requests. 2010-11-07

4.13.2 Description of ecmGetDeviceState(). 2010-11-22

4.13.4 Description of ecmGetMasterState(). 2010-11-22

4.13.9 Description of ecmGetSlaveState(). 2010-12-12

4.16.2
Description of the new types ECM_ERROR_AL_STATUS and
ECM_ERROR_COE_ABORT_CODE for ecmFormatError().

2010-11-08

4.16.3-4.16.4 Description of ecmGetPrivatePtr() / ecmSetPrivatePtr(). 2011-01-22

5.5 Description of macro ECM_COE_ENTRY_NAME. 2010-11-08

5.12 Description of macro ECM_GET_PORT_PHYSICS. 2010-12-11

6.1 Description of CoE emergency events. 2010-11-27

7.1.1 Description of the enum ECM_COE_INFO_LIST_TYPE. 2010-11-07

7.2.4 - 7.2.8
Description of of the types ECM_COE_OD_LIST_COUNT,
ECM_COE_OD_LIST, ECM_COE_OBJ_DESCRIPTION ,
ECM_COE_OD_ENTRY_DESCRIPTION, ECM_COE_EMCY.

2010-11-07

7.2.11 Description of of the type ECM_DEVICE_STATE. 2010-11-20

7.2.14 - 7.2.15
Description of of the types ECM_ESI_CATEGORY_HEADER and
ECM_ESI_CATEGORY.

2010-11-14

7.2.20 Description of of the type ECM_MASTER_STATE. 2010-11-20

7.2.30 - 7.2.32 Description of of the types ECM_SLAVE_DESC and
ECM_SLAVE_STATE. 2010-12-10

8 Description of the new return value ECM_E_ABORTED. 2010-11-08

1.2 4.16.2 Description of ecmFormatError(). 2010-09-01

6.2 Extended parameter of PFN_CYCLIC_HANDLER. 2010-09-01

7.2.38
Description of the new feature flags
ECM_FEATURE_TRIAL_VERSION and
ECM_FEATURE_DEBUG_BUILD.

2010-08-17

8 Description of the new return values ECM_E_NO_DATA
ECM_E_NO_DC_REFCLOCK, ECM_E_NO_DRV and

2010-08-09

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 7 of 255

Rev. Chapter Changes versus previous version Date

ECM_E_TRIAL_EXPIRED.

1.1 all Editorial changes 2009-10-22

1.0 all Initial version 2009-03-06

Technical details are subject to change without further notice.

Page 8 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

This page is intentionally left blank.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 9 of 255

Table of contents

1. Introduction...22
1.1 Scope..22
1.2 Overview..22
1.3 Features...23
1.4 Limitations of the trial version..25
1.5 Getting Started..25

2. EtherCAT Technology..26
2.1 Overview..26
2.2 Network Topology..27
2.3 Protocol..28
2.4 Cable Redundancy...29
2.5 EtherCAT State Machine (ESM)...31

 2.5.1 ESM Control..32
2.6 Distributed Clocks (DC)..35

 2.6.1 Basic Principals..35
 2.6.2 Key Technical Parameters and Terms...36

3. Implementation...39
3.1 Architecture..39
3.2 Hardware Abstraction Layer..43

 3.2.1 Default Link Layer Access...43
 3.2.2 Link Level Driver...43

3.3 Programming Model...44
3.4 Use Cases..45

 3.4.1 Cable Redundancy Mode..46
 3.4.2 Multi Master Mode I..46
 3.4.3 Multi Master Mode II...47

3.5 Initialization..47
3.6 Configuration...48

 3.6.1 EtherCAT Network Information (ENI)...48
 3.6.2 Ethernet Address..49

3.7 Communication...50
 3.7.1 Data Exchange...50
 3.7.2 Cyclic Data..51
 3.7.3 Acyclic Data...52
 3.7.4 Background Worker Task..52
 3.7.5 Mailbox Support..53
 3.7.6 Asynchronous Requests..53
 3.7.7 ESI EEPROM Support...54

3.8 Process Data...55
 3.8.1 Data Composition...55
 3.8.2 Memory allocation..57
 3.8.3 Process Variables and Endianness...58
 3.8.4 Virtual variables..59
 3.8.5 Slave-to-Slave Communication..60

3.8.5.1 Topology Dependent...60
3.8.5.2 Topology Independent...61

3.9 Fail Safe over EtherCAT (FSoE)...62

Page 10 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

3.10 Mailbox Protocols..63
 3.10.1 Servo drive profile over EtherCAT (SoE)...63

3.10.1.1 Data Blocks..63
3.10.1.2 Data Access..65
3.10.1.3 Procedure Commands..65
3.10.1.4 SoE State Machine..66
3.10.1.5 Process Data and Synchronization...66

 3.10.2 File Access over EtherCAT (FoE)...67
3.11 Distributed Clocks (DC)..72

 3.11.1 Clock Synchronization...72
 3.11.2 Continuous Drift Compensation..73
 3.11.3 System Time Epoch...73
 3.11.4 SYNC Generation...74
 3.11.5 Master and Slave I/O Cycle...75
 3.11.6 Master Clock Synchronization..77

3.11.6.1 Master Clock Shift..77
3.11.6.2 Slave Clock Shift..78
3.11.6.3 Direct DC...79

3.12 Diagnostic and Error Detection...80
 3.12.1 Protocol and Communication Errors..80
 3.12.2 Slave State Monitoring...81
 3.12.3 DC Quality...81

3.12.3.1 Sync Window Monitoring..81
3.12.3.2 Master Jitter..82

 3.12.4 Performance Profiling..82
 3.12.5 Ethernet Frame Capturing...83

3.13 Remote Access...84
 3.13.1 Control Mode...85
 3.13.2 Monitoring Mode...85
 3.13.3 ESDCP...86
 3.13.4 Network Ports...86

4. Function Description..87
4.1 Initialization..87

 4.1.1 ecmGetVersion...87
 4.1.2 ecmInitLibrary...88
 4.1.3 ecmGetNicList...89

4.2 Configuration...90
 4.2.1 ecmReadConfiguration..91
 4.2.2 ecmGetSlaveHandle..93
 4.2.3 ecmGetSlaveHandleByAddr...94
 4.2.4 ecmUpdateSlave..95

4.3 Network State Control..96
 4.3.1 ecmAttachMaster..96
 4.3.2 ecmDetachMaster..97
 4.3.3 ecmRequestSlaveState...98
 4.3.4 ecmRequestState...100
 4.3.5 ecmGetState...101

4.4 Data Exchange..102
 4.4.1 ecmProcessAcyclicCommunication...102
 4.4.2 ecmProcessControl..103

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 11 of 255

 4.4.3 ecmProcessInputData...104
 4.4.4 ecmProcessOutputData..105

4.5 Process Data...106
 4.5.1 ecmGetCopyVector..106
 4.5.2 ecmGetDataReference..107
 4.5.3 ecmGetVariable..109
 4.5.4 ecmLookupVariable..110

4.6 Asynchronous Requests..112
 4.6.1 ecmAsyncRequest..112
 4.6.2 ecmAsyncRequests..113
 4.6.3 ecmReadEeprom..114
 4.6.4 ecmWriteEeprom..115

4.7 CoE Protocol..117
 4.7.1 ecmCoeGetAbortCode...117
 4.7.2 ecmCoeGetEmcy..118
 4.7.3 ecmCoeGetEntryDescription...119
 4.7.4 ecmCoeGetObjDescription...120
 4.7.5 ecmCoeGetOdEntries..121
 4.7.6 ecmCoeGetOdList..122
 4.7.7 ecmCoeSdoDownload...123
 4.7.8 ecmCoeSdoUpload..124

4.8 SoE Protocol..125
 4.8.1 ecmSoeDownload..127
 4.8.2 ecmSoeIdnToString..128
 4.8.3 ecmSoeStringToIdn..129
 4.8.4 ecmSoeUpload...130

4.9 FoE Protocol..132
 4.9.1 ecmFoeDownload..132
 4.9.2 ecmFoeGetState..133
 4.9.3 ecmFoeUpload...134

4.10 EoE Protocol..135
 4.10.1 ecmEoeGetConfig..135

4.11 AoE Protocol..136
 4.11.1 ecmAoeGetAbortCode...136
 4.11.2 ecmAoeRead...137
 4.11.3 ecmAoeReadDeviceInfo..138
 4.11.4 ecmAoeReadState...139
 4.11.5 ecmAoeReadWrite...140
 4.11.6 ecmAoeWrite...141
 4.11.7 ecmAoeWriteControl..142

4.12 VoE Protocol..143
 4.12.1 ecmVoeRead...143
 4.12.2 ecmVoeWrite...144

4.13 Diagnostic and Status Data...145
 4.13.1 ecmGetCycleRuntime..145
 4.13.2 ecmGetDeviceState...146
 4.13.3 ecmGetDeviceStatistic...147
 4.13.4 ecmGetMasterState...148
 4.13.5 ecmGetMasterStatistic...149
 4.13.6 ecmGetNicStatistic...150
 4.13.7 ecmGetProfilingData..151

Page 12 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

 4.13.8 ecmGetSlaveDiag..152
 4.13.9 ecmUpdateProfilingData..153

4.14 ESI EEPROM Support...154
 4.14.1 ecmCalcEsiCrc...154
 4.14.2 ecmGetEsiCategoryList...155
 4.14.3 ecmGetEsiCategory...156

4.15 Portability..157
 4.15.1 ecmBusyWait..157
 4.15.2 ecmCpuToLe...158
 4.15.3 ecmGetClockCycles...159
 4.15.4 ecmSleep...160

4.16 Miscellaneous..161
 4.16.1 ecmDcToUnixTime...161
 4.16.2 ecmFormatError..162
 4.16.3 ecmGetPrivatePtr...163
 4.16.4 ecmSetPrivatePtr..164

4.17 Remote Access Support...165
 4.17.1 ecmStartRemotingServer..165
 4.17.2 ecmStopRemotingServer..167

4.18 Cleanup..168
 4.18.1 ecmDeleteMaster...168
 4.18.2 ecmDeleteDevice...169

5. Macros...170
5.1 ECM_CHANGE_STATION_ALIAS...170
5.2 ECM_COE_ENTRY_DEFAULT_VALUE..170
5.3 ECM_COE_ENTRY_MAX_VALUE..171
5.4 ECM_COE_ENTRY_MIN_VALUE..171
5.5 ECM_COE_ENTRY_NAME..172
5.6 ECM_COE_ENTRY_UNIT...172
5.7 ECM_EEPROM_TO_ECAT...173
5.8 ECM_FOE_DATA_BYTES...173
5.9 ECM_FOE_RESEND_REQUESTED...174
5.10 ECM_GET_CAP_FRM_FLAGS..174
5.11 ECM_GET_CAP_FRM_LENGTH...174
5.12 ECM_GET_PORT_PHYSICS...175
5.13 ECM_INIT..175
5.14 ECM_INIT_MAC..176
5.15 ECM_INIT_BROADCAST_MAC...176
5.16 ECM_RELOAD_EEPROM..177
5.17 ECM_SET_REMOTE_SERVER_PRIO...177
5.18 ECM_SETUP_REMOTE_WATCHDOG...178
5.19 ECM_SOE_ATTR_CONVERSION_FACTOR...178
5.20 ECM_SOE_ATTR_DATA_LENGTH...179
5.21 ECM_SOE_ATTR_DATA_TYPE...179
5.22 ECM_SOE_ATTR_DECIMAL_PLACES..179
5.23 ECM_SOE_GET_DRV_NO...180
5.24 ECM_SOE_SET_DRV_NO...180
5.25 ECM_VAR_DT_IS_ENUM...180

6. Callback interface..181
6.1 Event Callback Handler..181

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 13 of 255

6.2 Cyclic Data Handler..188
6.3 Link State Handler..188
6.4 Adjust Master Clock Handler...189
6.5 High Resolution Counter Handler...189
6.6 Log Message Handler..190
6.7 Frame Capture Handler...190
6.8 FoE Handler...191

 6.8.1 FoE Download..191
 6.8.2 FoE Upload...193

7. Data Types..194
7.1 Simple Data Types..195

 7.1.1 ECM_COE_INFO_LIST_TYPE..195
 7.1.2 ECM_ETHERNET_ADDRESS...195
 7.1.3 ECM_HANDLE...195
 7.1.4 ECM_LINK_STATE..196
 7.1.5 ECM_NIC_TYPE..196

7.2 EtherCAT specific data types..197
 7.2.1 ECM_AOE_DEVICE_INFO...197
 7.2.2 ECM_AOE_STATE...198
 7.2.3 ECM_CFG_INIT...198
 7.2.4 ECM_COE_EMCY...201
 7.2.5 ECM_COE_ENTRY_DESCRIPTION..202
 7.2.6 ECM_COE_OBJECT_DESCRIPTION..204
 7.2.7 ECM_COE_OD_LIST..205
 7.2.8 ECM_COE_OD_LIST_COUNT..206
 7.2.9 ECM_COPY_VECTOR..207
 7.2.10 ECM_DEVICE_DESC...208
 7.2.11 ECM_DEVICE_STATE...210
 7.2.12 ECM_DEVICE_STATISTIC...211
 7.2.13 ECM_EOE_CONFIG...212
 7.2.14 ECM_ESI_CATEGORY...213
 7.2.15 ECM_ESI_CATEGORY_HEADER..214
 7.2.16 ECM_FOE_STATE...215
 7.2.17 ECM_LIB_INIT..216
 7.2.18 ECM_LLD_DESC...220
 7.2.19 ECM_MASTER_DESC..221
 7.2.20 ECM_MASTER_STATE...226
 7.2.21 ECM_MASTER_STATISTIC...228
 7.2.22 ECM_MBOX_SPEC...229
 7.2.23 ECM_NIC..231
 7.2.24 ECM_NIC_STATISTIC...231
 7.2.25 ECM_PROC_CTRL...233
 7.2.26 ECM_PROC_DATA_TYPE...234
 7.2.27 ECM_PROFILING_DATA..234
 7.2.28 ECM_PROFILING_TYPE..235
 7.2.29 ECM_SLAVE_ADDR..236
 7.2.30 ECM_SLAVE_DESC..237
 7.2.31 ECM_SLAVE_DIAG...242
 7.2.32 ECM_SLAVE_STATE...243
 7.2.33 ECM_SOE_ARRAY8...244
 7.2.34 ECM_SOE_ARRAY16...244

Page 14 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

 7.2.35 ECM_SOE_ARRAY32...245
 7.2.36 ECM_SOE_STRING..245
 7.2.37 ECM_VAR_DESC..246
 7.2.38 ECM_VERSION..249

8. Error Codes..253
8.1 Return codes...253
8.2 FoE Error Codes...255

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 15 of 255

Index of Tables
Table 1: AL Status Codes...34
Table 2: Link Level Driver supported network hardware..44
Table 3: Virtual Variables..59
Table 4: Network Ports for Remote Access..86
Table 5: Flags to indicate to be updated variables with ecmUpdateSlave().....................................95
Table 6: EtherCAT states..101
Table 7: Supported Regular Expressions (RegEx)...111
Table 8: SoE Elements...125
Table 9: SoE Attributes...126
Table 10: Event Types..182
Table 11: Configuration Events...183
Table 12: Local and Communication Events..184
Table 13: EtherCAT slave device state...186
Table 14: Slave state change events..186
Table 15: EtherCAT SoE Procedure Command State..187
Table 16: Remote Access Events...187
Table 17: ENI Configuration Flags..200
Table 18: Device Configuration Flags...208
Table 19: Ethernet Frame Capture Flags...209
Table 20: ESI Category Types..214
Table 21: FoE state flags..215
Table 22: Flags of debug trace messages..217
Table 23: Target specific flags..218
Table 24: Target specific configuration keys...218
Table 25: Master Configuration Flags...223
Table 26: DC System Time Epoch Values..224
Table 27: Flags of CoE mailbox request/reply..229
Table 28: Flags of SoE mailbox request/reply..230
Table 29: NIC statistic member valid mask..231
Table 30: Slave Configuration Flags...239
Table 31: Diagnostic Control Flags...242
Table 32: Variable Data Types..248
Table 33: Master Feature Flags..250
Table 34: Operating System Types..251
Table 35: API Return Codes...254
Table 36: FoE Error Codes...255

Page 16 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Index of Figures
Figure 1: EtherCAT frame processing..26
Figure 2: Daisy Chain Topology...27
Figure 3: EtherCAT Protocol...28
Figure 4: EtherCAT Cable Redundancy without communication error...29
Figure 5: EtherCAT Cable Redundancy with cable failure...30
Figure 6: EtherCAT State Machine (ESM)...31
Figure 7: EtherCAT Distributed Clocks (DC)..35
Figure 8: Compensation of Propagation Delay, Offset and Drift..37
Figure 9: EtherCAT Master Stack Architecture...39
Figure 10: EtherCAT Master Programming Model...44
Figure 11: Extended EtherCAT Master Use Cases..45
Figure 12: Process Data Exchange with Cycle Domains...51
Figure 13: ESI EEPROM Structure..54
Figure 14: Process Image in the Framed Layout...55
Figure 15: Process Image in the Packed Layout..56
Figure 16: Process image with memory allocated internally..57
Figure 17: Process image with memory allocated externally...57
Figure 18: Topology dependent slave-to-slave copy..60
Figure 19: Topology independent slave-to-slave copy...61
Figure 20: FsoE Communication..62
Figure 21: Structure of an SoE Identification Number (IDN)..63
Figure 22: SoE State Machine...66
Figure 23: Successful FoE Upload...68
Figure 24: Failed FoE Upload..69
Figure 25: Successful FoE Download..70
Figure 26: Failed FoE Download..71
Figure 27: Cyclic SYNC0 generation..74
Figure 28: Master and Slave I/O Cycle in DC Mode..75
Figure 29: Remote Mode..84

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 17 of 255

Reference
[1] Beckhoff Automation GmbH, Hardware Data Sheet - ET1100 EtherCAT Slave Controller,

Section I, V2.3, 02/2017
[2] EtherCAT Technology Group, ETG.1000.6 - Application Layer protocol specification 1.0.3,

01/2013
[3] EtherCAT Technology Group, ETG.2000 - EtherCAT Slave Information (ESI) Specification

1.0.13, 09/2021
[4] EtherCAT Technology Group, ETG.2100 - EtherCAT Network Information (ENI) Specification

1.0.1, 09/2015
[5] EtherCAT Technology Group, ETG.1000.5 - Application Layer service definition 1.0.3, 01/2013
[6] EtherCAT Technology Group, ETG.1004 - EtherCAT Unit Specification 1.0.0, 12/2013
[7] EtherCAT Technology Group, ETG.1020 - EtherCAT Protocol Enhancements 1.3.0, 11/2019
[8] International Electrotechnical Commission, IEC 61800-7 - Adjustable speed electrical power
 drive systems, 1.0, 2007-11
[9] esd electronic system design gmbh, EtherCAT Workbench Software Manual 1.6, 08/2014

Page 18 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Typographical conventions

Throughout this manual the following typographical conventions are used to distinguish technical
terms

Convention Example

File and path names /dev/null or <stdio.h>

Function names open()

Programming constants NULL

Programming data types uint32_t

Variable names count

The following indicators are used to highlight noticeable descriptions.

Notes to point out something important or useful.

Caution: Cautions to tell you about operations which might have
unwanted side effects.

Trademarks

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.
CANopen® and CiA® are registered community trademarks of CAN in Automation e.V.
SERCOS interface® is a registered trademark of SERCOS International e. V
Windows® is a registered trademark of Microsoft Corporation in the United States and other
countries.

All other trademarks, product names, company names or company logos used in this manual are
reserved by their respective owners.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 19 of 255

Abbreviation

ABI Application Binary Interface
ADS Automation Device Specification
AL Application Layer
AoE ADS over EtherCAT
API Application Programming Interface
CF Configuration Phase (for SoE implementation)
CoE CAN application protocol over EtherCAT (former CANopen over EtherCAT)
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DC Distributed Clocks
DL Device Layer
EEPROM Electrical Erasable Programmable Read Only Memory
EMI Electromagnetic Interference
ENI EtherCAT Network Information (EtherCAT XML master configuration)
EoE Ethernet over EtherCAT
EMCY CoE Emergency Object
EPU EtherCAT Processing Unit
ESC EtherCAT Slave Controller
ESDCP Extreme Simple Device Configuration Protocol
ESI EtherCAT Slave Information (formerly referred to as SII)
ESM EtherCAT State Machine
ETG EtherCAT Technology Group
EtherCAT Ethernet for Control Automation Technology
FCS Frame Checksum
FoE File Access over EtherCAT
FMMU Fieldbus Memory Management Unit
FSoE Fail Safe over EtherCAT
GUID Globally Unique Identifier
GZIP Data compression and archive format.
HAL Hardware Abstraction Layer
IDN Identification Number of a SoE Parameter.
LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word
NIC Network Interface Controller
NVRAM Non Volatile Random Access Memory (e.g. an EEPROM)
NIC Network Interface Controller
OD Object Dictionary
PDO Process Data Object
PDU Process Data Unit
PHY Physical Layer (of a NIC)
RegEx Regular Expression
RO Read Only Access
RW Read/Write Access
SDO Service Data Object
SII Slave Information Interface
SM Sync Manager
SoE Servo drive profile over EtherCAT
TCP/IP Transmission Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol
VoE Vendor Specific Protocol over EtherCAT
WO Write Only Access
WKC Working Counter

Page 20 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

XML Extended Markup Language
ZIP Data compression and archive format.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 21 of 255

Introduction

1. Introduction
This document describes the software design and the application layer of a cross platform Ethernet
for Control Automation Technology (EtherCAT) master stack developed with emphasis on
embedded real-time systems. The well structured Application Programming Interface (API) allows
an easy integration into an application to provide the necessary mechanisms to control or configure
an EtherCAT network. The stack comes either as platform specific object or as source code which
has to be adapted to the target platform.

1.1 Scope
This document covers the description of the stack architecture as well as the application interface
to integrate it into your application. Porting the stack to a new platform is covered by a separate
document.

1.2 Overview
Chapter 1 contains a general overview about the structure of this manual and the features of this
EtherCAT master stack implementation.

Chapter 2 provides general information on the EtherCAT technology as well as on the EtherCAT
related terms and concepts from a user perspective, which should be sufficient to understand the
following detailed implementation specific description. If you are already familiar with this
technology please proceed with the next chapter.

Chapter 3 outline's the stack's internal architecture and modules followed by the detailed
description of the stack's functional concept.

Chapter 4 introduces the Application Programming Interface (API) by describing all functions
which are available for the application to configure and control the EtherCAT network with this
stack.

Chapter 5 covers macros used to simplify application development and increase the code's
readability.

Chapter 6 is a description of the callback interface which is available for the application to receive
event based indications about e.g. communication errors and which is called by the stack to
request data from the application.

Chapter 7 contains the definition of the stack's data structures which are the arguments of the
interfaces described in the previous two chapters.

Chapter 8 is a description of the error codes which are returned by the functions in case of a
failure.

Page 22 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Introduction

1.3 Features
The EtherCAT technology comprises of many specifications and different protocols. The esd
EtherCAT master stack has a compact and easy to handle programming interface for integrating
the control of EtherCAT based networks in (real-time) applications. The stack provides the
following features:

➢ Configuration

● Full support for the EtherCAT Network Information (ENI) configuration file specification.

● Based on a stream-oriented operating system independent XML parser.

● ENI data can be stored in file or memory.

● ENI data can be stored compressed in a ZIP/GZIP archive to reduce storage size.

● The stack is completely configurable via the API without ENI data.

➢ Process Data

● Support for the standard Framed Layout and the more flexible Packed Layout.

● Support for Cycle Domains.

● Memory location of process data can be defined by application or master.

● API functions to reference process data memory via variables defined in ENI data.

● Support of virtual variables for diagnostic information embedded in the process data.

● Slave-to-Slave Copy support (Base of Failsafe over EtherCAT (FSoE) communication).

➢ Acyclic Data Exchange

● Configuration of simple and complex EtherCAT slaves.

● Support for polled and event based mailbox communication services.

➢ Cyclic Data Exchange

● Speed optimized exchange of cyclic data.

● Control of data exchange can be application or master driven.

➢ Asynchronous Data Exchange

● API support for application defined asynchronous slave requests.

● API support for application defined requests to the Slave Information Interface (SII).

➢ CAN application protocol over EtherCAT (CoE) mailbox protocol

● Configuration of complex slaves using CoE mechanisms.

● API support for application defined SDO uploads and downloads.

▪ Expedited and segmented SDO transfer

▪ Support for EtherCAT slave's complete access feature.

▪ Support for SDO information services.

● Support to handle CoE Emergency Messages.

➢ Ethernet over EtherCAT (EoE) mailbox protocol

● Implementation of a virtual switch to tunnel Ethernet frames over EtherCAT.

● Virtual network interface implementation (OS dependent).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 23 of 255

Introduction

➢ File access over EtherCAT (FoE) mailbox protocol

● FoE upload and download of arbitrary data sizes.

● Support for synchronous and asynchronous operation mode.

➢ Servo Profile over EtherCAT (SoE) mailbox protocol

● Configuration of complex slaves using SoE mechanisms.

● API support for application defined SoE uploads and downloads.

➢ ADS over EtherCAT (AoE) mailbox protocol

● Reading/Writing data from/to an AoE capable device.

● Reading the device information and status from an AoE capable device.e device.

➢ Vendor Specific Protocol over EtherCAT (VoE)

● Reading/Writing data from/to a VoE capable device.

➢ Support for synchronous and asynchronous operation mode.

➢ Error detection and diagnostic

● Configurable callback interface for immediate indication of errors and events.

● Lost link monitoring.

● Detection and retry of timed out and failed (e.g. wrong WKC) EtherCAT command.

● Support for continuous runtime monitoring of slave AL and DL state.

● Comprehensive diagnostic data of physical, device and master layer.

➢ Distributed Clocks (DC)

● Configuration and synchronization during system initialization phase.

● Continuous drift compensation during operational phase.

● Diagnostic with Sync Window Monitoring.

➢ Cable Redundancy

● Supports using two network adapters for EtherCAT cable redundancy in a ring topology.

● Handle single-fault malfunction (cable break, damaged plug, EMI, slave breakdown)
without communication interruption or data loss.

● Start up an EtherCAT network under redundancy conditions (Malfunction within the
network or cable break between master and first/last slave).

➢ Multi Master Mode

● Support for different master instances using different network adapter.

● Support for different master instances using the same network adapter addressing
different slave segments via VLAN tags.

➢ Remote Access Support

● Control and/or monitor the master by external tools (e.g. EtherCAT Workbench).

● Discover a master without knowledge of the IP configuration with ESDCP.

➢ Portability

● Written in ANSI-C with emphasis on embedded real-time operating systems.

● Supports big and little endian (32-/64-bit) CPU architectures (Available for x86, PPC
and ARM).

Page 24 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Introduction

● Easily portable to other platforms because an OS independent EtherCAT master core is
based on a well defined Hardware Abstraction Layer.

● A modular approach allows adapting the memory footprint at compile time according to
the requirements of the application.

● ENI file parser is based on an OS independent XML parser.

1.4 Limitations of the trial version
The trial version of the EtherCAT Master for different target platforms (P.4502.xx) are fully
functional but the runtime is limited to 30 minutes. After this time the end of the trial period is
indicated by an event, all I/O operations will return with an error and you have to restart your
application to continue evaluating the product.

1.5 Getting Started
The EtherCAT master stack comes as a binary out-of-the-box solution as a static or dynamic
library for many (real-time) operating systems.

Each of these target specific EtherCAT master stack releases is distributed
with a platform specific documentation which describes the installation and
the platform configuration.

!! Please refer to this document first !!

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 25 of 255

EtherCAT Technology

2. EtherCAT Technology

2.1 Overview
Ethernet for Control Automation Technology (EtherCAT) is a real time, high speed and flexible
Ethernet based protocol. In comparison to other Ethernet based communication solutions
EtherCAT utilizes the available full duplex bandwidth in a very efficient way because it implements
a 'processing on the fly' approach where the Ethernet frames, which are sent by a master device,
are read and written by all EtherCAT slave devices while they are passed from one device to the
next.

As IEEE 802.3 Ethernet frames are used for communication the EtherCAT master can be
implemented with the physical layer of a standard Ethernet network controller hardware and the
slaves can be connected with standard twisted pair cables.

Page 26 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 1: EtherCAT frame processing

Ethernet HDR E
H Data FCSFH W
C Data W
C Data W
C

E
H

E
H

Master

EtherCAT Technology

2.2 Network Topology

EtherCAT supports a wide range of different network topologies. In addition to the commonly used
daisy chain topology, which can be easily realized because most EtherCAT slaves have two RJ45
ports, a line topology, a tree structure or single trunks are also possible.

The reason for this flexibility is the self-terminating capability of EtherCAT Slave Controller (ESC).
If an ESC detects that a port is open (because there is no link) the hardware is able to
automatically close the port and do an auto-forwarding. Based on this mechanism the last slave in
a network will always perform an auto-forwarding.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 27 of 255

Figure 2: Daisy Chain Topology

EtherCAT Technology

2.3 Protocol
The EtherCAT protocol is optimized for process data which is embedded in the standard IEEE
802.3 Ethernet frame using the ether type 0x88A4. It consists of the EtherCAT protocol header (2
bytes) which contains the EtherCAT frame size in bytes (11 bit) and a protocol type (4 bit, set to 1
for EtherCAT) followed by EtherCAT telegrams. Each EtherCAT telegram starts with a telegram
header (10 bytes) followed by the process data and is terminated with a working counter (2 bytes).

The important parts of the EtherCAT telegram header are the command (8-bit), the address (32-bit)
and the telegram data size (11-bit). The EtherCAT command defines the way the address is
evaluated by the EtherCAT slave devices. It may either be interpreted as a physical address (16-
bit) with an offset (16-bit) within the address space of the EtherCAT Slave Controller (ESC) or as a
logical address (32-bit) of a 4GB virtual address space.

The working counter which terminates each EtherCAT telegram is incremented by each EtherCAT
slave that has read or written the telegram data.

Page 28 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 3: EtherCAT Protocol

10Length EtherCAT…

1st EtherCAT Telegram nth EtherCAT Telegram2nd… …

Telegram Header (PDO) Data WC

FCS

Cmd Idx Address Len R M IRQ

 Ethernet Header (88A4)

10 Byte 2 Byte

8 Bit 8 Bit 32 Bit 16 Bit11 Bit 3 1 1

max. 1498 Byte

max. 1486 Byte

0 8 16 48 59 63 64 79

14 Byte 2 Byte 12-1498 Byte 4 Byte

M
63

C
62

Logical Address

Address Offset

EtherCAT Technology

2.4 Cable Redundancy

In order to increase system availability the topology can be changed into a ring where the last
EtherCAT slave device is connected to an additional network adapter of the EtherCAT master. In
this operation mode all cyclic and acyclic EtherCAT frames are sent by the master on both (primary
and redundant) network adapters simultaneously. The frames sent on the primary adapter are
received on the redundant adapter and vice versa.

Without any error condition the EtherCAT master will receive all frames processed by the EtherCAT
slaves on the redundant adapter. All frames received on the primary adapter remain unchanged
and can be discarded by the master.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 29 of 255

Figure 4: EtherCAT Cable Redundancy without communication error

EtherCAT Technology

If the ring is interrupted at some point the self-terminating capability of the EtherCAT technology
described in section 2.2 causes the frame to be auto-forwarded back to the transmitting network
adapter by the slaves which lost their link as a result of the cable failure, a damaged plug or EMI.
In this situation all slaves still get the process data either via the primary or via the redundant
adapter. The EtherCAT master will now receive auto-forwarded frames processed by the EtherCAT
slaves on both adapters but is able to combine them to a complete process image.

If a single EtherCAT slave has a malfunction the above said applies with respect to the
communication but the process image restored by the EtherCAT master is obviously incomplete.

In many cases a change between the error free operation mode and the redundant operation mode
is possible without any interruption or loss of data and after the error situation is resolved the
communication turns back into the error free operation mode. So the EtherCAT cable redundancy
is single fault tolerant. If the communication is disturbed this situation has to be resolved before
another fault may occur.

Page 30 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 5: EtherCAT Cable Redundancy with cable failure

EtherCAT Technology

2.5 EtherCAT State Machine (ESM)

Every EtherCAT slave device implements the EtherCAT State Machine (ESM). The actual state
defines the available range of functions. Four mandatory and one optional state are defined for an
EtherCAT slave:

➢ Init
➢ Pre-Operational
➢ Safe-Operational
➢ Operational
➢ Bootstrap (Optional)

For every state change a sequence of slave specific commands have to be sent by the EtherCAT
master to the EtherCAT slave devices.

Init:

• Master: Initial state.

• Slave: Initial state after power-on.

• Communication: No mailbox communication and process data exchange.

Pre-Operational:

• Master: Initialization of Sync Manager channels for mailbox communication during the
transition from Init to Pre-Operational. Before the master starts to send the commands
defined to perform the 'IP' transition it will implicitly perform the required steps for the DC
synchronization (see chapter 3.11.1).

• Slave: Validation of Sync Manager Configuration during the transition from Init to Pre-
Operational.

• Communication: Mailbox communication but no process data exchange.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 31 of 255

Figure 6: EtherCAT State Machine (ESM)

Init (I)

Safe-Operational (S)

Operational (O)

Pre-Operational (P) Bootstrap (B)

(OI) (OP) (SP) (PS)

(OP) (PO)

(PI) (IP) (SI) (BI) (IB)

EtherCAT Technology

Safe-Operational:

• Master: Initialization of Sync Manager channels for process data exchange, initialization of
FMMU channels, PDO mapping/assignment (if the slave supports configurable mapping),
DC configuration and initialization of device specific parameter which differ from the
defaults during the transition from Pre-Operational to Safe-Operational.

• Slave: Validation of all configured values during the transition from Pre-Operational to Safe-
Operational.

• Communication: Mailbox communication and process data exchange but the slave keeps
its outputs in a safe state while the input data is updated cyclically.

Operational:

• Master: Fully operational.

• Slave: Fully operational.

• Communication: Mailbox communication and process data exchange is fully working.

Bootstrap:

• Master: Optional state which can only be entered from Init.

• Slave: Optional state which can only be entered from Init for a firmware update.

• Communication: Limited mailbox communication (only the FoE protocol is supported) and
no process data exchange.

2.5.1 ESM Control

The ESM of an EtherCAT device is controlled with three (16 bit) register of the ESC:

• AL Control Register

• AL Status Register

• AL Status Code Register

The EtherCAT master writes in the AL Control register the requested state to initiate the change.
The slave reflects its current state in the AL Status register which is polled by the master to check
for the completion of the state change. The slave indicates an error during the requested state
transition by setting an Error Indication (E) flag in the AL Status register and writing a numerical
error value in the AL Status Code register which describes thes reason for this error in more detail.
The master acknowledges the Error Indication flag by setting the Error Ind Ack flag in the AL
Control register.

Standard AL Status Codes are defined in /2/ and /6/. Status codes with numerical values smaller
than 0x8000 are reserved for standard AL Status Codes. Status codes greater equal 0x8000 are
vendor specific. The following table gives an overview about common AL Status Codes, the state
(transition) for which they are indicated and the value of the AL Status register if the error occurs.

Page 32 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

EtherCAT Technology

AL Status
Code

Description State (change) AL Status

0x0000 No error Any Cur

0x0001 Unspecified error Any Any + E

0x0002 No Memory Any Any + E

0x0011 Invalid requested state change IS, IO, PO, OB, SB, PB Cur + E

0x0012 Unknown requested state Any Cur + E

0x0013 Bootstrap not supported IB I + E

0x0014 No valid firmware IP I + E

0x0015 Invalid mailbox configuration IB I + E

0x0016 Invalid mailbox configuration IP I + E

0x0017 Invalid sync manager configuration PS, SO Cur + E

0x0018 No valid inputs available O, SO S + E

0x0019 No valid outputs O, SO S + E

0x001A Synchronization error O, SO S + E

0x001B Sync manager watchdog O, S S + E

0x001C Invalid Sync Manager Types O, S, PS S + E

0x001D Invalid Output Configuration O, S, PS S + E

0x001E Invalid Input Configuration O, S, PS P + E

0x001F Invalid Watchdog Configuration O, S, PS P + E

0x0020 Slave needs cold start Any Cur + E

0x0021 Slave needs INIT B, P, S, O Cur + E

0x0022 Slave needs PREOP S, O S + E, O + E

0x0023 Slave needs SAFEOP O O + E

0x0024 Invalid Input Mapping PS P + E

0x0025 Invalid Output Mapping PS P + E

0x0026 Inconsistent Settings PS P + E

0x0027 FreeRun not supported PS P + E

0x0028 SyncMode not supported PS P + E

0x0029 FreeRun needs 3Buffer Mode PS P + E

0x002A Background Watchdog S, O P + E

0x002B No Valid Inputs and Outputs O, SO S + E

0x002C Fatal Sync Error O S + E

0x002D No Sync Error SO S + E

0x0030 Invalid DC SYNCH Configuration O, SO, PS P + E, S + E

0x0031 Invalid DC Latch Configuration O, SO, PS P + E, S + E

0x0032 PLL Error O, SO S + E

0x0033 DC Sync IO Error O, SO S + E

0x0034 DC Sync Timeout Error O, SO S + E

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 33 of 255

EtherCAT Technology

AL Status
Code

Description State (change) AL Status

0x0035 DC Invalid Sync Cycle Time PS P + E

0x0036 DC Sync0 Cycle Time PS P + E

0x0037 DC Sync1 Cycle Time PS P + E

0x0041 MBX_AOE B, P, S, O Cur + E

0x0042 MBX_EOE B, P, S, O Cur + E

0x0043 MBX_COE B, P, S, O Cur + E

0x0044 MBX_FOE B, P, S, O Cur + E

0x0045 MBX_SOE B, P, S, O Cur + E

0x004F MBX_VOE B, P, S, O Cur + E

0x0050 EEPROM no access Any Any + E

0x0051 EEPROM Error Any Any + E

0x0060 Slave restarted locally Any I

0x0061 Device Identification Updated PS P+E

0x00F0 Application Controller Available I I

Table 1: AL Status Codes

Page 34 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

EtherCAT Technology

2.6 Distributed Clocks (DC)

One important feature of EtherCAT is the integration of a Distributed Clocks (DC) synchronization
mechanism into the ESC hardware and the EtherCAT protocol which enables all slaves to share a
common high precision System Time.

2.6.1 Basic Principals

The basic principal of the distributed clock mechanism is shown in the picture below.

Each ESC has a clock which operates locally after power-on, based on an independent clock
generator (quartz, oscillator, …) providing a Local Time.

Typically the DC-enabled slave which is topologically located before all other slaves is chosen as
Reference Clock so its Local Time defines the DC System Time (M). It is the task of the EtherCAT
Master to send the required EtherCAT telegrams to synchronize all other slave clocks (S) with the
Reference Clock during the initialization phase to this DC System Time and to keep the clocks
synchronized during the operational phase.

The host system of the EtherCAT master operates with the Master System Time which will deviate
from the DC System Time. For a DC-enabled control application it is in many cases required that
these two time domains are also synchronized which has to be performed in a target specific way.
The DC operation mode where the Master System Time also follows the Reference Clock is
referred to as DC Master Mode.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 35 of 255

Figure 7: EtherCAT Distributed Clocks (DC)

EtherCAT Technology

2.6.2 Key Technical Parameters and Terms

This chapter gives a short introduction into the key technical parameters and terms for a better
understanding of the DC mechanism.

➢ The DC Time is a 64-bit value with its epoch defined to January 1st, 2000 (00:00:00 h)
counted in nanoseconds (sufficient for about 584 years without overflow)1.

➢ Due to the implementation of the distributed clock functionality DC-capable and non DC-
capable devices can co-exist in the same network.

➢ The local clocks of each DC-capable slave device, as long as not controlled by an
EtherCAT master, run independently from each other. This clock source is referred to as
Local Time.

➢ The DC-enabled device which is closest to the EtherCAT master with regard to the network
topology is chosen as Reference Clock. During the system initialization phase the
EtherCAT master typically adjusts the time of all DC-enabled slaves to its Master Clock
which is derived from a global clock reference (RTC, IEEE1588, GPS …). The adjusted
Local Time time of the Reference Clock is referred to as System Time.

➢ The EtherCAT master sends cyclically a special EtherCAT telegram which captures the
System Time for distribution to all DC-enabled slaves which use this information to adapt
their Local Time accordingly. This enables all DC-capable slaves to share the same System
Time with a synchronization error usually below 100 ns. The difference between this locally
controlled System Time and the received System Time of the Reference Clock is referred
to as System Time Difference.

The synchronized System Time in combination with capture/compare units of the ESC can be used
by the slave application for several purposes:

➢ Generation of synchronous output signals (Sync signals).

➢ Precise timestamping of input signals (Latch signals).

➢ Generation of synchronous interrupts.

➢ Synchronous digital output updates.

➢ Synchronous digital input sampling.

There are three different parameters which have to be considered and/or determined by the
EtherCAT master to synchronize the clocks of all DC-enabled slaves.

1. A Propagation Delay is caused by the physical delay on the cable for the Ethernet frame,
the delay of the devices physical layer as well as the processing and forwarding delay
within the ESC itself.

2. A constant Drift between all Local Time of each slave is the result of deviations between
the oscillator periods of the clock sources which are caused by different quartzes, thermal
effects, etc.

3. An individual Offset between the Local Time of the Reference Clock and each DC-enabled
slave is the result of the Propagation Delay and the different instants the ESC have been
powered in combination with deviations caused by the Drift.

1 Some ESC support only a 32-bit value which overflows about every 4.2 seconds.
Page 36 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

EtherCAT Technology

The picture below shows the relation between the Reference Clock and a DC-enabled slave which
Local Time is greater than the Reference Time.

The Propagation Delay and the Offset, once determined by the EtherCAT master individually for
each DC-enabled slave during the initialization phase, are compensated locally by writing the
correction parameters into separate registers of the ESC.

The Drift until the instant of writing the offset compensation parameter into the ESC is part of this
offset compensation value. The continuous drift is compensated by a control loop integrated into
the ESC.

➢ Synchronization of the slaves (and the master) clocks

➢ Generation of synchronous output signals (SyncSignals)

➢ Precise timestamping of input events (LatchSignals)

➢ Generation of synchronous interrupts

➢ Synchronous digital output updates

➢ Synchronous digital input sampling

DC is placed above the EtherCAT data link protocol, and its implementation is not mandatory. For
this reason, both DC-enabled and non-DC-enabled devices can quietly coexist in the same
network. It is worth noting that DC is not a general-purpose synchronization protocol, since it relies
on specific features of EtherCAT, such as its ring topology, on-the-fly datagram processing, and
hardware timestamping capabilities.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 37 of 255

Figure 8: Compensation of Propagation Delay, Offset and Drift

EtherCAT Technology

To better understand the DC mechanism, the following terms and definitions are needed:

➢ Typically, the reference clock is the slave device with DC capability that is connected closer
to the master. Optionally, the reference clock can be adjusted to an extern global reference
clock, for example, to an IEEE 1588 grandmaster clock. The reference clock provides the
system time to all other devices in the EtherCAT segment.

➢ Each DC-enabled device has a local clock that, if not suitably controlled, runs
independently of the reference clock.

➢ The master clock is used to initialize the reference clock. Typically, it is the clock of the EM,
but it is also possible (and sometimes recommended) to bind it to a global clock reference
(IEEE 1588, GPS, etc.), which is made available to the master either directly or through a
specific EtherCAT slave.

➢ The propagation delay is the time spent by frames when passing through devices and
cables.

➢ The offset is the difference between the local clock of a given slave device and the
reference clock. It is due to several elements, such as the propagation delay from the
device holding the reference clock to the considered slave, the initial difference of the local
clocks resulting from the different instants at which devices were powered on, the skew
between oscillator frequencies, and so on. The offset is compensated locally in each slave.

➢ Because the oscillator periods of local and reference clock sources are subject to small
deviations (different quartzes are used), the resulting drift has to be compensated regularly.

Page 38 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3. Implementation
This chapter covers the implementation details of the EtherCAT master stack.

3.1 Architecture
The picture below is an overview of the EtherCAT master stack architecture.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 39 of 255

Figure 9: EtherCAT Master Stack Architecture

Implementation

The EtherCAT master stack consists of several modules which implement base or extended
services as shown in figure 9. The base services are the required minimum to initialize and control
an EtherCAT network without complex EtherCAT slaves.

The stack is fully scalable at compile time. Modules implementing extended services can be
included to adapt the stack and/or the memory footprint to the requirements of the EtherCAT
network and the limitations of the target platform.

The binary versions of the EtherCAT master which are available for several
platforms already provide support for most of the extended services.

The following abstract is an overview of several modules or services which implement the various
aspects of the EtherCAT technology shown in figure 9. The stack can be roughly grouped into
three categories. A core which implements all EtherCAT related services, a device layer which
deals with Ethernet frames and a Hardware Abstraction Layer (HAL) which implements all target
platform specific services.

Application Programming Interface (API):

The application controls all services through the API described in chapter 4. If a service is not
supported because the related module was not included at compile time the API call is still
available but will return with an error.

Configuration services:

The entire configuration can be implemented with API calls. The usual approach is to parse an
ENI file created with a configuration tool. For this purpose the EtherCAT master supports an OS
independent XML parser and the option to store ENI configuration in ZIP/GZIP compressed
archives.

State Machine:

The EtherCAT master implements an individual virtual state machine for each slave in the
configuration and for itself. The state machine controls the various communication services.

Process Data:

To exchange the process data the EtherCAT master manages separate images for input and
output and implements service to access the process variables.

Cyclic Data Services:

These services implement the cyclic input and output data exchange of EtherCAT frames with
the device layer. Cyclic process data is immediately updated within the input/output process
data image in every cycle. Acyclic data is buffered for processing by the acyclic data services.

Acyclic Data Services:

The services implement all acyclic communication which run in parallel to the cyclic data
exchange to initialize and control the EtherCAT network. The EtherCAT frames are not sent
directly to the device layer. Instead they are buffered and sent by the cyclic data services after
the cyclic data is transmitted.

Page 40 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

Worker Threads:
Perform the calls necessary to run the cyclic and acyclic data services in internal background
worker tasks.

Asynchronous Services:

These services implement the possibility to send application defined asynchronous EtherCAT
frames to the slave devices. Like the acyclic data these EtherCAT frames are not sent directly to
the device layer. Instead they are buffered and sent by the cyclic data services after the acyclic
data is transmitted.

Diagnostic Services:

The stack implements mandatory base diagnostic services which are necessary to detect
communication and protocol errors and optional extended diagnostic service which provide
more detailed diagnostic information and additional EtherCAT slave device monitoring.

Distributed Clocks (DC):

These services implement the initial synchronization of all EtherCAT slave device's clocks with
the DC reference clock, the optional continuous drift compensation at runtime and the optional
re-adjustment of the local master clock.

Mailbox Services:

The mailbox service provides the common base functionality for several EtherCAT mailbox
protocol implementations. It works on top of the acyclic or asynchronous services.

CAN application over EtherCAT (CoE) protocol:

This mailbox protocol implements the necessary mechanisms to configure complex EtherCAT
slaves via their object dictionary. It is used internally by the configuration services for network
configuration and can be used by the application as an asynchronous service through a
dedicated API.

Servo Profile over EtherCAT (SoE) protocol:

This mailbox protocol implements the necessary mechanisms to configure complex EtherCAT
slaves via their SoE parameters. It is used internally by the configuration services for network
configuration and can be used by the application as an asynchronous service through a
dedicated API.

Ethernet over EtherCAT (EoE) protocol:

This mailbox protocol implements the necessary mechanisms to embed Ethernet frames within
the EtherCAT communication. It requires the virtual switch service of the device layer.

File access over EtherCAT (FoE) protocol:

This mailbox protocol implements the necessary mechanisms to embed a file transport within
the EtherCAT communication.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 41 of 255

Implementation

Ethernet Frame Dispatcher:

This is the main service which passes frames received from the HAL to EtherCAT core and vice
versa.

Virtual Switch:

This service is necessary in combination with the EoE mailbox protocol to embed Ethernet
frames within the EtherCAT mailbox communication. Depending on the target platform the
EtherCAT stack might also implement a virtual Ethernet port.

Redundancy Handler:
This service implements the cable redundancy where all EtherCAT frames are sent and
received on a primary and an additional redundant adapter to deal with situations like a cable
break or a slave failure.

Hardware Abstraction Layer (HAL):

This layer implements all services which are platform specific and is described in detail in the
following section.

Page 42 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.2 Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) implements all services which are target and/or platform
specific.

➢ Thread handling with synchronization services.
➢ Timer services.
➢ High resolution timer support.
➢ Dynamic memory management support.
➢ File I/O support.
➢ Virtual EoE port implementation.
➢ Debugging support routines.
➢ Enumerating the available/supported network adapter.
➢ Sending and receiving Ethernet Frames.

The EtherCAT master library is built for a certain combination of operating system (version) and/or
CPU architecture (see overview on page 2 for available combinations).

Most of the HAL services listed above are an abstraction layer to the operating system as the last
service addresses the network communication to exchange data with the EtherCAT slaves. This
data exchange is based on the IEEE 802.3 Ethernet frames (see chapter 2.1) which is referred to
as Data Link Layer (Level 2) in the Open Systems Interconnection model (OSI model) of a network
protocol stack.

3.2.1 Default Link Layer Access

The standard HAL of an EtherCAT master stack comes with support to use the existing device
driver infrastructure of the target operating system. As most operating systems do not offer a public
interface to access the Data Link Layer of its TCP/IP stack the EtherCAT master comes with an OS
specific protocol or filter driver to bypass the higher layers.

The advantage of this approach is that every supported network hardware which is capable for 100
Mbit/s full duplex communication is automatically supported by the EtherCAT stack. The
disadvantage of this approach is that depending on the real time capability of the operating system
and its TCP/IP stack concurrent network communication on other network interfaces might pre-
empt the EtherCAT communication, network driver might be configured for throughput versus low
latency, etc. which might cause an impeding jitter or delay for the EtherCAT cycle. In addition to it
the cyclic high frequency communication causes an accordingly interrupt and CPU load for the
target system.

3.2.2 Link Level Driver

To overcome the disadvantages using the OS native network device driver the master also
supports a Link Level Driver Framework (LLDF) for optimized Ethernet communication which maps
the register of the network hardware into the user space of the application to operate directly on
the network device’s register utilizing the network device’s DMA units without attaching an interrupt
as received data is polled in the context of the I/O cycle (see chapter 3.7). This approach causes
the least Ethernet communication overhead as the execution of dispensable network device driver
and interrupt handling code is skipped as well as the overhead for changing from user space into
kernel space on MMU based systems is saved. Furthermore concurrent network stack activity can
no longer affect the EtherCAT cycle if the OS allows a proper possibility for thread prioritization.

Depending on the operating system capabilities the Link Level Driver (LLD) are either loaded
dynamically during initialization of the EtherCAT stack (see chapter 3.5) or they have to be linked
statically to EtherCAT master library (which results in a custom specific version of the stack).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 43 of 255

Implementation

The downside of the LLD approach is that currently only the network hardware in the table below
are supported. Yet unsupported network hardware may be made available with additional NRE as
a product enhancement. Please contact the support.

Network hardware Description

eTSEC Enhanced Three Speed Ethernet Controller (eTSEC) which is part of the
Freescale P10xx QorIQ.

i210 Intel NIC I210 series.

Xaxi Combination of AXI EMAC/DMA IP core in a Xilinx FPGA.

Table 2: Link Level Driver supported network hardware

3.3 Programming Model
From the controller application point of view an EtherCAT slave segment according to figure 10
consists of virtual slave instances for representing the physical EtherCAT slave device in the
EtherCAT network segment. Each virtual slave instance is managed by a EtherCAT master
instance. The master instance itself is attached to a device instance where each device instance
manages one network adapter instance if used without cable redundancy support and two network
adapter instances if used with cable redundancy support.

The link between the different object instances is based on handles which are returned creating the
object. The application has no direct link to the adapter instance(s) which are implicitly created with
the device object.

Page 44 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 10: EtherCAT Master Programming Model

Adapter
Instance

Slave
Instance

Master
Instance

Slave
Instance

Slave
Instance

Device Instance
Adapter
Instance

Application

Implementation

3.4 Use Cases
Based on the programming model described in the previous chapter which covers the standard
application that one physical network adapter port is connected directly with an EtherCAT slave
segment (see Figure 2) the stack also supports several more sophisticated use cases.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 45 of 255

Figure 11: Extended EtherCAT Master Use Cases

EtherCAT Master

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

EtherCAT
Slave Segment

VLAN
Capable

GBit-Switch

EtherCAT IN Port EtherCAT OUT Port Switch Port

100 MBit/s 1 GBit/s

EtherCAT Master

EtherCAT Master

B Multi Master Mode I

A Cable Redundancy Mode

C Multi Master Mode II

Control Application

Control Application

Control Application

Implementation

3.4.1 Cable Redundancy Mode

The Cable Redundancy mode requires two physical network adapter (ports). The primary adapter
is connected to the IN port of the first device of the EtherCAT slave segment and the redundant
adapter to the OUT port of the last device to establish a redundant communication using a ring
topology as described in chapter 2.4.

The programming model described in chapter 3.3 does not change but the redundancy mode is
subject to the following limitations:

➢ The Cable Redundancy is single-fault tolerant. If more than one malfunction occurs in the
topology, full I/O communication will only be restored when all the faults have been
eliminated. Restart of the affected slaves may be required.

➢ A combination of the Distributed Clock mechanism and Cable Redundancy is not
recommended as in case of a malfunction synchronization is only possible in the segment
which contains the slave with the DC reference clock.

➢ A combination of cable redundancy with the Multi Master mode II described below is not
supported.

Some master implementations on the market which support cable redundancy
do not support initializing an EtherCAT network which has already a single-fault
malfunction. This limitation does not apply for this master implementation.

3.4.2 Multi Master Mode I

The Multi Master Mode I requires two physical network adapter (ports). Each port is connected to
an individual EtherCAT slave segment which can all be controlled by one application.

The programming model described in chapter 3.3 does not change as every EtherCAT slave
segment is represented by individual device, master and slave instances. The Multi Master Mode I
is subject to the following limitations:

➢ A combination with the Distributed Clock mechanism is not supported.
➢ The resulting cycle time is the sum of the cycle times for the each EtherCAT slave segment.

Page 46 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.4.3 Multi Master Mode II

The Multi Master Mode II requires only one physical network adapter (port) and a VLAN capable
Ethernet switch. The EtherCAT master port is connected to an uplink port of the switch and further
switch ports are connected with the individual slave segments.

The programming model described in chapter 3.3 does slightly change as every EtherCAT slave
segment is represented by individual master and slave instances which all use the same device
instance. The Multi Master Mode II is subject to the following limitations:

➢ The network adapter port used by the EtherCAT master and the Ethernet switch require at
least a Gbit/s Ethernet connection.

➢ The switch applies additional delays compared to a direct connection of the EtherCAT
slave.

➢ A cable break between the first slave of the EtherCAT slave segment an the switch port can
not be detected as this by the EtherCAT master.

➢ A combination with the Distributed Clock mechanism is not supported.
➢ A combination with the Cable Redundancy Mechanism is not supported.
➢ The resulting cycle time is the sum of the cycle times for the each EtherCAT slave segment

but due to the Gbit/s Ethernet connection the transmission time to the switch is faster as if
the EtherCAT segment is connected directly with 100 Mbit/s to the port used by the master.

Attention: The configuration of the EtherCAT master network adapter
and/or target operating system as well as the Ethernet switch to support
Ethernet frames with VLAN tags is very hardware/operating system
dependent and not scope of this document. Please refer to the respective
hardware/software vendors for this purpose.

3.5 Initialization
Most API functions require the EtherCAT stack to be initialized. This is performed by the application
calling ecmInitLibrary(). The main purpose of the function is to register and configure the
application event handler (see chapter 6.1) which indicates failures in addition to the error return
codes of the API functions, to provide callback handler for tasks which can not be implemented by
the HAL because the OS has no common API for it (e.g. checking the link status) and to do some
platform specific configurations (e.g. adapting the stack size of the worker tasks).

If your target is supported by a Link Level Driver the respective network hardware specific driver is
also configured here for dynamic as well as static LLDF support.

Another important action which should be taken before using any API function is to check if the
Application Binary Interface (ABI) has changed incompatibly. See description of ecmGetVersion()
for further Details.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 47 of 255

Implementation

3.6 Configuration
The network configuration of the EtherCAT master stack can be completely configured using API
calls or by parsing an EtherCAT Network Information (ENI) file created by a configuration tool.

3.6.1 EtherCAT Network Information (ENI)

The common way to configure the EtherCAT master is to parse configuration data in the EtherCAT
Network Information (ENI) format calling the API function ecmReadConfiguration(). The general
ENI support is indicated by the feature flag ECM_FEATURE_ENI_SUPPORT. As the format is based
on XML the stack comes with an operating system independent XML parser. Two variants to store
the data are supported:

➢ Stored in a file read with standard I/O mechanisms of the operating system.

➢ Stored in a buffer (flash memory, shared RAM, etc.)

The file I/O support is indicated by the feature flag ECM_FEATURE_FILE_IO. The second method is
always supported and allows especially embedded devices to configure the EtherCAT network
based on ENI data even without a flash file system.

The XML parser operates in a stream-oriented way so only small parts of the
complete ENI configuration are kept in memory while processing the data. For
this reason large configuration data can be processed even by embedded
devices with limited memory resources.

As ENI configuration files can be several megabytes in size even for medium networks the
EtherCAT stack supports the transparent storage of the data in standard ZIP/GZIP archives which
usually reduce the data size at least by a factor of 10. The support to extract these archives is
indicated by the feature flag ECM_FEATURE_COMPRESSED_ENI.

In addition to the data size reduction organizing ENI files in compressed archives offers additional
advantages:

➢ The ENI data can not be corrupted at a position where the error is not be detected by the
XML parser.

➢ Embedded devices without a flash file system can easily manage several configurations
(only ZIP archives).

➢ The archive can be encrypted with a user defined password in order to protect it against
changes (only ZIP archives).

The ZIP/GZIP decompression operates in a stream-oriented way so only small
parts of the archive are kept in memory while processing the data. For this
reason large ZIP/GZIP-archives can be processed even by embedded devices
with limited memory resources.

In order to troubleshoot errors in the ENI configuration the application should check the return code
of ecmReadConfiguration(), register the event callback handler (see chapter 6.1) with
ecmInitLibrary() and enable the event ECM_EVENT_CFG, which indicates problems processing the
ENI data.

Page 48 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

Problems in the ENI file are usually indicated via the event handler in
combination with a line number. Some EtherCAT configuration tools do not add
line endings after each XML statement so the resulting ENI configurations get a
little bit smaller and can still be processed. However, in case of a problem the
line number does not help locating the position in file with a standard text editor.
To avoid the problem you can load the ENI file with a standard XML editor and
save it in a new file which usually adds the missing line endings.

Sometimes it is necessary for the application to override some configuration parameter of the ENI
file or to configure master capabilities which are not reflected in the ENI configuration. This is
achieved by setting flags in ECM_CFG_INIT and providing additional configuration parameter in
ECM_DEVICE_DESC and ECM_MASTER_DESC calling ecmReadConfiguration().

3.6.2 Ethernet Address

As EtherCAT is based on standard Ethernet frames (see section 2.3) each frame has a source and
a destination address. The EtherCAT slave devices ignore these addresses and leave them
unmodified so a network adapter will receive frames it just has sent during EtherCAT
communication. Both addresses are part of the ENI configuration but it is necessary for the
application that the EtherCAT master stack has full control over both parameters to adapt the
communication to the runtime and network environment.

The Ethernet source address of the ENI file is used to select the (primary) network adapter. As the
ENI file is usually created using a different network adapter the ENI file has either to be adapted
afterwards to the Ethernet address of the target platform's network adapter or can be overridden by
setting the ECM_FLAG_CFG_IGNORE_SRC_MAC in ECM_CFG_INIT and the network adapters address
in ECM_DEVICE_DESC calling ecmReadConfiguration(). A list of available network adapter for
EtherCAT communication can be obtained with ecmGetNicList().

The ENI specification does not contain a parameter to define the redundant
adapter if the EtherCAT master should support cable redundancy. For this
reason the address of the redundant adapter is always taken from the structure
ECM_DEVICE_DESC.

The EtherCAT master uses the Ethernet broadcast address (FF-FF-FF-FF-FF-FF) as default for
the destination. The advantage of this address is that a network adapter is not allowed to discard
Ethernet frames with such address. In rare cases it might nevertheless be necessary to choose a
different address, e.g. if the Ethernet frames have to pass a switch which has a built-in prevention
of broadcast storms. The destination address can be overridden by setting the flag
ECM_FLAG_CFG_USE_DST_MAC in ECM_CFG_INIT and the network adapter address in
ECM_MASTER_DESC calling ecmReadConfiguration(). In addition in ECM_DEVICE_DESC the flag
ECM_FLAG_DEVICE_PROMISCUOUS has to be set as otherwise the network adapter discards the
received frames.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 49 of 255

Implementation

3.7 Communication
All EtherCAT communication is based on EtherCAT telegrams embedded in EtherCAT frames.
Although there is only one common set of EtherCAT commands used for all types of
communication, the EtherCAT master groups the commands in EtherCAT frames which belong to
one of the following categories:

➢ Frames containing cyclic process data.

➢ Frames containing acyclic data originated by the master itself.

➢ Frames containing acyclic data originated by the application (asynchronous requests).

3.7.1 Data Exchange

All data exchange is controlled by the API functions ecmProcessInputData() and
ecmProcessOutputData(). The argument of both calls is a device instance, which means that
every master instance attached to it is affected.

Calling ecmProcessInputData() the EtherCAT master stack performs the following tasks:

➢ Ethernet frames are read from the HAL specific frame buffer of the network adapter.

➢ The frames are validated (length and type) and passed to the master instance.

➢ Acyclic frames and application defined asynchronous frames are buffered for later
processing by the acyclic handler.

➢ Cyclic frames are processed immediately by validating command and working counter of
every EtherCAT telegram in the frame and updating the input process data image.

Calling ecmProcessOutputData() the EtherCAT master stack performs the following tasks:

➢ Data of the output process image is used to update the cyclic EtherCAT frames.

➢ Cyclic frames of all master instances are transmitted.

➢ Acyclic frames of all master instances are transmitted.

➢ Application defined asynchronous frames are transmitted.

For a complete I/O cycle both API functions have to be called. Consequently the
resulting I/O cycle time is defined by the frequency of these calls.

Page 50 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.7.2 Cyclic Data

The cyclic process data is exchanged in one or more Ethernet frames. In most cases all process
data is exchanged in each I/O cycle and the capacity of each Ethernet frame can be used up to the
maximum before an additional Ethernet frame is used.

Optionally it is possible to force storing the process data in different Ethernet frames and define an
individual cycle time for each frame which results in the definition of Cycle Domains for process
data which has to be exchanged with a high frequency and process data which is allowed to be
exchanged with a lower frequency. The advantage of Cycle Domains might be a reduced overall
CPU and network load.

The picture above shows a configuration for the process data exchange with three cyclic Ethernet
frames in different Cycle Domains. The base cycle time of the example target is 1000 μs and the
configuration defines one frame to be sent every 1000 μs , a second frame to be sent every 2000
μs and a third frame every 2500 μs. Any configured value which is not a multiple of the base cycle
time is implicitly rounded up once to the next multiple (in the example above the 2500 μs is
rounded up to 3000 μs).

The cycle times are defined via the keyword <CycleTime> in the ENI file (see chapter 3.6.1) or the
parameter ulCycleTime in ECM_DEVICE_DESC if the application is driving the cycle by calling the API
functions ecmProcessInputData() and ecmProcessOutputData(). In addition the flag
ECM_FLAG_MASTER_CYCLE_DOMAINS has to be set in ECM_MASTER_DESC creating the master
instance as otherwise each frame is exchanged with every I/O cycle.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 51 of 255

Figure 12: Process Data Exchange with Cycle Domains

Implementation

3.7.3 Acyclic Data

In addition to the cyclically transmitted and received process data the EtherCAT master exchanges
acyclic data with the EtherCAT slaves to:

➢ Initialize the slaves by sending the configured commands to perform a state transition.

➢ Handle the mailbox communication described in the next section.

➢ Gather diagnostic information.

➢ Initialize and control the Distributed Clocks of the EtherCAT slaves.

In order to provide these acyclic requests for transmission and to process the received replies from
the slaves, the API function ecmProcessAcyclicCommunication() has to be called cyclically. The
argument of the call is a device instance, which means that every master instance attached to it is
affected.

The cycle time calling this function can be defined independently of the data
exchange cycle time described in the previous chapter. Nevertheless it has an
influence on e.g. the network start-up time. Using a cycle time of 1 ms is the
recommended value.

The task performed by this function is more complex than the data exchange described in the
previous chapter. It covers the following work items:

➢ Manage the state machine for each master instance.

➢ Manage an individual state machine for every slave instance.

➢ Prepare configured commands for transmission to perform state transitions.

➢ Process and validate the received replies of the commands.

➢ Keep track of timeout conditions and retry failed or timed out commands.

➢ Handle all mailbox communication.

➢ Complete application defined asynchronous requests.

➢ Check link state of network adapter.

3.7.4 Background Worker Task

The cyclic calls to exchange and handle the process data (section 3.7.1) and to process all acyclic
tasks (section 3.7.3) can be controlled completely by the application. With the help of the HAL
timer the master can perform these calls in the background. The worker tasks can be configured by
the application with the API function ecmProcessControl(). The cycle time and the priority of the
worker tasks can be configured separately for the acyclic data handler which just calls
ecmProcessAcyclicCommunication() and the cyclic data handler which calls consecutively
ecmProcessInputData() and ecmProcessOutputData(). The default stack size of the worker
tasks of 16384 bytes can be overridden with the library initialization.

To synchronize the application with the cyclic process data exchange up to three call back handler
can be registered which are called at the start of a new cycle, between the API calls and at the end
of the cycle (see chapter 6.2).

Page 52 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.7.5 Mailbox Support

To support the mailbox based communication with complex EtherCAT slaves, which is the base
mechanism of the EtherCAT protocols (CoE, EoE, etc.), the master has to check regularly if new
mailbox data is available. The EtherCAT protocol defines two ways to perform this task which are
both supported by the master:

1. The slave mailbox is polled cyclically for new data.

2. A much more sophisticated approach is to check the mailbox state change bit with an
EtherCAT command in the cyclic process data. To accomplish this, one of the slave's
FMMUs has to be configured to map the 'written bit' of the input mailbox SyncManager into
the process data. Every slave is assigned a unique bit offset, so the master can check the
mailbox of all slaves with one command in a very efficient way.

In addition the master implements several optimizations to adapt the poll time dynamically for
slaves with outstanding replies to mailbox requests which decreases the overall latency for mailbox
communication.

3.7.6 Asynchronous Requests

In addition to the cyclic and acyclic data exchange the master supports asynchronous requests
which can be send by the application to the slave. Single requests are supported by the API
function ecmAsyncRequest(). Sending several different requests to the same or to different
slaves the API function ecmAsyncRequests() can be called.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 53 of 255

Implementation

3.7.7 ESI EEPROM Support

In addition to the general purpose asynchronous requests to the ESC slave register described in
the previous section the EtherCAT master stack also implements the two specialized
asynchronous requests ecmReadEeprom() and ecmWriteEeprom() to allow read or write access
to the EtherCAT Slave Information (ESI) data which is stored in an NVRAM (usually an I2C
EEPROM). Reading or writing this data via EtherCAT requires several consecutive read/write
operations to the ESC ESI EEPROM interface registers which follow a given algorithm [1].

The ESI EEPROM contains the device configuration and description data documented in [2] and
[3] in a binary format. The offsets in the following figure and the API are word offsets as the data is
stored in the EEPROM as 16-Bit units.

The ESI EEPROM starts with mandatory configuration data at fixed offsets followed by several
categories with varying sizes which contain configuration data for several aspects of the EtherCAT
protocol. Only the General Category is mandatory. An application can retrieve a list of available
mandatory and optional categories in binary ESI EEPROM data with ecmGetEsiCategoryList()
and can get access to the data of standard categories with ecmGetEsiCategory().

The EtherCAT Slave Controller Configuration Area starting at offset 0 contains crucial configuration
data for the ESC. For this reason the data integrity is protected by a CRC at the end of the block. If
it is necessary to change this data this CRC can be calculated with ecmCalcEsiCrc().

Some devices do not use I2C EEPROMs but an emulation which might cause
sporadic or continuous higher delays writing to the EEPROM. To cope with this
situation you can configure an additional delay to prevent timeout errors.

Page 54 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 13: ESI EEPROM Structure

EtherCAT Slave Controller Configuration Area
VendorId ProductCode RevisionNo SerialNo

Hardware DelaysHardware Delays Bootstrap Mailbox ConfigBootstrap Mailbox Config

Reserved

SM Mailbox Config

0

8
16
24

64
Category Strings (Optional)

Category General (Mandatory)

Category FMMU (Optional)

Category SM (Optional)

Category RxPDO(Optional)

Category TxPDO(Optional)

….

Implementation

3.8 Process Data
The main purpose of the EtherCAT master is the cyclic exchange of process data with the initially
configured EtherCAT slaves. Each master instance manages an individual

● Input Process Data Image – Data received from the EtherCAT slaves

● Output Process Data Image – Data transmitted to the EtherCAT slaves

The EtherCAT master supports internal as well as external allocated memory for these images.

3.8.1 Data Composition

The size and the layout of the process data images is defined by the configuration. The EtherCAT
master supports two kinds of data layout descriptions. The Framed Layout and the Packed
Layout. They are different in the way the given configuration offsets to the data are interpreted.

The Framed Layout is the standard layout described in [4] as shown in the picture below.

The process image in the Framed Layout has the same size as the cyclically exchanged Ethernet
frames and the process data is located in the process image at identical (byte) offsets. Unused
space between consecutive Ethernet frames is also unused. It is important to know that the offsets
given in the configuration for this layout according to [4] do not define the start of the data but the
start of the telegram header (in the figure above the process data of the first telegram would be
described by an offset of 16).

The advantage of this layout is that ENI configuration files in this format should be exported by any
EtherCAT configuration tool and that an application can also check the working counter for error
detection as they are also updated by the master in the input process image with every cycle.

The disadvantage of this format is that the process image size might get big compared to the real
process data size, that it contains gaps between the slave data and that the application might
require a different order of the data for internal processing.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 55 of 255

Figure 14: Process Image in the Framed Layout

ECAT
 Header

Ethernet
 Header

Telegram
Header

Data
(10)

WC
Telegram
Header

Data
(6)

WC

Frame 1

Unused ECAT
 Header

Ethernet
 Header

Telegram
Header

Data
(12)

WC

Frame 2

0 14 16 3826 36 48 54 56 1514 1524 1526 1536 1548

Unused
Data
(10)

WC Unused
Data
(6)

WC

Process Image (1550 Byte)

Unused
Data
(12)

WC

0 3826 36 48 54 56 1536 1548

Implementation

The Packed Layout is a layout type which can be generated by the EtherCAT Workbench [9] as
shown in the picture below.

The process image in the Packed Layout contains just the process data without any additional
EtherCAT protocol information as consecutive bytes. The offsets give in the configuration reflect
the real data offsets.

The advantage of this layout is that it is the most compact representation of the process data and
that the order of the data can be defined by the application.

In order to overcome the disadvantage that the (received) working counter can no longer be
checked by the application directly the virtual variables FrmXWcState (see chapter 3.8.4) can be
mapped into the (input) process data which allow a much more efficient check.

To indicate that the process data is organized in the Packed Layout you have to
set ECM_FLAG_MASTER_PACKED_LAYOUT flag (see chapter 7.2.19). If you start the
master with a ENI configuration file for the Packed Layout without setting this flag
the master will not start because of failures in the process image.

Page 56 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 15: Process Image in the Packed Layout

ECAT
 Header

Ethernet
 Header

Telegram
Header

Data
(10)

WC
Telegram
Header

Data
(6)

WC

Frame 1

Unused ECAT
 Header

Ethernet
 Header

Telegram
Header

Data
(12)

WC

Frame 2

0 14 16 3826 36 48 54 56 1514 1524 1526 1536 1548

Data
(10)

Data
(6)

Process Image (28 Byte)

Data
(12)

0 12 18

Implementation

3.8.2 Memory allocation

The EtherCAT master support process images which reside in internal as well as external allocated
memory:

For internal allocated memory the EtherCAT master allocates a memory area which is sufficient for
the process image and returns two pointers to the application where process data can be read or
written.

For external allocated memory the application provides the two pointers where the process data
can be read or written together with the size of this area. This configuration can be used to store
the process image e.g. in a shared memory area.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 57 of 255

Figure 17: Process image with memory allocated externally

Application EtherCAT Master

Process Image

Input

Output

R
e

a
d

/W
rite

EtherCAT Frames

EtherCAT Frames

Figure 16: Process image with memory allocated internally

Application EtherCAT Master

Process Image

Input

Output

Read/Write
EtherCAT Frames

EtherCAT Frames

Implementation

3.8.3 Process Variables and Endianness

The process data images consist of the real process data which is exchanged with the EtherCAT
slaves and the Ethernet/EtherCAT protocol overhead. Configuration tools often create ENI data
which contain gaps without any data.

To get a reference to the process data the application has to call the API function
ecmGetDataReference() which returns a pointer into the input or output process data image for a
given offset independent of externally or internally memory allocation.

The offset to the data can be taken from the slave descriptions which contain the position and the
size of the input and output process data within the respective image without any further details
about the data structure.

Configuration in ENI format usually contain a detailed description of each process variable, too. If
the flag ECM_FLAG_CFG_KEEP_PROCVARS is set in the argument ECM_CFG_INIT when calling
ecmReadConfiguration() the ENI parser creates a database with all variable descriptions. This
database can be requested by the application with the API ecmGetVariable() and
ecmLookupVariable() to get a detailed description of each variable which also contains its offset
and data size. To save memory the bit ECM_FLAG_CFG_SKIP_COMMENT can be set to ignore the
comments with the variable description if they are available in the ENI file.

Attention: The data in the process data image is always stored in little
endian byte format independent of the CPU architecture. On big endian
CPU architectures it is up to the application to perform the necessary
data conversion for variables with more than one byte.

To convert complex data structures from/to little endian format the application can call the utility
function ecmCpuToLe(). For simple data types with two or four bytes it might be faster to use OS
specific implementations which might, depending on the CPU architecture, implement the
necessary conversion in hardware.

Page 58 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.8.4 Virtual variables

Some configuration tools embed diagnostic information within virtual variables in the (input)
process data image which can be handled by the application like variables which reflect real
process data. The flag ECM_FLAG_CFG_VIRTUAL_VARS has to be set in ECM_CFG_INIT calling
ecmReadConfiguration() to enable the support for virtual variables.

The EtherCAT master distinguishes two types of variables:

➢ Variables defined within the input process image size.

➢ Variables defined outside of the input process image size.

For the latter case the master has to extend the input process image size to a size different from
the size definition in the ENI file. All virtual variables have a size of 16 bit and are interpreted as
unsigned value or bitmask. The following virtual variables are supported:

Variable Name Description

DevState Current device state according to table 12.

SlaveCount Current count of active slaves on the primary adapter.

SlaveCount2 Current number of active slaves on the redundant adapter. Set to 0
or not available without configuration of cable redundancy.

CfgSlaveCount Number of slaves in current the configuration.

FrmXWcState The FrmXWcState is defined for every cyclic frame. A bitmask
indicates a working counter (WKC) mismatch for commands in a
cyclic frame. The X is the number of the frame starting with 0. Bit 0
indicates a WKC mismatch in the 1st EtherCAT command up to bit
14 indicating a WKC mismatch in the 15th EtherCAT command in
this frame. Bit 15 indicates that the complete frame is missing.

InfoData.State The InfoData.State variable is defined for every slave containing
the current state of the slave.

Table 3: Virtual Variables

The link between the virtual variables and their position in the process image is
based on the variable names. For this reason you have choose the names above
in the ENI for the respective variable which is in several cases the default.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 59 of 255

Implementation

3.8.5 Slave-to-Slave Communication

The EtherCAT technology allows two methods for slave-to-slave process data communication
which differ in their topology dependency.

3.8.5.1 Topology Dependent

In the topology dependent method the upstream EtherCAT devices can send data to downstream
EtherCAT devices within the same communication cycle according to the picture below.

An EtherCAT slave writes its process data into the EtherCAT frame which can be read in the same
cycle by one or more EtherCAT slaves which are located in the network topology after the writing
slave device.

Technically the FMMUs of the process data producer have to be configured to provide data for a
given logical address and the FMMUs of the process data consumer have to be configured to read
data from this logical address.

In the example in figure 18 the FMMU of slave 1 is configured to write (LWR) to the logical address
0x100000, the FMMUs of slave 2 is configured to read from logical address 0x100000 (LRD) and
write to logical address 0x101000 (LWR) and the FMMUs of slave 3 are configured to read from
the logical addresses 0x100000 and 0x101000 (LRD) and write to logical address 0x101000
(LWR). In this configuration slave 2 receives the data from slave 1 and slave 3 receives the data
from slave 1 and 2.

This method has the advantages that the data is copied within the same cycle and the copy
operation is performed more or less in hardware. It suffers from the disadvantages that the copy
direction is limited and that the WKC can not be checked by the data consuming slave(s) which
means that it can not be validated if the data producing slave has updated the data or not.

Page 60 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 18: Topology dependent slave-to-slave copy

Implementation

3.8.5.2 Topology Independent

In the topology independent method the process data is copied by the master autonomously within
the process image which adds an additional cycle to the copy operation according to the picture
below:

An EtherCAT slave writes its process data into the EtherCAT frame which is copied from the
process input data to the process output data in a way that it becomes the input data for one or
more slaves.

Technically the required configuration of this copy process is part of the ENI specification [4] and is
supported by the esd EtherCAT Workbench [9].

In the example in figure 19 the output data of slave 1 (O1) becomes the input data of slave 2 (I21)
and 3 (I31) in the following cycle, the output data of slave 2 (O2) becomes the input data of slave 1
(I11) and 3 (I23) in the following cycle and the output data of slave 3 (O3) becomes the input data
of slave 1 (I12) and 2 (I22) in the following cycle.

This method has the advantages that there is no topology based limitation between the copy
direction and the WKC of the input data is checked by the master before the data is copied so it is
checked if the data producing slave has updated the data or not. It suffers from the disadvantages
that the data copy is delayed by one cycle and requires CPU resources of the master.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 61 of 255

Figure 19: Topology independent slave-to-slave copy

Implementation

3.9 Fail Safe over EtherCAT (FSoE)

It is possible to use this EtherCAT master as part of a safety solution based on the Fail Safe over
EtherCAT (FSoE) protocol. Within a FSoE configuration exists a master/slave relation between the
FSoE master and one or more FSoE slaves. From the EtherCAT master point of view the FSoE
master (and all FSoE slaves) are standard EtherCAT slaves which can be used in parallel with
EtherCAT slaves without FSoE functionality.

This is possible because the EtherCAT fieldbus is regarded as a black channel which is like the
non-safe EtherCAT master itself not part of the FSoE safety considerations. Safety data container
(FSoE frames) are exchanged between FSoE EtherCAT devices. The FSoE frames are embedded
in the process data of the devices. This FSoE communication is based on the topology
independent slave-to-slave communication described in chapter 3.8.5.2.

The picture below shows the FSoE concept of FSoE safety devices integrated into an EtherCAT
segment communicating with FSoE frames.

Page 62 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 20: FsoE Communication

Implementation

3.10 Mailbox Protocols
This chapter covers implementation details of the standard mailbox protocols supported by the
EtherCAT master.

3.10.1 Servo drive profile over EtherCAT (SoE)

Servo drive profile over EtherCAT (SoE) is the integration of the high-performance real-time
communication SERCOS interface® (for motion control applications) into EtherCAT. The SERCOS
profile for servo drives and the communication technology is described in [8]. Especially the
configuration via standardized (drive) parameters and procedures, referred to as data blocks,
which are identical for all implementations of the SERCOS interface® cause a high compatibility.

3.10.1.1 Data Blocks

Each drive parameter is represented by a data block with a 16-bit Identification Number (IDN).
Each block consists of up to six different elements (Name, Attributes, Unit, Min Value, Max Value
and the Operation Data itself). Only the Operation Data is writeable. All other elements are read
only.

Parameter Identification Number (IDN)

Each data block is assigned a unique 16-bit Identification Number (IDN). The IDN is represented
as string either S-D-XXXX or P-D-XXXX. 'S' describes a standard data block that is defined by the
SERCOS specification and 'P' a manufacturer specific one. 'D' describes the data set (0..7) and the
remaining 12 bits define the data block.

The SoE utility functions ecmSoeIdnToString() and ecmSoeStringToIdn() convert between the
binary and the string representation of an IDN.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 63 of 255

Figure 21: Structure of an SoE Identification Number (IDN)

Implementation

The elements of a data block are requested individually and have individual data types as
described in the following abstract.

Element Name

The element Name of the data block is mandatory and defined by a non zero terminated string with
up to 60 bytes. The string structure is define as ECM_SOE_STRING. The first byte contains the
string length and the third byte the maximum length. As this element is read only these two bytes
are always identical.

Element Attributes

The element Attributes of the data block is a mandatory 32-bit value which contains the data type
as well as information to display and/or scale the data. Refer to table 9 for a description of the
various bits in this element. The macros described in chapter 5.19 to 5.22 simplify decoding parts
of the data.

Element Unit

The element Unit of the data block is optional and defined by a non zero terminated string with up
to 12 bytes. The string structure is identical to the element Name.

Element Minimum

The element Minimum is only available for numerical parameter and describes the smallest
numerical value for operation data that the device can process. Writing any smaller value for
Operation Data will be ignored by the device. Depending on the data type the Minimum is a 16- or
32-bit value.

Element Maximum

The element Maximum is only available for numerical parameter and describes the largest
numerical value for operation data that the device can process. Writing any larger value for
Operation Data will be ignored by the device. Depending on the data type the Maximum is a 16- or
32-bit value.

Element Operation Data

The element Operation Data is mandatory and has one of the following types which is defined in
the Attributes:

➢ Fixed length with 2 bytes.
➢ Fixed length with 4 bytes.
➢ Variable length up to 65,532 bytes as array of one byte (ECM_SOE_ARRAY8), 2 bytes

(ECM_SOE_ARRAY16) or 4 bytes (ECM_SOE_ARRAY32)

Page 64 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.10.1.2 Data Access

Access to all elements of a data block residing in the drive is based on the EtherCAT SoE mailbox
protocol. From the application point of view data can be read (uploaded) with ecmSoeUpload()
and written (downloaded) with ecmSoeDownload().

An SoE device can support up to 8 different drives. For this reason the data which is uploaded or
downloaded is referenced by the combination of drive number (see macro ECM_SOE_SET_DRV_NO),
IDN and element (see table 8) which are given in a ECM_MBOX_SPEC structure. This structure is
also used to store a 16-bit standardized SoE result code (see header <ecm.h>) if the device
returns an error as result to the data access. A textual representation of this SoE error can be
returned with ecmFormatError().

All elements of the data structure ECM_MBOX_SPEC have the native
endianness. The data which is uploaded or downloaded is always little endian
and it is up to the application to provide or convert data accordingly with
respect to the data type.

An SoE device usually has the data block S-0-0017 which contains a list of all
supported IDNs as a an array of 16-bit values. Starting with this parameter an
SoE device is self-describing.

3.10.1.3 Procedure Commands

In addition to data blocks for device parameters most SoE devices also support preprogrammed
procedures which are executed autonomously. A procedure command is also assigned a data
block and its execution is controlled by the application writing and reading the element Operation
Data.

The application can trigger the execution of a procedure by writing ECM_SOE_PROC_START as
Operation Data. The application can interrupt or cancel the procedure execution at any time by
writing ECM_SOE_PROC_STOP as Operation Data.

While a procedure is executed by the slave device its state can be monitored by the application
reading the element Operation Data. Table 15 shows the supported states.

The application has to write ECM_SOE_PROC_STOP independent of the procedure
state for each procedure it has started with ECM_SOE_PROC_START.

Optionally an SoE device may indicate the state of a triggered procedure command
asynchronously. This indication is passed to the application as ECM_EVENT_SOE (see chapter 6.1
for details).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 65 of 255

Implementation

3.10.1.4 SoE State Machine

The SERCOS protocol distinguishes 5 Configuration Phases (CF) which are mapped to the
EtherCAT State Machine (ESM) according to the picture below:

The mapping is done in the following way:

➢ CP0/CP1 are covered by the ‘Init’

➢ CP2 mapped to ‘Pre-Operational’. In this state access to the drive parameter and execution
of procedure commands is possible via the SoE mailbox protocol.

➢ CP3 mapped to ‘Safe-Operational’. The SoE slave transmits valid inputs but ignores the
outputs received by the master.

➢ CP4 mapped to ‘Operational’. Input and output data is valid

The transition check to CP3/CP4 performed with S-0-0127 / S-0-0128 is not
necessary and supported in SoE and transparently handled by the related
EtherCAT transitions. Error occurring for this transition may be checked with
S-0-0021 / S-0-0022.

3.10.1.5 Process Data and Synchronization

The process data, which is called MDT (master → slave) and AT (slave → master) in the SERCOS
protocol, is mapped into the ESC process image and DC is supported for precise synchronization.

The process data usually consists of a control/status word followed by drive
specific values which are configured with S-0-0015 by choosing a default
configuration or is configured individually via S-0-0016 and S-0-0024.

Page 66 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 22: SoE State Machine

Implementation

3.10.2 File Access over EtherCAT (FoE)

File Access over EtherCAT (FoE) is a mailbox protocol similar to the TCP/IP Trivial File Transfer
Protocol (TFTP) which allows in a standardized way to access files on a slave device. It is usually
only supported in the Bootstap state (see chapter 2.5) and supports the upload (master to slave)
as well as the download (slave to master) of data as consecutive segments of the configured
mailbox size. The standard use case of this protocol is the firmware upload.

To prevent an unintentional access to files the protocol supports a file name and a 32 bit password
which are exchanged during the initialization and are input parameter of ecmFoeDownload() and
ecmFoeUpload() which are called by the application for the FoE transfer.

As an extension to the TFTP protocol FoE implements a way the slave device can indicate a busy
situation if more time is required to process received data during a FoE upload or to provide new
data during a FoE download.

The communication between the master and the application during the FoE transfer is based on
callback handlers (see chapter 6.8).

Caution: The FoE callback handler are executed in the context of the
EtherCAT stack. For this reason they are not allowed to block or to
perform time consuming operations. Otherwise the timing of the complete
EtherCAT master stack is seriously influenced.

The EthetCAT master stack supports synchronous as well as asynchronous FoE transfers. In the
first case the application will block until the transfer is completed in the latter case the application
has to poll the state of the ongoing transfer with ecmFoeGetState() cyclically for the end of the
operation.

In case of an error situation the protocol defines set of error codes (see chapter 8.2) which indicate
more details about the error reason and it is possible to exchange an optional arbitrary error text.
Details about a failed FoE transfer can be checked with ecmFoeGetState() afterwards.

During an upload the master will call the handler as soon as the next block of data has to be
provided. The master indicates the required block size and the location to store the data to the
handler. Providing less data than the requested size is the indication that the FoE upload is
completed successfully with this block. Returning an error code as result parameter terminates the
FoE Upload with an error. In case the slave has indicated a busy situation the master has to repeat
the previous FoE transaction and for this reason requests the previous block of data again. The
offset management has to be handled by the application.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 67 of 255

Implementation

Figure 23 shows the data flow between the application and the master stack and the master and
the slave device for a synchronous successful FoE upload with a busy sequence in between where
the application has to provide the previous data block again.

Page 68 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 23: Successful FoE Upload

Implementation

Figure 24 shows the data flow between the application and the master stack and the master and
the slave device for two synchronous failed FoE uploads. The first upload failed because the slave
indicated an error because of a wrong password or invalid file name. The second upload failed
because the application terminated the transfer by returning an error code.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 69 of 255

Figure 24: Failed FoE Upload

Implementation

During a download the master will call the handler as soon as the next block of data is received.
The master indicates the block size and the location where the data is stored. Returning an error
code as result parameter terminates the FoE download with an error. A busy situation indicated by
the slave is handled by the master internally. The offset management has to be handled by the
application.

Figure 25 shows the data flow between the application and the master stack and the master and
the slave device for a synchronous successful FoE download with a busy sequence in between
which is handled by the master internally.

Page 70 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 25: Successful FoE Download

Implementation

Figure 26 shows the data flow between the application and the master stack and the master and
the slave device for two synchronous failed FoE downloads. The first download failed because the
slave indicated an error because of a wrong password or invalid file name. The second upload
failed because the application terminated the transfer by returning an error code.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 71 of 255

Figure 26: Failed FoE Download

Implementation

3.11 Distributed Clocks (DC)
This chapter covers implementation details of various aspects of the support for the EtherCAT DC
feature to provide a high precision synchronized common System Time. Refer to chapter 2.6 for a
general description of the DC mechanism and the related terms and definitions.

For the operation in DC mode the EtherCAT master supports the following tasks:

➢ DC slave clock synchronization during system startup.

➢ Continuous DC slave clock drift compensation during system operation.

➢ Configuration of the DC epoch during system startup.

➢ Configuration and start of the slaves SYNC generation.

➢ Calculation of a Shift between Master Time and System Time during system startup.

➢ Synchronization between Master Time and System Time during system operation.

In addition the EtherCAT master can provide diagnostic information about the quality of the DC
synchronization which is described in chapter 3.12.3.

3.11.1 Clock Synchronization

As described in chapter 2.6.2 the three DC parameters Propagation Delay, Drift and Offset have to
be determined and adapted individually for each DC-enabled slave to archive the goal of a
synchronized System Time which follows the Reference Clock.

To indicate to the stack to perform the clock synchronization as described above
the flag ECM_FLAG_MASTER_DC has to be set in ECM_MASTER_DESC creating the
master instance.

The EtherCAT Master performs this clock synchronization process autonomously before the ESM
'IP' transition (see chapter 2.5) in three steps:

1. For the Propagation Delay measurement the EtherCAT master triggers all slaves
simultaneously with a special broadcast telegram to capture the individual Local Time the
first bit of this frame is received at each of the up to 4 ESC ports. Due to the Drift the
captured timestamps of different slaves can not be set into relation but the master can
calculate the delay based on the different timestamps of a single slave and additional
topology knowledge. At the end of this step the calculated delays are written into the
System Time Delay Register of the ESCs.

2. In a next step the Local Time of each DC-enabled slave is compared to the System Time of
the Reference Clock. To achieve the goal of a common absolute System Time the
difference between these two clocks are calculated by the master for each slave and the
individual compensation values are written into the System Time Offset Register of the
ESCs. Small offset errors are eliminated in the following Drift compensation step.

3. After delay and offset compensation the small deviations caused by the Drift of the local
clocks is compensated continuously by the time control unit integrated in each ESC. For
this Drift compensation the master sends telegrams distributing the System Time of the
Reference Clock to all other slaves which use them to adjust the speed of their local clocks.
During the initialization phase the master will send many (default is 15000) of these
telegrams for a fast static drift compensation. At the end of this step all DC-enabled slaves
should share the Sytem Time with a small synchronization error (< 100 ns). For the
compensation of the dynamic Drift the System Time distribution telegrams have to be part
of the cyclic telegrams.

Page 72 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

During the drift synchronization phase the master will send the respective
EtherCAT frames as bursts in each cycle. The default values for the
number of frames per cycle and the number of cycles can be adapted by
the application with the help of the variables ucDcDriftCompFrames and
usDcDriftCompCycles in ECM_MASTER_DESC. This allows to reduce the
time for the drift synchronization process by sending more frames per
cycle with a smaller number of frames, to reduce the number of frames per
cycle for high cycle times or slow NICs, etc..

3.11.2 Continuous Drift Compensation

As the drift of the local ESC clock also depends on thermal factors it might be required to measure
and compensate these effects not only during the network initialization phase but also
continuously. This goal is archived by repeating the steps for the Propagation Delay measurement
and compensation described in the previous chapter every several seconds during operation.

To indicate to the stack to perform this continuous drift compensation the flag
ECM_FLAG_MASTER_DC_RESYNC has to be set in ECM_MASTER_DESC creating the
master instance.

The continuous drift compensation is only performed in the state OPERATIONAL of the EtherCAT
master.

3.11.3 System Time Epoch

The (64 bit) DC System Time represents an absolute time counted in nanoseconds with the DC
epoch defined as January 1st, 2000 (00:00 h). During the clock synchronization phase the initial
absolute value of the System Time is defined by the EtherCAT Master by writing into the System
Time Offset Register of the Reference Clock.

The default behaviour is to compensate the current value of the Local Time so the System Time is
set to the DC epoch. Alternative modes of operation are setting the epoch to the current time of the
master or to use the current offset of the Reference Clock unchanged. The operation mode is
defined in the member variable ucDcSysTimeEpoch of ECM_MASTER_DESC.

If the time is set to the current EtherCAT master time (returned by the ANSI C
standard library API call time()) this is performed only once during the DC clock
synchronization (see 3.11.1) and is not adapted during runtime.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 73 of 255

Implementation

3.11.4 SYNC Generation

An ESC supports the generation of two DC System Time based signals SYNC0 and SYNC1 which
are dependent from each other and can be configured to many different operation modes (refer to
[1] and [7] for details). The configuration of the Sync Signal related parameters is the task of a
configuration tool (see [8]) which defines several initialization commands (in an ENI file) which are
sent by the EtherCAT master to the DC-enabled slaves typically during the ESM 'PS' transition.

The most common configuration is the cyclic SYNC0 generation mode shown in the picture below.

The configuration for each slave must at least contain initialization commands which write the
Cycle Time, the Start Time and the command to start generating SYNC signals into the related
ESC registers. The Start Time is an absolute value of the System Time later than the time the
generation of SYNC signals is activated. Obviously this absolute value depends on the configured
epoch for the System Time (see 3.11.3) and can not be defined by a configuration tool in advance
(even if this is responsible to define the respective slave initialization command). Instead a
configuration tool will store a value with an individual signed Local Shift (usually 0) as data part of
this command.

The EtherCAT Master has to determine these initialization commands which write into the SYNC0
Start Time ESC Register (0x0990:0x0997) and adds to the value defined by the configuration tool
an appropriate offset. This offset is the sum of the System Time captured after completion the of
the DC clock synchronization process (see 3.11.1) and the common Global Start Shift which value
is defined as the member variable usDcStartTimeShift of ECM_MASTER_DESC.

As shown in the picture above the Local Shift Time component of the Start Time assigns to each
slave (in a DC cyclic operation mode) a permanent individual local shift (which is also referred to
as Slave User Shift Time). Depending on the slave device type (input or output) and characteristic
it may make sense to define negative or positive values for the Local Shift to archive that the
SYNC0 signal is generated on this slave device earlier or later with respect to other devices.

The member variables ulCycleTime0, ulCycleTime1 and lShiftTime of ECM_SLAVE_DESC reflect the
current cycle and local shift time configuration of the slave.

Page 74 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 27: Cyclic SYNC0 generation

Implementation

3.11.5 Master and Slave I/O Cycle

The previous text in this chapter described the details to configure and maintain a common
synchronized System Time on all DC-enabled slaves independent of their device types, the
network topology or the distance between them. The SYNC/LATCH signals related to this System
Time allow the slave applications to e.g. sample input data nearly simultaneously with a
synchronization error below 100 ns.

This chapter will put a finer point to the relation between the master and slave I/O cycle. The
picture below shows a timing diagram for an output device with the common configuration that the
master I/O Cycle Time is identical to the SYNC0 Cycle Time. Between master and slave is the
Ethernet as a transport layer:

The following crucial points are marked:

(1) A local timer will trigger the start of a new cycle for the master which will read the input (I)
data and write the output (O) data performing all tasks (see chapter 3.7.2). The application
cycle is completed (Calc) with the calculation of the output data for the next cycle based on
the current input data and processing all tasks for the acyclic data (see chapter 3.7.3).

(2) For the transmission of the Ethernet frames by the master a jitter (J) has to be considered
which accumulates the jitter of Local Timer, the runtime differences of the I/O processing,
non-deterministic behaviour of the target OS and the Ethernet I/O system, etc.

(3) On the transport layer the transmission causes a delay (Frame) of 80 ns per data byte and
a delay component (D) which consists of the internal delay for each slave device and the
cable between the devices.

(4) The ESC will generate a SyncManager (SM) signal as soon as the process data is received
by a slave. The individual point of time in relation to the SYNC0 signal depends on the
delay (D) caused by slaves topologically located before this slave and the position of the
data within the frame.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 75 of 255

Figure 28: Master and Slave I/O Cycle in DC Mode

Implementation

(5) The generation of the DC SYNC0 signal is only based on the System Time, highly
synchronous on all slave devices and independent from the SM events.

(6) After the physical delay caused by the frame transmission time (Frame) and all slave
delays (D) the frame with new input data will be available at the network port of the master
for processing in the next cycle.

There are two important aspects which can be observed in this timing diagram:

➢ From the perspective of the master there is a Global Shift Time between the master Local
Timer signal and the slave SYNC0 signals. This Global Shift Time is calculated once when
the EtherCAT master is initializing the network and consists of a deterministic part which
considers the I/O processing time (A) as well as all delays on the transport layer (C) and a
non-deterministic part which considers the jitter (B) in the cycle time, the I/O processing, the
communication layer, etc. This non-deterministic component of the Global Shift Time is
referred to as (Master) User Shift Time which value is defined in the member variable
sDcUserShift of ECM_MASTER_DESC.

➢ For the timing diagram in figure 28 an output device is used as an example. For such a
device it makes sense that the SYNC0 signal is indicated after the (output) process data is
available (indicated to the slave device by the SM signal). For an input device the situation
would be vice versa as it would make sense that the SYNC0 signal is indicated before the
EtherCAT frame is received so the data can be stored immediately. For this reason an
individual signed device specific (Slave) User Shift Time on the SYNC0 signal can be
applied which is described in chapter 3.11.4.

Caution: The EtherCAT master tries to automatically configure settings
which allow a reliable initialization and data exchange. There are no
plausibility checks for manual changes of the Master or Slave User Shift
Time.

The non-deterministic jitter (J) of the master causes from the slave point of view a jitter in the
relation between the SM event and the SYNC0 event. The time difference between these two
events can be monitored (see chapter 3.12.3.2) to infer the master jitter.

Page 76 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.11.6 Master Clock Synchronization

The timing diagram in figure 28 shows that a DC mode configuration results in two different time
domains. The System Time domain where all local timers of DC-enabled slaves are synchronized
and the local timer of the EtherCAT master (the Master Time domain) which is shifted by the
amount of the Master Shift Time.

As the EtherCAT master uses standard NIC hardware and a local clock source instead of an ESC
it can not be integrated into the DC clock synchronization process. Even if the two time domains
are synchronized once during the initialization phase they will deviate from each other quite fast
due to the oscillator tolerances, thermal effects, etc.For several DC based control applications this
drift might not be tolerable as they require a fixed relation between Master Time and System Time.

To keep up the synchronization between the Master Time and the System Time there are three
different options:

1. Adapt the local timer of the master to follow the local timer of the DC reference clock.

2. Adapt the local timer of the DC reference clock to follow the local timer of the master.

3. Use the local timer of the master as DC reference clock.

Each method has different pros and cons which are described in the following chapters and/or the
target architecture might limit or not allow a certain synchronization method. The chosen method
has to be configured exclusively with a flag of ECM_MASTER_DESC.

3.11.6.1 Master Clock Shift

The EtherCAT master constantly measures the drift between the local Master Time and the
System Time and adjusts the local clock with the goal that the Global Shift Time between Master
Time and System Time (of the Reference Clock) is kept constant.

To indicate to the stack to perform this master clock synchronization method the
flag ECM_FLAG_MASTER_DCM_CLOCK_SHIFT has to be set in ECM_MASTER_DESC
creating the master instance. This flag can be set only for one master instance
on a multi master target.

The current value of the drift is stored in the variable lDeviation of ECM_MASTER_STATE.

Note: An intervention to increase or decrease the speed of the local clock source
with the required nanosecond granularity is not supported (with a general
available API) on all target systems. Target systems which support this capability
indicate this with the feature flag ECM_FEATURE_MASTER_SYNC.

If the target does not provide an API to adjust the local clock as described above or an individual
control implementation should be implemented the application has to register an event callback
handler (see chapter 6.4) with ecmInitLibrary() which overloads any internal implemented control
mechanism. The frequency with which the control algorithm is performed can be defined in the
member variable usCycleDcCtrl of ECM_DEVICE_DESC.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 77 of 255

Implementation

3.11.6.2 Slave Clock Shift

The EtherCAT master constantly measures the drift between the local Master Time and the
System Time and adjusts the System Time Offset Register (see 3.11.1) of the slave which act as
DC Reference Clock with the goal that the Global Shift Time between Master Time and System
Time is kept constant.

To indicate to the stack to perform this master clock synchronization method the
flag ECM_FLAG_MASTER_DCS_CLOCK_SHIFT has to be set in ECM_MASTER_DESC
creating the master instance.

The current value of the drift is stored in the variable lDeviation of ECM_MASTER_STATE.

Note: A first disadvantage of this method is that the System Time is changed
erratically by a comparatively large value which all other DC enabled slaves will
gradually adapt to. This causes a larger jitter for example in the SYNC0
generation compared to the Master Clock Shift method.
The second disadvantage is that the jitter of the overall System Time depends on
the determinism of the frame transmission (network stack) of the target. Non real-
time systems or network stacks where a high network load on another interface
causes latencies result in jitter of the System Time which might be a disqualifier
for this method.

Page 78 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.11.6.3 Direct DC

The EtherCAT master itself acts as DC reference clock and uses it’s high resolution counter as
clock source for the System Time. The DC reference clock in the system (usually the first DC
capable EtherCAT slave) will follow the System Time now distributed by the EtherCAT as each
other DC enabled slave in the configuration. To archive optimal results the System Time is stored
in the EtherCAT frame as close to the frame transmission as possible.

To indicate to the stack to perform this master clock synchronization method the
flag ECM_FLAG_MASTER_DC_CLOCK_LOCAL has to be set in ECM_MASTER_DESC
creating the master instance.

The current value of the drift stored in the variable lDeviation of ECM_MASTER_STATE is always 0 by
definition.

Note: The first disadvantage of this method is, that it is not possible to measure
the delay between physically time of transmission of the EtherCAT frame and the
time of reception by the original DC reference clock. Usually this small amount of
time is deterministic and might be considered in the Gloabal Shift Time.
The second disadvantage is that the jitter of the overall System Time depends on
the determinism of the frame transmission (network stack) of the target. Non real-
time systems or network stacks where a high network load on another interface
causes latencies result in jitter of the System Time which might be a disqualifier
for this method.

In the default configuration of this mode the master derives the nanosecond timestamp for the
System Time from the value of the high resolution counter and the information about it’s frequency.
As a special operation mode the master can also work with an external clock tick which is not
related to the high resolution counter. In this mode the master creates a local virtual system clock
which is incremented with each tick by the configured period of this tick and distributed system time
is based on this virtual clock and a short-term measurement based on the high resolution counter.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 79 of 255

Implementation

3.12 Diagnostic and Error Detection
The EtherCAT master can detect various kinds of communication or protocol errors, keeps track on
error conditions of the remote slaves and updates statistics on several stages of the Ethernet
frame processing. The stack implements 3 different mechanisms to indicate an error situation to
the application.

➢ Application configurable callback handler (see section 6.1).

➢ Virtual variables embedded in the input process image (see section 3.8.4).

➢ Direct API calls to gather diagnostic data (see section 4.13).

➢ Performance profiling of the master stack and application code (see section 3.12.4).

The basic communication and protocol error detection mechanisms to guarantee a faultless
communication are always integrated into the stack, advanced features like continuous slave state
monitoring and statistics require the extended diagnostic support which is indicated with the feature
flag ECM_FEATURE_DIAGNOSTIC.

3.12.1 Protocol and Communication Errors

A received Ethernet frame is thoroughly validated by the master before the data is processed. The
following checks to detect protocol errors are applied:

➢ Validation of source address, length and type of the Ethernet frame.

➢ Validation of EtherCAT frame header.

➢ Validation of the header consistency for every EtherCAT command within the frame.

➢ Validation of the working counter.

➢ Validation of data for acyclic commands according to the (ENI) configuration.

To detect communication errors the following checks are applied:

➢ Continuous monitoring of the network adapter link.

➢ Checks for low level HAL failures reading and writing the Ethernet frames.

➢ Detection of lost (acyclic) frames based on internal timeout management.

Frame validation and timeout errors which cause the stack to discard the frame are reflected in the
statistics which are available on network adapter layer updated by the NIC driver and on device
and master layer updated by the EtherCAT stack. The supported statistical data and the API to
request the data is described in section 4.13.

Page 80 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

The error handling for frames which are not discarded is different for cyclic and acyclic frames.

A timeout for an acyclic frame which is detected based on the internal timeout management means
that all EtherCAT commands within this frame are sent again as long as their individual timeouts or
retries are not exceeded. A working counter mismatch or a data validation error is treated in the
same way for the failed command.

A timeout for a cyclic frame means that with a call of ecmProcessInputData() not all frames are
received which are transmitted with the previous call to ecmProcessOutputData(). This is
indicated by the error return value of ecmProcessInputData(). All process data which would be
changed by the missing frame remains untouched. In case of a working counter mismatch the
related process data of this command is not updated by the master and only the (wrong) working
counter is copied into the process data image. In addition the failure is indicated to the application
with the ECM_EVENT_WCNT event and/or a virtual variable.

3.12.2 Slave State Monitoring

To monitor the EtherCAT application state of individual slaves it is necessary to check their status
register. This is usually part of the (ENI) configuration which defines several acyclic initialization
commands sent to the slaves during network initialization. The result of these state changes are
indicated to the application with the callback handler. If all slaves are operational usually only their
common state is checked with a cyclic command and not their individual states. The common state
(change) is indicated to the application with the ECM_EVENT_LOCAL and/or a virtual variable.

The EtherCAT master can be configured to monitor the individual slave's application state cyclically
together with the slave data link status and/or the ESC error counter autonomously sending acyclic
frames for this purpose indicating changes with the ECM_EVENT_SLV and/or a virtual variable to the
application. For further configuration details refer to the description of ECM_CFG_INIT.

3.12.3 DC Quality

3.12.3.1 Sync Window Monitoring

The EtherCAT master will monitor if all DC enabled slaves are within a given sync window if the
cyclic process image contains a special telegram with a BRD command to read the System Time
Difference Register (0x92C:0x92F) of the ESC. This register contains the mean value of the time
difference between the local System Time and the received System Time of the Reference Clock
in ns (see /1/ for more details).

The default sync window is 100 ns which can be changed to a different value with the variable
usDcSyncWindow of ECM_MASTER_DESC. The monitored value is stored in the variable
ulDcSysTimeDiff of ECM_MASTER_STATE. As a BRD command is used for this purpose the
individual values of the slaves are combined with a logical OR. For this reason the given sync
window is modified to the next power of 2 for this value.

If the System Time Difference of any DC-enabled slave is out of the given sync window this is
indicated with the event ECM_LOCAL_STATE_DC_OUT_OF_SYNC (see 6.1) as well as in the virtual
variable DevState (see chapter 3.8.4).

The System Time Difference register of a single DC enabled slave can be monitored in the context
of the slave state monitoring machnism (see chapter 3.12.2).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 81 of 255

Implementation

3.12.3.2 Master Jitter

The EtherCAT master will store the difference between the System Time the Ethernet Frame is
received (SM Event) and the System Time of the next SYNC0 event in the variable
lSmToSync0Delay of ECM_MASTER_STATE if the cyclic process image contains a special telegram
(e.g. for the Reference Clock) with a command to read the Sync0 Start Time Register
(0x990:0x998) of the ESC. This value can be used to infer the local jitter of the master (see chapter
3.11.5).

3.12.4 Performance Profiling

The EtherCAT master stack contains a built-in performance profiling mechanism which provides
measurements of how long the internal communication tasks (see chapter 3.7) take to execute with
minimum, average and maximum time and how often they are called at different levels defined by
profiling categories (see 7.2.28). The application has to call ecmGetProfilingData() cyclically to
get the results it is interested in. This data can be used to find bottlenecks or spurious non-
deterministic behaviour in cases the required cycle time is exceeded.

Caution: For performance reasons the execution time is handled internally as
accumulated multiple of ticks instead of microseconds. This conversion takes
place if the application calls ecmGetProfilingData(). As the internal variables
to keep the accumulated ticks are implemented as 32-bit values they will
overrun. To prevent this the application also has to reset them cyclically.

In addition to the internal profiling data you can also use the same mechanism for your application
code with one of the two available performance profiling categories for application code by
instrumenting the section with calls to ecmGetClockCycles() and ecmUpdateProfilingData() as
shown below:

/* Sample code without any error checks !! */

void myRoutine(ECM_DEVICE *pDevice)
{

uint64_t ullStart, ullStop;
uint32_t ulDiff;

(void)ecmGetClockCycles(&ullStart);

/* Code to performance profile */

(void)ecmGetClockCycles(&ullStop);
(void)ecmUpdateProfiling(pDevice, (uint32_t)(ullStop – ullStart),

 ECM_PROFILE_USER1)
return;

}

The results can be obtained as described above for the built-in performance values.

Page 82 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Implementation

3.12.5 Ethernet Frame Capturing

The EtherCAT master stack supports passing all transmitted and received Ethernet frames to an
application defined callback handler. This bus logging method must be used if the target platform
does not support any tools like Wireshark or tcpdump to capture the Ethernet traffic or if a Link
Level Driver is used for communication which can not be captured with standard tools.

To enable this bus diagnostic method the application must register an event callback handler (see
chapter 6.7) with ecmInitLibrary() and define a frame capture filter for each device object in the
member ucCaptureFilter of ECM_DEVICE_DESC. The filter allows to restrict the captured frames to
received and/or transmitted frames on the primary and or redundant NIC. In addition it allows to
distinguish between different device objects if more than one instance is created. Each captured
frame which is passed to the application is assigned a timestamp.

The timestamp which is assigned to a captured frame is especially for received
frames not the time the frame was received by the NIC but the time the data
was passed to the stack.

Caution: The callback handler is called for performance reasons directly from
the EtherCAT master I/O Post-processing of the captured timestamps must not
delay the I/O cyle For performance reasons the execution time is handled
internally as accumulated multiple of ticks instead of microseconds. This
conversion takes place if the application calls ecmGetProfilingData(). As the
internal variables to keep the accumulated ticks are implemented as 32-bit
values they will overrun. To prevent this the application also has to reset them
cyclically.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 83 of 255

Implementation

3.13 Remote Access
The EtherCAT master allows to be accessed remotely to make its functionality available across
different processes or even different machines connected to a network. This mechanism is used
e.g. by the esd EtherCAT Workbench [9] to attach to a remote master as shown in figure 29 below.

The implementation follows the client-server model. The remote server is part of the EtherCAT
master and requires a network interface controller (NIC) configured for TCP/IP based
communication with the remote client. This NIC has to be different from the one connected to the
EtherCAT slave segment. Target related endianness issues are handled within the protocol.

The remote access can be enabled by the application in the:

● Control Mode

● Monitoring Mode

which differences are covered later in this chapter.

The implementation of the remote access does not support concurrent
connections by different remote clients and is limited to a single application
defined master instance in case of Multi Master Mode operation (see 3.4).

The application enables the remote access support with ecmStartRemotingServer() after the
library is initialized and stops it with ecmStopRemotingServer(). The Remote capability is
indicated by the feature flag ECM_FEATURE_REMOTING.

In the Monitoring Mode the master instance which should allow the remote access has to be
marked with the flag ECM_FLAG_MASTER_REMOTE_INSTANCE. Remote access specific events are
indicated to application (see chapter 6.1) while this mode is active.

Page 84 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Figure 29: Remote Mode

Windows PC

esd EtherCAT Workbench

Remote System

esd EtherCAT Master

TCP/IP
Slave 1

Slave n

NIC NIC1 NIC2
EtherCAT

Implementation

3.13.1 Control Mode

In Control Mode the I/O cycle runs autonomously on the target and the remote client has full
control over the EtherCAT slave segment.

While the Control Mode is active the application is not allowed to exchange
data with the EtherCAT slaves.

This main remote access mode is subdivided into the modes

➢ Idle Mode

➢ Configuration Mode

➢ Freerun Mode

The transition between these modes is completely under control of the remote client.

The Idle Mode is entered autonomously after the remote access is enabled.

In the Configuration Mode the EtherCAT master performs a bus scan and creates internally a
limited network configuration based on the information accessible via the EtherCAT Slave Interface
(ESI) described in chapter 3.7.7. This limited configuration just allows to change the network and/or
individual slaves into BOOT and PREOP which is enough to use all services but process data
exchange.

The Freerun Mode allows the remote application to upload a full ENI configuration to the master
which is used to control the slave segment without limitation.

3.13.2 Monitoring Mode

In Monitoring Mode the I/O cycle is controlled and configured by the application and a remote client
can exchange data with the EtherCAT slaves in parallel.

This main remote access mode is subdivided into the modes

➢ Idle Mode

➢ Freerun Mode

The transition between these modes is completely under control of the remote client.

The Idle Mode is entered autonomously after the remote access is enabled.

The Freerun Mode allows the remote application to communicate based on the (ENI) configuration
configured by the application with less limitations.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 85 of 255

Implementation

3.13.3 ESDCP

In addition to the remote protocol described in the previous chapter the EtherCAT master also
implements the Extreme Simple Device Configuration Protocol (ESDCP). This stateless protocol
was invented by esd to discover and configure devices with an Ethernet port without knowing their
IP configuration. The EtherCAT master implements only the subset of ESDCP which allows to
discover the device.

The operating principle of the protocol is that an application which has implemented the server side
(e.g. the esd EtherCAT Workbench) will send a discover request as UDP broadcast and the
EtherCAT master which has implemented the client side will send an IDENITY reply either also as
UDP broadcast or as UDP unicast to the server's IP address.

3.13.4 Network Ports

The table below gives an overview of the protocol and the default ports which are supported by the
EtherCAT master for remote access. You have to make sure that no local or external firewall blocks
communication on these ports.

Protocol Type Port Configurable

Remote Access TCP 6368 (0x18E0) Yes

ESDCP Server UDP 3677 (0xE5D) No

ESDCP Client UDP 3678 (0xE5E) No

Table 4: Network Ports for Remote Access

Page 86 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4. Function Description

4.1 Initialization
This section describes the functions available to initialize the EtherCAT master stack and to return
information about the stack and the environment to adapt the user application at runtime.

4.1.1 ecmGetVersion

The function determines version information of the EtherCAT master stack.

Syntax:

ECM_EXPORT int ecmGetVersion(ECM_VERSION *pVersion);

Description:

The function returns the version of the EtherCAT master stack and its utilized libraries as well as
information about the runtime environment and the capabilities of the stack.

Arguments:

pVersion
[in/out] Pointer to a structure of type ECM_VERSION. On success, the version information is
stored at the memory location referenced here.

If the member usMasterVersion of the ECM_VERSION structure is initialized to the
version of the EtherCAT master the application was compiled against the call
will return with the error ECM_E_COMPAT if the current version of the master has
an incompatible ABI.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function should be called at the start of the application to check requirements and configure
environment related parameter at runtime and to perform an ABI incompatibility verification.

Requirements:

N/A.

See also:

Further information on the data returned by this function can be found in the description of the
data structure ECM_VERSION.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 87 of 255

Function Description

4.1.2 ecmInitLibrary

The function initializes the EtherCAT master stack.

Syntax:

ECM_EXPORT int ecmInitLibrary(ECM_LIB_INIT *pInitData);

Description:

The function initializes the EtheCAT master stack and registers the application defined callback
handler.

Arguments:

pInitData
[in] Pointer to an initialized structure of type ECM_LIB_INIT.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function should be called once at start-up to initialize the EtherCAT master stack..

Requirements:

N/A.

See also:

Further details about the argument of this function can be found in the description of the data
structure ECM_LIB_INIT and the description of the callback interface in chapter 6.

Page 88 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.1.3 ecmGetNicList

The function returns the list of network adapter available for the EtherCAT master.

Syntax:

ECM_EXPORT int ecmGetNicList(PECM_NIC pNicList, uint32_t *pNumEntries);

Description:

The function returns a list of all network adapter or network interface cards (NICs) available for
the EtherCAT master with their hardware (MAC) addresses. The MAC address defines the
adapter which is used for EtherCAT communication. Based on this list the application can
override the source MAC address of the ENI file during network configuration which allows
using the same ENI file on different targets without a manual change in each file.

Arguments:

pNicList
[out] Pointer to a structure of type ECM_NIC. On success, the network adapter list is stored at
the memory location referenced here. If pNicList is set to NULL, pNumEntries is just initialized
with the number of adapters.

pNumEntries
[in/out] Pointer to a variable which contains the number of entries available at the memory
location referenced by pNicList if the function is called. On success the variable contains
number of stored entries.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function can be called once with pNicList set to NULL to determine the necessary memory
size to keep the list of all adapter and a second time afterwards with pNicList referencing a
sufficient block of memory to keep the complete adapter list.

Requirements:

N/A.

See also:

Description of ECM_NIC.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 89 of 255

Function Description

4.2 Configuration
This section describes the functions available to initialize the network configuration of one or more
EtherCAT master instances using one or more NICs.
The main configuration method is to process a configuration in the EtherCAT Network Information
(ENI) format which was created by a configuration tool. The ENI data may reside in a file or
memory in uncompressed or compressed format.

The header file exports several functions which are used internally by the ENI parser function
ecmReadConfiguration(). These are:

• ecmCreateDevice()

• ecmCreateMaster()

• ecmAddAcyclicCommand()

• ecmAddMboxCommand()

• ecmCreateCyclicFrame()

• ecmAddCyclicCommand()

• ecmCreateSlave()

Calling these functions from the application is only necessary if you use the EtherCAT master in an
embedded environment with limited (memory or file I/O) resources where it can be used without
the XML/ENI parser and the compression library which leads to a much smaller binary image as a
tradeoff for a static configuration.

As the EtherCAT master stack versions covered by this document are come all with the ENI file
parser the API functions listed above are not documented with more details in this manual.

Page 90 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.2.1 ecmReadConfiguration

The function processes a network configuration in the ENI format.

Syntax:

ECM_EXPORT int ecmReadConfiguration(ECM_CFG_INIT *pInitData,
 ECM_HANDLE *pHndDevice,
 ECM_HANDLE *pHndMaster);

Description:

The function processes an ENI configuration which may reside in a file or memory in
uncompressed or compressed format. If the call succeeds the logical instances for the device,
the master and all attached slaves are created together with the required (acyclic) commands to
change between the different states of the ESM and the (cyclic) commands to exchange the
process data.

Arguments:

pInitData
[in/out] Pointer to an initialized structure of type ECM_CFG_INIT. This structure defines the
reference to the ENI data and additional (optional) configuration parameter for the device and
master instance to override the ENI configuration parameter in some aspects.

pHndDevice
[in/out] Pointer to a variable where the handle of the device instance is stored if the call
succeeds. If the device instance does not already exist and should be created based on the
ENI configuration, pHndDevice has to be initialized to NULL. In order to initialize an additional
master instance (multi master mode) using an already initialized device instance,
pHndDevice should be initialized with the handle of this device instance.

pHndMaster
[out] Pointer to a variable where the handle of the master instance is stored if the call
succeeds.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 91 of 255

Function Description

Usage:

The function is usually called after the library is initialized to set up the network configuration. If
the function succeeds the handles to the device and master instance are returned with the call.
If references to the slave instances are also necessary the application can call either
ecmGetSlaveHandle() or ecmGetSlaveHandleByAddr().
To get more detailed information about problems parsing the ENI file or setting up the
configuration the application can attach the event callback handler receiving the
ECM_EVENT_CFG and ECM_EVENT_LOCAL events (See section 6.1 for details).

Requirements:

Support for processing ENI files (Feature ECM_FEATURE_ENI).

See also:

Further information on the data referenced by this function can be found in the description of the
structure ECM_CFG_INIT.

Page 92 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.2.2 ecmGetSlaveHandle

The function returns the handle of a slave instance.

Syntax:

ECM_EXPORT int ecmGetSlaveHandle(ECM_HANDLE hndMasterOrSlave,
 ECM_HANDLE *pHndSlave);

Description:

The function operates as an iterator on the list of slave instances attached to the master. If the
input parameter is a master instance the handle of the first slave instance in chain is returned.
If the input parameter is a slave handle the handle of the next slave instance in chain is
returned.

Arguments:

hndMasterOrSlave
[in] Handle to a master or slave instance.

pHndSlave
[out] Pointer to a variable where the handle of the next slave instance is stored if the call
succeeds.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function can be called after the network is configured with ecmReadConfiguration() to get
a reference to the slave instances of this configuration.

Requirements:

N/A.

See also:

Description of ecmGetSlaveHandleByAddr().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 93 of 255

Function Description

4.2.3 ecmGetSlaveHandleByAddr

The function returns the handle of a slave instance.

Syntax:

ECM_EXPORT int ecmGetSlaveHandleByAddr(ECM_HANDLE hndMaster, int32_t lAddr,
 ECM_HANDLE *pHndSlave);

Description:

The function returns the handle of the slave instance to the given auto increment or physical
address of a slave.

Arguments:

hndMaster
[in] Handle to a master instance.

lAddr
[in] The slave address. A negative number and zero are interpreted as the auto increment
address. A positive number is interpreted as the fixed address.

pHndSlave
[out] Pointer to a variable where the handle of the slave instance is stored if the call
succeeds.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function can be called after the network is configured with ecmReadConfiguration() to get
a reference to the slave instances of this configuration.

Requirements:

N/A.

See also:

Description of ecmGetSlaveHandle().

Page 94 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.2.4 ecmUpdateSlave

The function updates modifies an existent slave configuration.

Syntax:

ECM_EXPORT int ecmUpdateSlave(ECM_HANDLE hndSlave, uint32_t ulUpdateMask,
 ECM_SLAVE_DESC *pInitData);

Description:

The function updates or modifies an existent slave configuration.

Arguments:

hndSlave
[in] Handle to a slave instance.

ulUpdateMask
[in] Mask to configure which variables of ECM_SLAVE_DESC are updated. Variables not listed
in the table below remain untouched.

Master State Description
ECM_FLAG_UPDATE_FLAGS Update variable flag.

Note: Not all flags can be modified with this call.

ECM_FLAG_UPDATE_NAME Update variable szName.

ECM_FLAG_UPDATE_REVISION Update variable ulRevisionNo

ECM_FLAG_UPDATE_SERIAL Update variable ulSerialNo.

Table 5: Flags to indicate to be updated variables with ecmUpdateSlave()

pInitData
[out] Pointer to the memory location of a ECM_SLAVE_DESC structure with to be updated
members configured to the new data.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function can be called after the network is configured with ecmReadConfiguration() to
override the current configured values or to configure options which are not supported to be
configured in the ENI file.

Requirements:

The slave handle returned with ecmGetSlaveHandle() or ecmGetSlaveHandleByAddr().

See also:

Description of ecmGetSlaveHandle()..

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 95 of 255

Function Description

4.3 Network State Control
This section describes the functions to start and control the network state of the EtherCAT network.

4.3.1 ecmAttachMaster

The function attaches the master instance to its device instance.

Syntax:

ECM_EXPORT int ecmAttachMaster(ECM_HANDLE hndMaster);

Description:

The function has to be called once to attach the master instance to its device instance. Several
internal aspects of the initialization are finalized in this call. On success the master instance is
set into the EtherCAT state 'INIT'.

Arguments:

hndMaster
[in] Handle of the master instance to attach.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called for each master instance before it can transmit and receive
Ethernet frames. If remote access in Monitor Mode is configured for this master instance the
remote access is enabled afterwards.

Requirements:

N/A.

See also:

Description of ecmDetachMaster().

Page 96 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.3.2 ecmDetachMaster

The function detaches the master instance from to its device instance.

Syntax:

ECM_EXPORT int ecmDetachMaster(ECM_HANDLE hndMaster);

Description:

The function has to be called once to detach the master instance from its device instance.

Arguments:

hndMaster
[in] Handle of the master instance to detach.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called for each master instance before it can be deleted. If remote
access in Monitor Mode is configured for this master instance the remote access is disabled
afterwards.

Requirements:

N/A.

See also:

Description of ecmAttachMaster().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 97 of 255

Function Description

4.3.3 ecmRequestSlaveState

Request a change of an EtherCAT slave state or reset an error indication.

Syntax:

ECM_EXPORT int ecmRequestSlaveState(ECM_HANDLE hndSlave, uint16_t usState);

Description:

The function changes the EtherCAT state of a single slave into the requested state. For this
purpose all commands which are configured for the requested state transitions are sent to the
slave.
The function can also be used to reset an error indication of the slave. In this case the current
slave state is not affected and no configured commands will be sent to the slave.

Arguments:

hndMaster
[in] Handle of the slave instance.

usState
[in] The requested slave state.

Slave State Description
ECM_DEVICE_STATE_INIT EtherCAT state 'INIT'

ECM_DEVICE_STATE_PREOP EtherCAT state 'PRE-OPERATIONAL'

ECM_DEVICE_STATE_SAFEOP EtherCAT state 'SAFEOP'

ECM_DEVICE_STATE_OP EtherCAT state 'OPERATIONAL'

ECM_DEVICE_STATE_BOOT EtherCAT state 'BOOTSTRAP'

ECM_DEVICE_ERROR_ACK Reset error indication bit. No state change.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function is called by an application to change the EtherCAT state of an individual slave. For
references to the slave instance the application can call ecmGetSlaveHandle() or
ecmGetSlaveHandleByAddr().
The function may also be used to reset the error indication bit in the AL status register of a
slave.

Page 98 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

Requirements:

The requested slave state can not be “better” than the master state. E.g. if the EtherCAT state
of the master is 'PRE-OPERATIONAL' the state of a single slave can not be changed into
'OPERATIONAL'. This limitation does not affect ECM_DEVICE_ERROR_ACK as it is not a real
device state.

See also:

Description of ecmRequestState().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 99 of 255

Function Description

4.3.4 ecmRequestState

Request a change of the EtherCAT master state.

Syntax:

ECM_EXPORT int ecmRequestState(ECM_HANDLE hndMaster, uint16_t usState,
 uint32_t timeout);

Description:

The function changes the master state into the requested state which means that the state is
requested for all slaves of this configuration. For this purpose all commands which are
configured for the state transitions are sent to the slaves.

Arguments:

hndMaster
[in] Handle of the master instance.

usState
[in] The requested EtherCAT master state.

Requested State Description
ECM_DEVICE_STATE_INIT EtherCAT state 'INIT'

ECM_DEVICE_STATE_PREOP EtherCAT state 'PRE-OPERATIONAL'

ECM_DEVICE_STATE_SAFEOP EtherCAT state 'SAFEOP'

ECM_DEVICE_STATE_OP EtherCAT state 'OPERATIONAL'

timeout
[in] Timeout in ms to wait for the network to change into the requested state. If this parameter
is set to 0 the call will return immediately.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called by the application to change the EtherCAT master state into
'OPERATIONAL' in order to exchange process data.

Requirements:

N/A.
See also:

Description of ecmAttachMaster().

Page 100 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.3.5 ecmGetState

Return the current EtherCAT master state.

Syntax:

ECM_EXPORT int ecmGetState(ECM_HANDLE hndMaster, uint16_t *pusState);

Description:

The function returns the actual state of the master instance.

Arguments:

hndMaster
[in] Handle of the master instance for which the new state is requested.

pusState
[in] Pointer to a variable to store actual EtherCAT master state. If the network is in a transition
from one state to another the flag ECM_DEVICE_STATE_TRANSITION is set. To just get the
state information mask the result with ECM_DEVICE_STATE_MASK.

Master State Description
ECM_DEVICE_STATE_INIT EtherCAT state 'INIT'

ECM_DEVICE_STATE_PREOP EtherCAT state 'PRE-OPERATIONAL'

ECM_DEVICE_STATE_SAFEOP EtherCAT state 'SAFEOP'

ECM_DEVICE_STATE_OP EtherCAT state 'OPERATIONAL'

Table 6: EtherCAT states

timeout
[in] Timeout in ms to wait for the network to change into the requested state. If this parameter
is set to 0 the call will return immediately.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function can be called to poll the EtherCAT master state if no callback handler is installed to
reflect the state changes.

Requirements:

N/A.
See also:

Description of ecmRequestSlaveState().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 101 of 255

Function Description

4.4 Data Exchange
This section describes the functions which control exchange and processing of cyclic and acyclic
data.

4.4.1 ecmProcessAcyclicCommunication

Send and receive acyclic EtherCAT commands and perform all necessary acyclic tasks.

Syntax:

ECM_EXPORT int ecmProcessAcyclicCommunication(ECM_HANDLE hndDevice);

Description:

The function has to be called to provide acyclic EtherCAT frames which are transmitted with the
next call to ecmProcessOutputData() or to process received acyclic EtherCAT frames received
with the previous call to ecmProcessInputData().

Arguments:

hndDevice
[in] Handle of the device instance.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called cyclically by the application or the background worker task.

Requirements:

N/A.

See also:

Description of ecmProcessOutputData(), ecmProcessInputData(), ecmProcessControl().

Page 102 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.4.2 ecmProcessControl

Configure and control the stack's worker tasks for cyclic and acyclic data exchange.

Syntax:

ECM_EXPORT int ecmProcessControl(ECM_HANDLE hndDevice,
 ECM_PROC_CTRL *pCtrl);

Description:

The function initializes and starts worker tasks which perform calls to the functions to trigger the
acyclic communication and to process the input and output data described in this section. In
order to synchronize with the cyclic data exchange the application can register handler which
are called by the cyclic worker task in every cycle.

Arguments:

hndDevice
[in] Handle of the device instance.

pCtrl
[in] Reference to an initialized ECM_PROC_CTRL structure.

Remark:

The default stack size of the worker task is usually 16384 bytes. You can override this value
with ecmInitLibrary().

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

HAL with timer support.

See also:

Description of ECM_PROC_CTRL, ecmProcessInputData(), ecmProcessOutputData(),
ecmProcessAcyclicCommunication() and cyclic data handler in chapter 6.2.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 103 of 255

Function Description

4.4.3 ecmProcessInputData

Receive EtherCAT frames on the network adapter and process them.

Syntax:

ECM_EXPORT int ecmProcessInputData(ECM_HANDLE hndDevice);

Description:

The function has to be called to read Ethernet frames from the network adapter. All master
instances which are attached to this device instance are affected by the call. Acyclic frames are
buffered for later processing by the acyclic data handler. The cyclic frames are processed
immediately to update the input process data image.

Arguments:

hndDevice
[in] Handle of the device instance.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called cyclically by the application or the background worker task.

Requirements:

N/A.

See also:

Description of ecmProcessOutputData() and ecmProcessControl()..

Page 104 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.4.4 ecmProcessOutputData

Transmit EtherCAT frames on the network adapter.

Syntax:

ECM_EXPORT int ecmProcessOutputData(ECM_HANDLE hndDevice);

Description:

The function has to be called to copy the updated process data from the output process data
image into the EtherCAT telegrams of the cyclic frames. All master instances which are attached
to this device instance are affected by the call. The updated cyclic frames are transmitted on the
network adapter followed by the acyclic frames and application defined asynchronous frames.

Arguments:

hndDevice
[in] Handle of the device instance.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function has to be called cyclically by the application or the background worker task.

Requirements:

N/A.

See also:

Description of ecmProcessInputData() and ecmProcessControl().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 105 of 255

Function Description

4.5 Process Data
This section describes the functions available to refer to the input/output process data.

4.5.1 ecmGetCopyVector

Return an optimized copy vector for the data in the process image

Syntax:

ECM_EXPORT int ecmGetCopyVector(ECM_HANDLE hndMaster,
 ECM_COPY_VECTOR *pVector,

 uint32_t *pulNumEntries,
 ECM_PROC_DATA_TYPE type);

Description:

The function returns a copy vector for the data within the process image which just copies the
data without the EtherCAT protocol overhead. This can optimize performance if the data has to
be copied to or from a 'slow' shared RAM where just copying the data is faster than copying the
complete process image which contains EtherCAT protocol overhead and might contain gaps.

Arguments:

hndMaster
[in] Handle of a master instance.

pVector
[in] Pointer to the memory location of an ECM_COPY_VECTOR array where the copy vector
should be stored. If the function is called with this parameter set to NULL the number of
necessary array entries for the process image specific copy vector is returned in
pulNumEntries.

pulNumEntries
[in/out] Reference to a variable which is initialized to the available number of entries in at the
location referenced by pVector. After the function has returned successfully the number of
initialized entries is returned in this variable.

type
[in] Type of the process image (input or output) as ECM_PROC_DATA_TYPE enumeration value.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

To support dynamic memory allocation to store the copy vector the function can be called once
with pVector set to NULL to determine the number of entries. In a further step a sufficient block
of memory can be allocated followed by a second call of this function with pVector referencing it.

Requirements:

N/A.

See also:

Description of ECM_COPY_VECTOR and ECM_PROC_DATA_TYPE.

Page 106 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.5.2 ecmGetDataReference

Returns a reference to data in the process input or output image.

Syntax:

ECM_EXPORT int ecmGetDataReference(ECM_HANDLE hndMaster,
 ECM_PROC_DATA_TYPE type,

 uint32_t ulOffs, uint32_t ulSize,
 void **ppReference);

Description:

The function returns a reference to data in the input or output process image validating if the
given offset and data size is located within the according process data image.

Arguments:

hndMaster
[in] Handle of a master instance.

type
[in] Type of the process image (input or output) as ECM_PROC_DATA_TYPE enumeration value.

ulOffs
[in] Relative offset in the process data image in bytes.

ulSize
[in] Size of the data in bytes.

ppReference
[in] Pointer to the memory location the reference pointer is stored. If the call returns with an
error this value is set to NULL.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

If the process data memory is allocated by the application the reference to the data can be
calculated without this function as the base address is known by the application. To write an
application independent of the allocation schema this function should be called in both cases.

The information about data offset and size can be obtained in a slave description
or a variable description. In both cases offset and size are defined as bits and
have to be converted into multiple of bytes as argument for this function.

Attention: The process data layout is usually defined by the ENI file and the
variable position of non byte values can be misaligned. If the target architecture
does not support misaligned access the application has to take this fact into
consideration.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 107 of 255

Function Description

Requirements:

N/A.

See also:

Description of ECM_VAR_DESC, ECM_PROC_DATA_TYPE, ecmGetVariable() and
ecmLookupVariable().

Page 108 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.5.3 ecmGetVariable

Return the description of a process variable.

Syntax:

ECM_EXPORT int ecmGetVariable(ECM_HANDLE hndMaster, ECM_VAR_DESC *pVarDesc,
 uint32_t ulFlags);

Description:

Iterator function to return the description of a process variables defined in the ENI data. The
variable might be a process variable which is intended for data exchange or a virtual variable
used for diagnostic purposes. With every call the next variable of the linked list of variables is
returned.

Arguments:

hndMaster
[in] Handle of a master instance.

pVarDesc
[in] Pointer to the memory location of a ECM_VAR_DESC definition where the variable
description should be stored.

ulFlags
[in] Flags to control the iterator behaviour of this function. If the ECM_FLAG_GET_FIRST flag is
set the internal state of the iterator is reset to the first variable of the variable list.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

To get a list of all variables the function is called the first time with ulFlags initialized to
ECM_FLAG_GET_FIRST followed by successive calls without this flag until the call returns with
error ECM_E_NOT_FOUND.

Requirements:

The flag ECM_FLAG_CFG_KEEP_PROCVARS has to be set in ECM_CFG_INIT calling
ecmReadConfiguration().

See also:

Description of ECM_VAR_DESC and ecmLookupVariable().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 109 of 255

Function Description

4.5.4 ecmLookupVariable

Return the description of a process variable with variable name match.

Syntax:

ECM_EXPORT int ecmLookupVariable(ECM_HANDLE hndMaster, const char *pszMatch,
 ECM_VAR_DESC *pVarDesc, uint32_t ulFlags);

Description:

Iterator function to return the description of a process variables defined in the ENI data which
variable name contains a given sub-string or matches a Regular Expression (RegEx). The
variable might be a process variable which is intended for data exchange or a virtual variable
used for diagnostic purposes. With every call the next variable of the linked list of variables is
returned.

Arguments:

hndMaster
[in] Handle of a master instance.

pszMatch
[in] Reference to the sub-string of the variable name.

pVarDesc
[in] Pointer to the memory location of a ECM_VAR_DESC definition where the variable
description should be stored.

ulFlags
[in] Flags to control the iterator behaviour of this function. Following flags are supported:

Slave State Description
ECM_FLAG_GET_FIRST Get the first variable with matching sub-string or RegEx.

ECM_FLAG_GET_NEXT Get the next variable with matching sub-string or RegEx.

ECM_FLAG_IGNORE_CASE Do the match case insensitive.

ECM_FLAG_EXACT_MATCH Search for an exact match instead of a substring.

ECM_FLAG_REGEXP pszMatch is a regular expression instead of a substring. Can
not be combined with ECM_FLAG_EXACT_MATCH.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

To get a list of all variables which match the pattern given in pszMatch the function is called the
first time with ulFlags initialized to ECM_FLAG_GET_FIRST followed by successive calls without
this flag until the call returns with error ECM_E_NOT_FOUND.

Page 110 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

The table below gives an overview on the supported Regular Expression syntax:

RegEx Description

^ Match beginning of a buffer.

$ Match end of a buffer.

[...] Match any character from set. For example, [abc] matches "a", "b", or "c". [a-z] specifies
a range which matches any lowercase letter from "a" to "z". These forms can be mixed:
[abcx-z] matches "a", "b", "c", "x", "y", and "z", as does [a-cx-z]

[^...] Match any character but ones from set

\s Match whitespace.

\S Match non-whitespace.

\d Match decimal digit.

\r Match carriage return.

\n Match newline.

+ Match one or more times (greedy). For example, ab+c matches "abc", "abbc", "abbbc",
and so on, but not "ac".

+? Match one or more times (non-greedy)

* Match zero or more times (greedy). For example, ab*c matches "ac", "abc", "abbc",
"abbbc", and so on.

*? Match zero or more times (non-greedy)

? Match zero or once.

\xDD Match byte with hex value 0xDD

\meta Match one of the meta character: ^$().[*+?\

Table 7: Supported Regular Expressions (RegEx)

Requirements:

The flag ECM_FLAG_CFG_KEEP_PROCVARS has to be set in ECM_CFG_INIT calling
ecmReadConfiguration().

See also:

Description of ECM_VAR_DESC and ecmGetVariable().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 111 of 255

Function Description

4.6 Asynchronous Requests
This section describes functions which allow the application to send asynchronous request.

4.6.1 ecmAsyncRequest

The functions sends a single asynchronous request to a slave.

Syntax:

ECM_EXPORT int ecmAsyncRequest(ECM_HANDLE hndMaster, uint8_t ucCmd,
 ECM_SLAVE_ADDR addr, uint16_t usSize,
 void *pData, uint16_t *pucCnt);

Description:

The function can be called by the application to send an asynchronous request with one
EtherCAT command to a slave.

Arguments:

hndMaster
[in] Handle of a master instance.

ucCmd
[in] The EtherCAT command

addr
[in] An Error: Reference source not found structure which contains the physical or
logical address of the command.

usSize
[in] The size of the data.

pData
[in/out] Reference to the data which is copied to the slave for EtherCAT write commands and
reference where the data is stored for EtherCAT read commands.

pucCnt
[in] Reference to a variable where the working counter of the processed request is stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_ASYNC_FRAME_SUPPORT).

See also:

Description of Error: Reference source not found and ecmAsyncRequests().

Page 112 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.6.2 ecmAsyncRequests

The functions sends several asynchronous requests in one Ethernet frame.

Syntax:

ECM_EXPORT int ecmAsyncRequests(ECM_HANDLE hndMaster, uint16_t usCount,
 uint8_t *pucCmd, ECM_SLAVE_ADDR *pAddr,
 uint16_t *pusSize, void *pData,
 uint16_t *pucCnt);

Description:

The function can be called by the application to send an asynchronous request with several
EtherCAT commands to different slaves.

Arguments:

hndMaster
[in] Handle of a master instance.

usCount
[in] Number of commands.

pucCmd
[in] Reference to array of EtherCAT commands with usCount entries.

pAddr
[in] Reference to array of Error: Reference source not found structures which contains
the physical or logical address of the command with usCount entries.

pusSize
[in] Reference to array of data size entries with usCount entries.

pData
[in/out] Reference to the data which is copied to the slave for EtherCAT write commands and
reference where the data is stored for EtherCAT read commands. The data for all commands
have to be stored consecutively in memory without any gaps in the order of the commands.

pucCnt
[out] Reference to array of data of variables where the working counter of the processed
requests is stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_ASYNC_FRAME_SUPPORT).

See also:

Description of Error: Reference source not found and ecmAsyncRequest().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 113 of 255

Function Description

4.6.3 ecmReadEeprom

The functions reads data from a slave's EEPROM.

Syntax:

ECM_EXPORT int ecmReadEeprom(ECM_HANDLE hndMaster, int32_t iAddr,
 uint32_t ulOffset, uint16_t *pusNumWords,
 uint16_t *pusBuffer);

Description:

The function is called to get read access to the Slave Information Interface (SII) which is usually
an EEPROM connected to the ESC. The data is read as a multiple of 16-bit values. For this
purpose a sequence of asynchronous requests is sent to the slave.

Arguments:

hndMaster
[in] Handle of a master instance.

iAddr
[in] Slave address. For a positive value in the range from 1 to 65535 the EtherCAT slave is
addressed via this physical address for a value in the range from 0 to -65534 the EtherCAT
slave is addressed via this auto increment address.

ulOffset
[in] (16-Bit) Offset within the slave's EEPROM.

pusNumWords
[in/out] Reference to a variable which contains the number of 16-bit values to be read. On
return this variable contains the number of read 16-bit values. If this value is set to 0 a reload
of the EEPROM content is triggered. This can be also archived with the macro
ECM_RELOAD_EEPROM.

pusBuffer
[out] Reference to a buffer to store the 16-bit values read from the slave's EEPROM. The
buffer size has to be at least sufficient to store the number of requested 16-bit values.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_ASYNC_FRAME_SUPPORT).

See also:

Description of ecmWriteEeprom().

Page 114 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.6.4 ecmWriteEeprom

The functions writes data into a slave's EEPROM.

Syntax:

ECM_EXPORT int ecmWriteEeprom(ECM_HANDLE hndMaster, int32_t iAddr,
 uint32_t ulOffset, uint16_t *pusNumWords,
 uint16_t *pusBuffer);

Description:

The function is called to write into the EtherCAT Slave Information (ESI) EEPROM. The data is
written as a multiple of 16-bit values. For this purpose a sequence of asynchronous requests is
sent to the slave.

Attention: The ESI EEPROM data from word address 0 to 7 is the ESC
configuration area. As this block contains crucial ESC configuration
information which is secured by a CRC at offset 7 the API prevents to write
just parts of this area or an area with an invalid CRC.
You can overcome this check by using the ECM_FLAG_ESI_SKIP_CRC_CHECK
flag described for the parameter ulOffset below.

Arguments:

hndMaster
[in] Handle of a master instance.

iAddr
[in] Slave address. For a positive value in the range from 1 to 65535 the EtherCAT slave is
addressed via this physical address for a value in the range from 0 to -65534 the EtherCAT
slave is addressed via this auto increment address.

ulOffset
[in] (16-Bit) Offset of the slave's ESI EEPROM data. You can logically OR this value with the
ECM_FLAG_ESI_SKIP_CRC_CHECK to overcome the security checks regarding the ESC
configuration area but in this case it is your responsibility to calculate and store a valid CRC
for this area if you just change single words and not the complete area.

pusNumWords
[in] Reference to a variable which contains the number of 16-bit values to be written. On
return this variable contains the number of written 16-bit values.
If the number of bytes to be written is set to 0 no data is written but the function will send the
commands to force the ESI EEPROM control back from the ESC to the EtherCAT master.

pusBuffer
[in] Reference to a buffer to store the 16-bit values which should be written to the slave's
EEPROM.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 115 of 255

Function Description

Usage:

After writing a new 16-bit value into the EEPROM the master expects an acknowledge of the
operation and retries the write operation several times in case the acknowledge is not received
with the next cycle before returning with an error. If the EEPROM of the slave is too slow or the
configured cycle time is too high it might be necessary to configure an additional delay before
the acknowledgement can be expected. An additional common delay for all slaves can be
configured with the parameter ucEsiEepromDelay in ECM_MASTER_DESC creating the master
instance.

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_ASYNC_FRAME_SUPPORT).

See also:

Description of ecmReadEeprom() and the ECM_MASTER_DESC structure.

Page 116 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.7 CoE Protocol
This section describes functions which allow the application to send asynchronous CoE requests to
an EtherCAT slave device to get access to its object dictionary (OD) based on SDO services. The
supported services are:

➢ SDO information services (Query information about OD entries).
➢ SDO download service (Write OD entries).
➢ SDO upload service (Read OD entries).
➢ Emergency services (Get emergency messages the master receives in the background).

4.7.1 ecmCoeGetAbortCode

The function returns the abort code of a CoE request which previously failed with ECM_E_ABORTED.

Syntax:

ECM_EXPORT int ecmCoeGetAbortCode(ECM_HANDLE hndSlave,
 uint32_t *pulAbortCode);

Description:

The function can be called by the application if an asynchronous CoE mailbox request (SDO
service) described in this chapter returned with ECM_E_ABORTED to get the details of the failure
reason returned in the abort code.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pulAbortCode
[in/out] Reference to store the abort code.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE).

See also:

N/A.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 117 of 255

Function Description

4.7.2 ecmCoeGetEmcy

The function returns emergency messages received from a slave.

Syntax:

ECM_EXPORT int ecmCoeGetEmcy(ECM_HANDLE hndSlave, ECM_COE_EMCY *pEmcy,
 uint8_t *pucEntries)

Description:

CoE emergency messages are sent by a complex slave to indicate error situations. They are
received autonomously by the EtherCAT master and stored in a slave specific error history. This
function returns one or more entries from the error history to the caller. Returned entries are
removed from the error history.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pEmcy
[in/out] Reference to an array of ECM_COE_EMCY structures to store emergency messages of
the slave's error history.

pucEntries
[in/out] Reference to a variable which is initialized to the available number of entries at the
location referenced by pEmcy. After the function has returned successfully the number of
initialized entries is returned in this variable.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE).

See also:

Description of the of ECM_COE_EMCY structure.

Page 118 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.7.3 ecmCoeGetEntryDescription

The function returns an entry description of the slave's OD.

Syntax:

ECM_EXPORT int ecmCoeGetEntryDescription(ECM_HANDLE hndSlave,
 ECM_COE_ENTRY_DESCRIPTION *pDesc);

Description:

The function can be called by the application to send an asynchronous CoE mailbox request
returning an entry description from the slave's OD.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pDesc
[in/out] Reference to a ECM_COE_ENTRY_DESCRIPTION structure to store the description. The
member usIndex, ucSubindex and ucRequestData of this structure have to be initialized by
the application with the requested OD index, subindex and amount of data before the call. As
the data structure contains a variable part the memory is usually allocated dynamically by the
application and the size of the complete data structure has to be stored in the member
usSize before the call, too.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code is returned with
ecmCoeGetAbortCode().

Usage:

This function is usually called after the number of available entries of this object is returned with
ecmCoeGetObjDescription().

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_COE_ENTRY_DESCRIPTION structure and ecmCoeGetObjDescription().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 119 of 255

Function Description

4.7.4 ecmCoeGetObjDescription

The function returns an object description of the slave's OD.

Syntax:

ECM_EXPORT int ecmCoeGetObjDescription(ECM_HANDLE hndSlave,
 ECM_COE_OBJECT_DESCRIPTION *pDesc);

Description:

The function can be called by the application to send an asynchronous CoE mailbox request
returning an object description from the slave's OD.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pDesc
[in/out] Reference to a ECM_COE_OBJECT_DESCRIPTION structure to store the description. The
member usIndex of this structure has to be initialized by the application with the request OD
index before the call.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code is returned with
ecmCoeGetAbortCode().

Usage:

This function is usually called after the list of available OD indexes is returned with
ecmCoeGetOdEntries().

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_COE_OBJECT_DESCRIPTION structure and ecmCoeGetOdEntries().

Page 120 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.7.5 ecmCoeGetOdEntries

The function returns the list of objects in the slave's OD for a given list type.

Syntax:

ECM_EXPORT int ecmCoeGetOdEntries(ECM_HANDLE hndSlave,
 ECM_COE_OD_LIST *pList);

Description:

The function can be called by the application to send an asynchronous CoE mailbox request
returning the list of object indexes in the CoE slave's OD for one of the supported list types
defined by ECM_COE_INFO_LIST_TYPE.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pList
[in/out] Reference to a ECM_COE_OD_LIST structure to store the list. The member type of this
structure has to be initialized with the list type and the member usCount with the maximum
number of object indexes which can be stored in the usIndex array before the call. On
successful return usCount is set to the number of entries in the array usIndex.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code is returned with
ecmCoeGetAbortCode().

Usage:

This function is usually called after the number of entries for a given list type is returned with
ecmCoeGetOdList() so the application can allocate a ECM_COE_OD_LIST structure dynamically
with a sufficient size for the usIndex array to receive the complete list of object indexes.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_COE_OD_LIST structure and ecmCoeGetOdList().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 121 of 255

Function Description

4.7.6 ecmCoeGetOdList

The function returns the number of objects in the slave's OD for the different list types.

Syntax:

ECM_EXPORT int ecmCoeGetOdList(ECM_HANDLE hndSlave,
 ECM_COE_OD_LIST_COUNT *pOdListCount);

Description:

The function can be called by the application to send an asynchronous CoE mailbox request
returning the available number of objects in the CoE slave's OD for the different list types
defined by ECM_COE_INFO_LIST_TYPE.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pOdListCount
[in/out] Reference to an ECM_COE_OD_LIST_COUNT structure to store the result.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code is returned with
ecmCoeGetAbortCode().

Usage:

This function is usually called before ecmCoeGetOdEntries() to provide the application with the
information about the memory requirement of the ECM_COE_OD_LIST structure used for this call
to receive the complete list of object indexes.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_COE_OD_LIST_COUNT structure.

Page 122 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.7.7 ecmCoeSdoDownload

The function downloads data to the slave's OD (master → slave).

Syntax:

ECM_EXPORT int ecmCoeSdoDownload(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t ulSzBuffer);

Description:

The function has to be called by the application to download data to the slave's OD as an
asynchronous CoE mailbox request. Depending on the given data size and the configured
mailbox size the master will choose an expedited, normal or segmented SDO transfer to
download the data.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usIndex and ucSubindex have to be set to the entry of the slave's OD which data
has to be downloaded.

pBuffer
[in] Reference to buffer with download data.

ulSzBuffer
[in] Size of pBuffer in bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code is returned with
ecmCoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 123 of 255

Function Description

4.7.8 ecmCoeSdoUpload

The function uploads data from the slave's OD (slave → master).

Syntax:

ECM_EXPORT int ecmCoeSdoUpload(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t *pulSzBuffer);

Description:

The function has to be called by the application to upload data from the slave's OD as an
asynchronous CoE mailbox request. Depending on the given data size and the configured
mailbox size the master will choose an expedited, normal or segmented SDO transfer to upload
the data.

Arguments:

hndSlave
[in] Handle of a slave instance (with CoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usIndex and ucSubindex have to be set to the entry of the slave's OD which data
has to be uploaded. After return the flag ECM_COE_FLAG_ABORT_CODE is set in the member
ucFlags if a SDO abort code was stored in pBuffer instead of the data.

pBuffer
[in/out] Reference to a buffer to store the uploaded data. The minimum buffer size is the size
of a SDO abort code (4 bytes).

pulSzBuffer
[in/out] Reference to a variable which is initialized to the size of pBuffer in bytes before the
call. On return the variable will contain the number of uploaded bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_ABORTED the abort code can be returned with
ecmCoeGetAbortCode() and is also stored in the result buffer.

Usage:

N/A.

Requirements:

Support for the CoE mailbox protocol (Feature ECM_FEATURE_COE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

Page 124 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.8 SoE Protocol
This section describes functions which allow the application to send asynchronous SoE requests to
an EtherCAT slave device to get access to the elements of its parameters. The supported services
are:

➢ SoE download service (Write SoE parameter).
➢ SoE upload service (Read SoE parameter).
➢ SoE IDN conversion routines.
➢ Emergency services (Get emergency messages the master receives in the background).

The SoE download and upload services are synchronous (application is blocked until the SoE
transfer is completed) .

Each SoE parameter is defined by its IDN and consists of several elements with different data and
access types.

Element SoE Type Description / Access / Availability
ECM_SOE_ELEM_NAME String Parameter Name (RO, Mandatory)

ECM_SOE_ELEM_ATTRIBUTE 32 Bit Parameter Attributes (RO, Mandatory)

ECM_SOE_ELEM_UNIT String Parameter Unit (RO, Optional)

ECM_SOE_ELEM_MIN 16/32 Bit Minimum Value (RO,Optional)

ECM_SOE_ELEM_MAX 16/32 Bit Maximum Value (RO, Optional)

ECM_SOE_ELEM_VALUE 16/32 Bit, Variable Parameter Value (RW, Mandatory)

Table 8: SoE Elements

The elements Name and Unit are returned as ECM_SOE_STRING. The maximum size of Name is
defined by ECM_SOE_MAX_ELEM_NAME and the maximum size of Unit by ECM_SOE_MAX_UNIT. The
elements Minimum and Maximum are only available for numerical parameter as 16- or 32-bit
value. The element Value is either returned as 16- or 32-bit numerical value or as a parameter of
variable size returned as ECM_SOE_ARRAY8, ECM_SOE_ARRAY16 or ECM_SOE_ARRAY32. The Value is
always returned in little endian format. The data type and many other parameter specific properties
are returned with the Attribute.

Bit Value Description

31 0 Reserved

30 0
1

Data is writeable in CP4.
Data is write protected in CP4. (ECM_SOE_ATTR_PHASE4_WRITE_PROTECTED)

29 0
1

Data is writeable in CP3.
Data is write protected in CP3. (ECM_SOE_ATTR_PHASE3_WRITE_PROTECTED)

28 0
1

Data is writeable in CP2.
Data is write protected in CP2. (ECM_SOE_ATTR_PHASE2_WRITE_PROTECTED)

27..24

0..15 Decimal point:
Places after the decimal point indicates the position of the decimal point.
Decimal point is used to define fixed point decimal numbers. For all other
display formats the decimal point is 0. The data of this field can be extracted
with ECM_SOE_ATTR_DECIMAL_PLACES.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 125 of 255

Function Description

Bit Value Description

23 0 Reserved

22..20

0
1
2
4
5
6
7

Data type and display format to determine how the operation data, minimum
and maximum values are interpreted and displayed. The data of this field can
be extracted with ECM_SOE_ATTR_DATA_TYPE.

Data type: Binary number / Display format: Binary
Data type: Unsigned integer / Display format: Unsigned decimal
Data type: Integer / Display format: Signed decimal
Data type: Extended character set / Display format: UTF8
Data type: Unsigned integer / Display format: IDN
Data type: Float / Display format: Float (ANSI/IEEE 754-2008)
Data type: Time / Display format: Time (IEC 61588)

19 0
1

Parameter is no procedure command.
Parameter is a procedure command. (ECM_SOE_ATTR_PROCEDURE)

18..16

1
2
4
5
6

Data type/size:
The data of this field can be extracted with ECM_SOE_ATTR_DATA_LENGTH.
Values not listed are reserved.

16-bit value (ECM_SOE_LEN_WORD).
32-bit value (ECM_SOE_LEN_LONG).
Variable length 8-bit array (ECM_SOE_VAR_BYTE).
Variable length 16-bit array(ECM_SOE_VAR_WORD).
Variable length 32-bit array(ECM_SOE_VAR_LONG).

15..0 Conversion factor:
The conversion factor is an unsigned integer used to convert numeric data to
display format. The conversion factor is 1, if a conversion is not required (e.g.
for binary numbers, character strings or floating-point numbers). The data of
this field can be extracted with ECM_SOE_ATTR_CONVERSION_FACTOR.

Table 9: SoE Attributes

Page 126 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.8.1 ecmSoeDownload

The function downloads data to the SoE slave (master → slave).

Syntax:

ECM_EXPORT int ecmSoeDownload(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t ulSzBuffer);

Description:

The function has to be called by the application to download data to the slave as an
asynchronous SoE mailbox request. Depending on the given data size and the configured
mailbox size the master will choose a single or a segmented SoE transfer to download the data.

Arguments:

hndSlave
[in] Handle of a slave instance (with SoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member ucCommand has to be initialized with the SoE drive number and the member
ucElements has to be set to ECM_SOE_ELEM_VALUE (as all other SoE elements are read only).
The member usIDN has to be set to the IDN of the data element that is written.

pBuffer
[in] Reference to a buffer with download data.

The data has to be stored in little endian byte order and the application is
responsible that the data format fits the addressed SoE parameter.

ulSzBuffer

[in] Size of pBuffer in bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the flag ECM_SOE_FLAG_ERROR in ucCommand is
set and usError contains the SoE error code which can be turned into a textual description with
ecmFormatError().

Usage:

The function is used to change the operation data of an SoE parameter or to start/stop an SoE
procedure command.

Requirements:

Support for the SoE mailbox protocol (Feature ECM_FEATURE_SOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 127 of 255

Function Description

4.8.2 ecmSoeIdnToString

The function converts an IDN in 16-bit binary format into string notation

Syntax:

ECM_EXPORT int ecmSoeIdnToStr(uint16_t usIDN, char *pcBuffer);

Description:

The function converts a SoE Identification number in 16-bit binary format into the standard SoE
string notation.

Arguments:

usIDN
[in] SoE IDN as 16-bit binary.

pcBuffer
[out] Reference to a buffer with a buffer size of at least 10 bytes to store the IDN string.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

N/A

See also:

Description of ecmSoeStringToIdn().

Page 128 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.8.3 ecmSoeStringToIdn

The function converts an IDN from the string notation into the 16-bit binary format.

Syntax:

ECM_EXPORT int ecmSoeStrToIDN(uint16_t *pusIDN, char *pcBuffer);

Description:

The function converts an SoE Identification number (IDN) from the standard SoE string notation
into the 16-bit binary format.

Arguments:

pusIDN
[in] Reference to a buffer to store the SoE IDN as 16-bit binary.

pcBuffer
[out] Reference to a buffer with a buffer size of at least 10 bytes to store the IDN string.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

N/A

See also:

Description of ecmSoeIdnToString().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 129 of 255

Function Description

4.8.4 ecmSoeUpload

The function uploads data from the SoE slave (slave → master).

Syntax:

ECM_EXPORT int ecmSoeUpload(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t *pulSzBuffer);

Description:

The function has to be called by the application to upload data from the slave as an
asynchronous SoE mailbox request. Depending on the given data size and the configured
mailbox size the master will choose a single or a segmented SoE transfer to upload the data.

Arguments:

hndSlave
[in] Handle of a slave instance (with SoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member ucCommand has to be initialized with the SoE drive number and the member
ucElements has to be set to one of the elements of an SoE parameter defined in table 8. The
member usIDN has to be set to the IDN of the data element that is written.

pBuffer
[in] Reference to a buffer to store the parameter data.

The data is stored in little endian byte order and the data format is defined by the
requested SoE element and the SoE parameter.

ulSzBuffer
[in] Reference to a variable which is initialized to the size of pBuffer in bytes before the call.
On return the variable will contain the number of uploaded bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the flag ECM_SOE_FLAG_ERROR in ucCommand is
set and usError contains the SoE error code which can be turned into a textual description with
ecmFormatError(). If the call returns with ECM_E_INVALID_SIZE the flag
ECM_SOE_FLAG_INCOMPLETE in ucCommand is set because the received data does not fit into
the application buffer. In the latter case the request should be returned with an increased
application buffer size.

Usage:

The function is used to read the elements of an SoE parameter or to receive the state of an SoE
procedure command.

Page 130 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

Requirements:

Support for the SoE mailbox protocol (Feature ECM_FEATURE_SOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 131 of 255

Function Description

4.9 FoE Protocol
This section describes functions which allow the application to download or upload a firmware or
any other file from/to an EtherCAT slave device using the File access over EtherCAT (FoE) mailbox
protocol. The EtherCAT master stack is always the FoE client and the EtherCAT slave device the
FoE server.

The application has to attach an FoE download or upload data handler to provide or accept blocks
of FoE data. The data exchange might be synchronous (application is blocked until the FoE
transfer is completed) or asynchronous (application polls for the completion of the FoE transfer).

4.9.1 ecmFoeDownload

The function downloads data to an EtherCAT slave.

Syntax:

ECM_EXPORT int ecmFoeDownload(ECM_HANDLE hndSlave,
 PFN_ECM_FOE_DOWNLOAD handler,
 uint32_t ulFlags, uint32_t ulPassword,
 const char *pszFilename);

Description:

The function downloads data from the application to an EtherCAT slave.

Arguments:

hndSlave
[in] Handle of a slave instance (with FoE support).

handler
[in] Application specific handler to provide consecutive blocks of data.

ulFlags
[in] Optional flags to influence the behaviour of the FoE download.

ECM_FOE_FLAG_ASYCHRONOUS – Start download asynchronously.

ulPassword
[in] Password to prevent files being overwritten accidentally. Use ECM_FOE_NO_PASSWORD to
define no password.

pszFilename
[in] Optional file name if the EtherCAT slave distinguishes between different resources. Use
NULL to define no file.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the request is configured asynchronously ECM_E_PENDING is returned.

Usage:

An FoE download is often used to update the firmware of an EtherCAT slave in BOOT state.

Page 132 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

Requirements:

Support for the FoE mailbox protocol (Feature ECM_FEATURE_FOE).

See also:

ecmFoeGetState(), FoE download handler (chapter 6.8.1).

4.9.2 ecmFoeGetState

The function returns the state of an active or the recent completed FoE transfer.

Syntax:

ECM_EXPORT int ecmFoeGetState(ECM_HANDLE hndSlave, ECM_FOE_STATE *pState);

Description:

The function returns the state of an active or the recent completed FoE transfer.

Arguments:

hndSlave
[in] Handle of a slave instance (with FoE support).

pState
[in] Reference to a memory location where the master stack can store the state information.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

The function is usually called after a failed synchronous FoE request to get more detailed
information about the error (FoE error code and/or optional error text) and has to be polled
during asynchronous FoE requests to check the progress.

Requirements:

Support for the FoE mailbox protocol (Feature ECM_FEATURE_FOE).

See also:

ECM_FOE_STATE, ecmFoeDownload(), ecmFoeUpload().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 133 of 255

Function Description

4.9.3 ecmFoeUpload

The function uploads data from an EtherCAT slave.

Syntax:

ECM_EXPORT int ecmFoeUpload(ECM_HANDLE hndSlave, PFN_ECM_FOE_UPLOAD handler,
 uint32_t ulFlags, uint32_t ulPassword,
 const char *pszFilename);

Description:

The function uploads data from an EtherCAT slave to the application.

Arguments:

hndSlave
[in] Handle of a slave instance (with FoE support).

handler
[in] Application specific handler to receive and process consecutive blocks of data.

ulFlags
[in] Optional flags to influence the behaviour of the FoE upload.

ECM_FOE_FLAG_ASYCHRONOUS – Start download upload.

ulPassword
[in] Password to prevent unauthorized access. Use ECM_FOE_NO_PASSWORD to define no
password.

pszFilename
[in] Optional file name if the EtherCAT slave distinguishes between different resources. Use
NULL to define no file.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the request is configured asynchronously ECM_E_PENDING is returned.

Usage:

N/A

Requirements:

Support for the FoE mailbox protocol (Feature ECM_FEATURE_FOE).

See also:

ecmFoeGetState(), FoE upload handler (chapter 6.8.2).

Page 134 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.10 EoE Protocol

4.10.1 ecmEoeGetConfig

Return EoE configuration data.

Syntax:

ECM_EXPORT int ecmEoeGetConfig(ECM_HANDLE hndSlave,
 ECM_EOE_CONFIG *pConfig);

Description:

The function returns the configuration which is assigned to an EoE capable device during
startup.

Arguments:

hndSlave
[in] Handle of a slave instance (with EoE support).

pConfig
[in/out] Reference to a memory location to store the EoE configuration.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the request returns with ECM_E_NO_DATA the slave device supports the EoE
protocol but is configured as switchport device.

Usage:

Make EoE configuration data available to the application.

Requirements:

Support for the EoE mailbox protocol (Feature ECM_FEATURE_EOE).

See also:

N/A.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 135 of 255

Function Description

4.11 AoE Protocol

This section describes functions which allow the application to send asynchronous AoE requests to
an EtherCAT slave device. The supported services are:

➢ Reading/Writing data from/to an AoE capable device.
➢ Reading the device information from an AoE capable device.
➢ Reading/Changing the ADS Status and the Device Status of an AoE capable device.

4.11.1 ecmAoeGetAbortCode

The function returns the error code of an AoE request which previously failed with ECM_E_PROTO.

Syntax:

ECM_EXPORT int ecmAoeGetErrorCodes(ECM_HANDLE hndSlave,
 uint32_t *pulAoeErrorCode,
 uint32_t *pulAdsErrorCode);

Description:

The function can be called by the application after an asynchronous AoE mailbox request (ADS
service) described in this chapter returned with ECM_E_PROTO in order to get the details of the
failure reason.

Arguments:

hndSlave
[in] Handle of a slave instance (with AoE support).

pulAoeErrorCode
[in/out] Reference to store the AoE error code.

pulAdsErrorCode
[in/out] Reference to store the ADS error code.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE).

See also:

N/A.

Page 136 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.11.2 ecmAoeRead

The function uploads data as AoE read operation (slave → master).

Syntax:

ECM_EXPORT int ecmAoeRead(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t *pulSzBuffer);

Description:

The function has to be called by the application to upload data from the slave as an
asynchronous AoE mailbox request.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to the slave's AoE target port and ulIndexGroup and
ulIndexOffset have to be initialized.

pBuffer
[in/out] Reference to a buffer to store the uploaded data. The minimum buffer size is the size
of a SDO abort code (4 bytes).

pulSzBuffer
[in/out] Reference to a variable which is initialized to the size of pBuffer in bytes before the
call. On return the variable will contain the number of uploaded bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 137 of 255

Function Description

4.11.3 ecmAoeReadDeviceInfo

The function returns the ADS Devie Information of an AoE protocol capable device.

Syntax:

ECM_EXPORT int ecmAoeReadDeviceInfo(ECM_HANDLE hndSlave,
 PECM_MBOX_SPEC pSpec,

 ECM_AOE_DEVICE_INFO *pInfo);

Description:

The function has to be called by the application to upload the ADS device information of an AoE
protocol capable device.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to be the slave's AoE target port.

pInfo
[in] Pointer to the memory location of a ECM_AOE_DEVICE_INFO structure in which the
device information state of the master is to be stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

Page 138 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.11.4 ecmAoeReadState

The function returns the ADS Status and the Device Status of an ADS device.

Syntax:

ECM_EXPORT int ecmAoeReadState(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 ECM_AOE_STATE *pState);

Description:

The function has to be called by the application to upload the ADS and device status of an AoE
protocol capable device.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to be the slave's AoE target port.

pState
[in] Pointer to the memory location of a ECM_AOE_STATE structure in which the current state
of the master is to be stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 139 of 255

Function Description

4.11.5 ecmAoeReadWrite

The function downloads data (master → slave) to an ADS device and additionally uploads data
(slave → master) from the ADS device. The data is addressed by the Index Group and the Index
Offset

Syntax:

ECM_EXPORT int ecmAoeReadWrite(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pReadBuffer, uint32_t *pulReadSzBuffer,
 void *pWriteBuffer, uint32_t ulWriteSzBuffer);

Description:

The function has to be called by the application to exchange data with the slave as an
asynchronous AoE mailbox request.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to the slave's AoE target port and ulIndexGroup and
ulIndexOffset have to be initialized.

pReadBuffer
[in/out] Reference to a buffer to store the uploaded data.

pulReadSzBuffer
[in/out] Reference to a variable which is initialized to the size of pBuffer in bytes before the
call. On return the variable will contain the number of uploaded bytes.

pWriteBuffer
[in] Reference to buffer with download data.

ulWriteSzBuffer
[in] Number of bytes to be downloaded.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

Page 140 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.11.6 ecmAoeWrite

The function downloads data as ADS Write operation (master → slave).

Syntax:

ECM_EXPORT int ecmAoeWrite(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t ulSzBuffer);

Description:

The function has to be called by the application to download data from the master as an
asynchronous AoE mailbox request.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to be the slave's AoE target port and ulIndexGroup and
ulIndexOffset have to be initialized.

pBuffer
[in] Reference to buffer with download data.

ulSzBuffer
[in] Size of pBuffer in bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 141 of 255

Function Description

4.11.7 ecmAoeWriteControl

The function changes the ADS Status and the Device Status of an ADS device. Optionally, it is
possible to send data to the ADS device to transfer further information.

Syntax:

ECM_EXPORT int ecmAoeWriteCtrl(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 ECM_AOE_STATE *pState,
 void *pBuffer, uint32_t ulSzBuffer);

Description:

The function has to be called by the application to download data from the master as an
asynchronous AoE mailbox request.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member usTargetPortId has to be the slave's AoE target port and usAoeState and
usDeviceState have to be initialized.

pState
[in] Pointer to an initialized memory location of a ECM_AOE_STATE structure in which the
current state of the master is set.

pBuffer
[in] (Optional) reference to buffer with additional data.

ulSzBuffer
[in] Number of optional data bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the AoE mailbox protocol (Feature ECM_FEATURE_AOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

Page 142 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.12 VoE Protocol

This section describes functions which allow the application to send asynchronous VoE requests to
an EtherCAT slave device. The supported services are:

➢ Writing data from a VoE capable device.
➢ Reading (available) data from a VoE capable device.

4.12.1 ecmVoeRead

The function returns the data uploaded from a VoE protocol capable device (slave → master).

Syntax:

ECM_EXPORT int ecmVoeRead(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t *pulSzBuffer);

Description:

The function has to be called by the application to check if data upload from the slave with the
VoE protocol is pending.

hndSlave
[in] Handle of a slave instance (with VoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member ulVendorId and usVendorType have to be initialized.

pBuffer
[in/out] Reference to a buffer to store the uploaded data.

pulSzBuffer
[in/out] Reference to a variable which is initialized to the size of pBuffer in bytes before the
call. On return the variable will contain the number of uploaded bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Due to the vendor specific proprietary protocol definition the control flow is unknown and the call
will return without blobking with ECM_E_NO_DATA if no data is pending.

Requirements:

Support for the VoE mailbox protocol (Feature ECM_FEATURE_VOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 143 of 255

Function Description

4.12.2 ecmVoeWrite

The function downloads data to a VoE protocol capable device (master → slave).

Syntax:

ECM_EXPORT int ecmVoeWrite(ECM_HANDLE hndSlave, PECM_MBOX_SPEC pSpec,
 void *pBuffer, uint32_t ulSzBuffer);

Description:

The function has to be called by the application to download data from the master as an
asynchronous VoE mailbox request.

hndSlave
[in] Handle of a slave instance (with AoE support).

pSpec
[in] Reference to an initialized mailbox protocol command specifier ECM_MBOX_SPEC. The
member ulVendorId and usVendorType have to be initialized.

pBuffer
[in] Reference to buffer with download data.

ulSzBuffer
[in] Size of pBuffer in bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If the call returns with ECM_E_PROTO the failure reason can be returned with
ecmAoeGetAbortCode().

Usage:

N/A.

Requirements:

Support for the VoE mailbox protocol (Feature ECM_FEATURE_VOE). The mailbox communication
of the requested EtherCAT slave has to be initialized which means the slave state has to be at
least PRE-OPERATIONAL.

See also:

Description of the ECM_MBOX_SPEC structure.

Page 144 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.13 Diagnostic and Status Data
This section describes functions which return EtherCAT and network communication related status
and diagnostic data.

4.13.1 ecmGetCycleRuntime

The functions returns the runtime of the current cycle.

Syntax:

ECM_EXPORT int ecmGetCycleRuntime(ECM_HANDLE hndDevice,uint32_t *pulRuntime,
 uint32_t *pulTick);

Description:

The function is called to return the runtime of the current cycle or to indicate its start to the
master.

Arguments:

hndDevice
[in] Handle of the device instance.

pulRuntime
[in] Pointer to the memory location where the runtime of the current I/O cycle in
microseconds should be stored. If this pointer is set to NULL the master will interpret this as
an indication that a new I/O cycle begins (see remark section in this chapter).

pulTick
[in] Pointer to the memory location where the current cyclic I/O tick counter should be stored.
This is a counter which is incremented by one with each I/O cycle and is set to 0 after
0xFFFFFFFF is reached. If this pointer is set to NULL no data is returned.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes of chapter 8.

Usage:

Keep track of the current cycle runtime and/or indicate the start of the next I/O cycle to the
master if the cyclic worker tasks are not used.

Remark:

If the cyclic data exchange is based on the cyclic worker tasks (see 3.7.4) the application must
not call this function with pulRuntime set to NULL. If the cyclic data exchange is not based on
the cyclic worker task the application must call this function with pulRuntime set set to NULL
with the start of each new cycle to indicate this to the master.

Requirements:

N/A.

See also:

N/A.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 145 of 255

Function Description

4.13.2 ecmGetDeviceState

The functions returns the active configuration and state of a device instance.

Syntax:

ECM_EXPORT int ecmGetDeviceState(ECM_HANDLE hndDevice,
 ECM_DEVICE_DESC *pConfig,

 ECM_DEVICE_STATE *pState);

Description:

The function is called to return the active device configuration and the current state.

Arguments:

hndDevice
[in] Handle of the device instance.

pConfig
[in] Pointer to the memory location of a ECM_DEVICE_DESC structure where the current
configuration of the device should be stored. If this pointer is set to NULL no data is returned.

pState
[in] Pointer to the memory location of a ECM_DEVICE_STATE structure where the current state
of the device should be stored. If this pointer is set to NULL no data is returned.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

If ecmReadConfiguration() is used to create the device instance parts of the configuration
might be derived from the ENI file and this function returns the complete configuration
information.

Requirements:

N/A.
See also:

Description of ECM_DEVICE_DESC and ECM_DEVICE_STATE.

Page 146 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.13.3 ecmGetDeviceStatistic

The functions returns statistical data for a device instance.

Syntax:

ECM_EXPORT int ecmGetDeviceStatistic(ECM_HANDLE hndDevice,
 ECM_DEVICE_STATISTIC *pStatPrimary,
 ECM_DEVICE_STATISTIC *pStatRedundant);

Description:

The function is called to return the current device statistic data for the primary and redundant
network adapter.

Arguments:

hndDevice
[in] Handle of the device instance.

pStatPrimary
[in] Pointer to the memory location of a ECM_DEVICE_STATISTIC structure where the
diagnostic data of the primary adapter should be stored.

pStatRedundant
[in] Pointer to the memory location of a ECM_DEVICE_STATISTIC structure where the
diagnostic data of the redundant adapter should be stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Support for asynchronous requests (Feature ECM_FEATURE_DIAGNOSTIC).

Requirements:

N/A.

See also:

Description of ECM_DEVICE_STATISTIC.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 147 of 255

Function Description

4.13.4 ecmGetMasterState

The functions returns the active configuration and state of a master instance.

Syntax:

ECM_EXPORT int ecmGetMasterState(ECM_HANDLE hndMaster,
 ECM_MASTER_DESC *pConfig,

 ECM_MASTER_STATE *pState);

Description:

The function is called to return the active master configuration and the current state.

Arguments:

hndMaster
[in] Handle of the master instance.

pConfig
[in] Pointer to the memory location of a ECM_MASTER_DESC structure where the current
configuration of the master should be stored. If this pointer is set to NULL no data is returned.

pState
[in] Pointer to the memory location of a ECM_MASTER_STATE structure where the current state
of the master should be stored. If this pointer is set to NULL no data is returned.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

If ecmReadConfiguration() is used to create the master instance parts of the configuration
might be derived from the ENI file and this function returns the complete configuration
information.
The function can also be used to poll the current state of a master as an alternative to the event
based mechanism.

Requirements:

N/A.

See also:

Description of ECM_MASTER_DESC and ECM_MASTER_STATE.

Page 148 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.13.5 ecmGetMasterStatistic

The functions returns statistical data of a master instance.

Syntax:

ECM_EXPORT int ecmGetMasterStatistic(ECM_HANDLE hndMaster,
 ECM_MASTER_STATISTIC *pStatMaster);

Description:

The function is called to return the current statistic data for a master instance.

Arguments:

hndMaster
[in] Handle of a master instance.

pStatMaster
[in] Pointer to the memory location of a ECM_MASTER_STATISTIC structure where the
diagnostic data of the master should be stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_DIAGNOSTIC).

See also:

Description of ECM_MASTER_STATISTIC.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 149 of 255

Function Description

4.13.6 ecmGetNicStatistic

The functions returns statistical data of the network adapter.

Syntax:

ECM_EXPORT int ecmGetNicStatistic(ECM_HANDLE hndDevice,
 ECM_NIC_STATISTIC *pStatPrimary,
 ECM_NIC_STATISTIC *pStatRedundanr);

Description:

The function has to be called to return the current network adapter statistic data for the primary
and redundant network adapter.

Arguments:

hndDevice
[in] Handle of the device instance.

pStatPrimary
[in] Pointer to the memory location of a ECM_NIC_STATISTIC structure where the diagnostic
data of the primary adapter should be stored.

pStatRedundant
[in] Pointer to the memory location of a ECM_NIC_STATISTIC structure where the diagnostic
data of the redundant adapter should be stored.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

As the application has no direct link to the adapter instances the related device handle is used
as argument..

Requirements:

Support for asynchronous requests (Feature ECM_FEATURE_DIAGNOSTIC).

See also:

Description of ECM_NIC_STATISTIC.

Page 150 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.13.7 ecmGetProfilingData

The functions returns performance profiling data.

Syntax:

ECM_EXPORT int ecmGetProfilingData(ECM_HANDLE hndDevice,
 ECM_PROFILING_DATA *pData,
 ECM_PROFILING_TYPE type);

Description:

The function is called to return performance profiling data either collected by the stack internally
or explicitly by the application (refer to section 3.12.4 for more details).

Arguments:

hndDevice
[in] Handle of the device instance.

pData
[in] Reference to the memory location of a ECM_PROFILING_DATA structure where the data
should be stored. If called with NULL the sampled data for the given category is reset.

type
[in] Category descriptor of the enum ECM_PROFILING_TYPE.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

If ecmReadConfiguration() is used to create the slave instances the configuration is derived
from the ENI file and this function returns the configuration information. A handle to the slave
instance can be obtained with ecmGetSlaveHandle() or ecmGetSlaveHandleByAddr().

Requirements:

N/A.

See also:

Description of ECM_PROFILING_DATA and ECM_PROFILING_TYPE.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 151 of 255

Function Description

4.13.8 ecmGetSlaveDiag

The functions returns the current diagnostic data of a slave instance.

Syntax:

ECM_EXPORT int ecmGetSlaveDiag(ECM_HANDLE hndSlave, ECM_SLAVE_DIAG *pDiag);

Description:

The function is called to return the current diagnostic data which can be monitored by the
master.

Arguments:

hndSlave
[in] Handle of the slave instance.

pDiag
[in] Pointer to the memory location of a ECM_SLAVE_DIAG structure where the current
diagnostic data of the slave should be stored. If this pointer is set to NULL no data is returned.

To make sure that the slave diagnostic data is updated regularly you have to
configure the master accordingly (refer to chapter 3.12.2 for further details).

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

If ecmReadConfiguration() is used to create the slave instances the configuration is derived
from the ENI file and this function returns the configuration information. A handle to the slave
instance can be obtained with ecmGetSlaveHandle() or ecmGetSlaveHandleByAddr().

Requirements:

N/A.

See also:

Description of ECM_SLAVE_DIAG.

Page 152 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.13.9 ecmUpdateProfilingData

Update (user) profiling data.

Syntax:

ECM_EXPORT int ecmUpdateProfilingData(ECM_HANDLE hndDevice,
 uint32_t ulDiff,
 ECM_PROFILING_TYPE type);

Description:

The function is called to add another sample to the (user) profiling data (refer to section 3.12.4
for more details).

Arguments:

hndDevice
[in] Handle of the device instance.

ulDiff
[in] Execution time in ticks.

type
[in] Category descriptor of the enum ECM_PROFILING_TYPE.

Only the types ECM_PROFILE_USER1 and ECM_PROFILE_USER2 are allowed as
type as all other categories are used internally by the EtherCAT master stack.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Instrument the application with ecmGetClockCycles() calls at the beginning and end of the
code section you want to measure the execution time for. Calculate the difference between the
end and the start tick value and call ecmUpdateProfilingData() with this tick difference for
ulDiff and one of the user profile categories for type. For results call ecmGetProfilingData()
with this user profile category.

Requirements:

N/A.

See also:

Description of ecmGetClockCycles(), ecmGetProfilingData() and ECM_PROFILING_TYPE.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 153 of 255

Function Description

4.14 ESI EEPROM Support
This section describes functions to access and decode the ESI (EtherCAT Slave Information) data
which are stored persistently on the slave. The ESC use a mandatory NVRAM (usually an I2C
EEPROM) for this purpose and where the data is stored in well-defined binary format. As the data
may be available either as online data uploaded from a slave or as offline binary data in a file the
functions described below work with memory buffers. The data in this buffer has to be organized in
little endian format.

4.14.1 ecmCalcEsiCrc

The function calculates the CRC for the ESC Configuration Area of the ESI EEPROM data.

Syntax:

ECM_EXPORT uint16_t ecmCalcEsiCrc(char *pEsiBuffer);

Description:

The first eight words of the ESI EEPROM data are the ESC Configuration Area. This data is
automatically read by the ESC after power-on or reset and contains crucial configuration
information. The consistency of this data is secured with a checksum stored at word address 7.

Arguments:

pEsiBuffer
[in] Pointer to the memory location with (the first 7 words) of ESI EEPROM data.

Return Values:

Calculated 16-Bit CRC.

Usage:
The function can be used to either validate the consistency of a ESC configuration area or to
update the CRC for after modifications.

Requirements:

N/A.

See also:

Description of ecmWriteEeprom().

Page 154 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.14.2 ecmGetEsiCategoryList

The function returns the list of categories stored in the ESI EEPROM data.

Syntax:

ECM_EXPORT int ecmGetEsiCategoryList(char *pEsiBuffer, uint32_t ulSzBuffer,
 ECM_ESI_CATEGORY_HEADER *pHeader,
 uint16_t *pusEntries);

Description:

The ESI EEPROM data of an EtherCAT slave is organized as a mandatory area with a fixed
size followed by additional data subdivided into categories with a fixed sized mandatory
category and optional categories with fixed and dynamic sizes. This function returns a list of all
categories and sizes.

Arguments:

pEsiBuffer
[in] Pointer to the memory location with ESI EEPROM data.

ulSzBuffer
[in] Size of the ESI EEPROM data referenced by pEsiBuffer in bytes.

pHeader
[in/out] Pointer to an array of ECM_ESI_CATEGORY_HEADER structures to store the result.

pusEntries
[in/out] Pointer to a variable which has to be initialized with the number of entries in pHeader
before the call. After successful return the variable is set to the number of categories found in
the ESI EEPROM data referenced by pEsiBuffer.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:
N/A

Requirements:

N/A.

See also:

Description of the ECM_ESI_CATEGORY_HEADER structure and ecmGetEsiCategory().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 155 of 255

Function Description

4.14.3 ecmGetEsiCategory

The function returns the category information stored in the ESI EEPROM data.

Syntax:

ECM_EXPORT int ecmGetEsiCategory(char *pEsiBuffer, uint32_t ulSzBuffer,
 uint16_t usCategoryType, uint16_t usIdx,
 ECM_ESI_CATEGORY *pEsiCategory);

Description:

The ESI data of an EtherCAT slave is organized as a mandatory area with a fixed size followed
by additional data subdivided into categories with a fixed sized mandatory category and optional
categories with fixed and dynamic sizes. This function returns the data for a given category.

Arguments:

pEsiBuffer
[in] Pointer to the memory location with ESI EEPROM data.

ulSzBuffer
[in] Size of the ESI EEPROM data referenced by pEsiBuffer in bytes.

usCategoryType
[in] ESI category type. See table 20 for a list of supported types.

usIdx
[in] Index of entry within the ESI EEPROM category. The categories with FMMU, SM, PDO
and string data usually contain more than one entry. For these category types this parameter
defines the requested entry for all other categories this parameter is ignored. The first
element in the categories FMMU, SM and PDO is indexed with 0, the first element in the
string repository with 1.

pEsiBuffer
[in/out] Pointer to the memory location to store the category data.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8. If a category is not present in the EEPROM ESI data ECM_E_NOT_FOUND is returned.
If the category exists but does not contain as many entries as defined with usIdx
ECM_E_INVALID_INDEX is returned.

Usage:
This function is often called with the category list returned by ecmGetEsiCategoryList(). To get
all entries of a category the function has to be called with incrementing values for usIdx until
ECM_E_INVALID_INDEX is returned. If a category has an indexed reference to the string
repository, this index can be used directly to get the related string.

Requirements:

N/A.

See also:

Description of the ECM_ESI_CATEGORY structure and ecmGetEsiCategoryList().

Page 156 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.15 Portability
This section describes functions which help writing the application in a portable way.

4.15.1 ecmBusyWait

The function performs a busy wait.

Syntax:

ECM_EXPORT int ecmBusyWait(uint32_t usec);

Description:

The function performs a delay for the given number of microseconds without yielding the CPU.

Arguments:

usec
[in] Number of microseconds to busy wait.

Remark;

The implementation of this function is not based on OS specific mechanisms but is based on
the high resolution counter.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 157 of 255

Function Description

4.15.2 ecmCpuToLe

The function performs an endianness data conversion from little endian byte format.

Syntax:

ECM_EXPORT int ecmCpuToLe(void *pDest, const void *pSrc,
 const uint8_t *pDesc);

Description:

The process data and the virtual variables are stored in little endian format in the process
image. This function is intended to convert data from host byte order into little endian and vice
versa based on a given conversion descriptor. The descriptor is a byte string which defines the
data structure as a copy vector with the length of each element terminated by a 0. On a little
endian architecture the result is just a copy of the data.

Arguments:

pDest
[in] Pointer to the memory location to store the converted data.

pSrc
[in] Pointer to the memory location with the data to convert.

pDesc
[in] Pointer to the memory location with the conversion descriptor.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Example: To convert the reply reading the 12 byte of the ESC Information Register Area to little
endian you have to define this copy vector: "\x01\x01\x02\x01\x01\x01\x01\x04\0".

typedef struct _ECM_ESC_INFORMATION {
 uint8_t Type;
 uint8_t Revision;
 uint16_t Build;
 uint8_t NumFMMU;
 uint8_t NumSM;
 uint8_t RamSize;
 uint8_t PortDescription;
 uint32_t Features;
} ECM_ESC_INFORMATION, *PECM_ESC_INFORMATION

Requirements:

The memory locations referenced by pDest and pSrc must not overlap.

See also:

The endianness of the target CPU architecture can be determined with ecmGetVersion().

Page 158 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.15.3 ecmGetClockCycles

Return current value of the high resolution counter.

Syntax:

ECM_EXPORT int ecmGetClockCycles(uint64_t *pullCcyles);

Description:

Return the current value of a high resolution counter. The frequency of the clock tick was
returned in ECM_LIB_INIT during library initialization.

Arguments:

pullCycles
[in] Reference to a memory location to store the current value of the high resolution counter.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Can be used to measure the execution time of a section of code especially as code
instrumentation in combination with ecmUpdateProfilingData().

Requirements:

N/A.

See also:

ecmUpdateProfilingData() and ECM_LIB_INIT.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 159 of 255

Function Description

4.15.4 ecmSleep

Suspends the execution of the current thread.

Syntax:

ECM_EXPORT void ecmSleep(uint32_t ulTimeout);

Description:

Suspends the execution of the current thread until the time-out interval elapses in an operating
system independent way.

Arguments:

ulTimeout
[in] The time interval in milliseconds for which execution is to be suspended.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

N/A.

Requirements:

N/A.

See also:

N/A.

Page 160 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.16 Miscellaneous
This section describes functions which are not covered by one of the other categories.

4.16.1 ecmDcToUnixTime

The function converts a DC timestamp into a UNIX timestamp.

Syntax:

ECM_EXPORT int ecmDcToUnixTime(uint64_t ullDcTime, int64_t *pllUnixTime,
 uint32_t *pulRemainderNs);

Description:

DC timestamps have a different resolution and epoch than UNIX timestamps which are required
as argument for the date and time functions in the standard library of the C programming
language defined in the header <time.h>. This function returns the UNIX timestamp (in
seconds) and the remainder in nanoseconds for a given DC timestamp.

Arguments:

ullDcTime
[in] Time counted in nanoseconds since DC epoch.

pllUnixTimestamp
[in/out] Pointer to the memory location to store the time counted in seconds since UNIX time
epoch.

pulRemainderNs
[in/out] Pointer to the memory location to store the remainder in nanoseconds.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Remark:

The UNIX time is returned as a 64-bit signed value which can simply be casted to the time_t
type of the target platform defined in <time.h> for further processing.

See also:

N/A

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 161 of 255

Function Description

4.16.2 ecmFormatError

The function returns an error message string corresponding to a given error number and type.

Syntax:

ECM_EXPORT int ecmFormatError(int error, uint32_t type, char *pszBuf,
 uint32_t ulBufsize);

Description:

The function returns a zero terminated error message string for a given error code and type. If
the numerical value is invalid an error is returned and the message contains the numerical value
in hexadecimal format. If the error message exceeds the application provided buffer size the
message is truncated.

Arguments:

error
[in] Error code returned by an API call described in chapter 8.

type
[in] The following error types/categories are supported:

ECM_ERROR_FORMAT_LONG – Return value as error message.
ECM_ERROR_FORMAT_SHORT – Return value as symbolic error descriptor as string.
ECM_ERROR_AL_STATUS – AL status code as error message.
ECM_ERROR_COE_ABORT_CODE – CoE abort code as error message.
ECM_ERROR_COE_EMCY_CODE – CoE emergency code as error message.
ECM_ERROR_FOE_ERROR_CODE – FoE error code as error message.
ECM_ERROR_SOE_ERROR_CODE – SoE error code as error message.

pszBuf
[in] Pointer to the memory location to store the error message string.

ulBufsize
[in] Size of pszBuf in bytes.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:

Example: If the application passes the numerical value for ECM_E_INVALID_PARAMTER the string
“Invalid parameter” is returned for ECM_ERROR_FORMAT_LONG or the string
“ECM_E_INVALID_PARAMETER” for ECM_ERROR_FORMAT_SHORT.

Requirements:

N/A.

See also:

N/A.

Page 162 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.16.3 ecmGetPrivatePtr

The function returns the private pointer which is linked to an object instance.

Syntax:

ECM_EXPORT int ecmGetPrivatePtr(ECM_HANDLE hnd, int iTag, void **ppPrivate);

Description:

The function returns the private pointer which can optionally be linked by an application to a
device, master or slave instance.

Arguments:

hnd
[in] Handle of a device, master or slave instance.

iTag
[in] Always set to 0.

ppPrivate
[in/out] Pointer to the memory location to store the private pointer.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Requirements:

N/A.

See also:

Description of ecmSetPrivatePtr().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 163 of 255

Function Description

4.16.4 ecmSetPrivatePtr

The function sets the private pointer which is linked to an object instance.

Syntax:

ECM_EXPORT int ecmSetPrivatePtr(ECM_HANDLE hnd, int iTag, void *pPrivate);

Description:

The function links an opaque pointer which refers to private application data to a device, master
or slave instance. The data which is referenced by the pointer has to be allocated and freed
privately.

Arguments:

hnd
[in] Handle of a device, master or slave instance.

iTag
[in] Always set to 0.

ppPrivate
[in] Private pointer.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Requirements:

N/A.

See also:

Description of ecmGetPrivatePtr().

Page 164 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.17 Remote Access Support
This section describes functions to control and configure the remote access support of the
EtherCAT master which can be used by external tools (e.g. the esd EtherCAT Workbench [9]).

4.17.1 ecmStartRemotingServer

Enable the remote access.

Syntax:

ECM_EXPORT int ecmStartRemotingServer(char *pszChannelDesc,
 uint32_t ulFlags);

Description:

An application has to call this function if the master should be configured to allow access from a
remote client (see chapter 3.13). For the remote access in Control Mode the call will block and
will not return until the application calls ecmStopRemotingServer() (from another thread). For
the remote access in Monitoring Mode the call will return after a separate thread for the remote
access is started which is terminated if the application calls ecmStopRemotingServer(). In the
latter case a remote access is only possible after the master instance is attached or is no longer
possible after the master instance is detached.

Arguments:

pszChannel
[in] Descriptor for the channel which should be used for remote control. At the moment only a
descriptor with the format “Stream:Addr@Port” is supported which creates a TCP/IP
connection on the interface with the IP Addr on port Port.

ulFlags
[in] If set to ECM_FLAG_REMOTE_CONTROL_MODE the remote access is started in the Control
Mode if set to ECM_FLAG_REMOTE_MONITORING_MODE the remote access is started in
Monitoring Mode. The upper MSW (bit 16..31) of this parameter is used to define the priority
of the thread which is started to allow remote access in Monitoring Mode. You should set a
platform specific priority with the help of the ECM_SET_REMOTE_SERVER_PRIO macro.

Attention: If you do not provide a thread priority in Monitoring Mode the call
might return with an error as some systems fail to start a thread with the priority
set to 0. This does not affect the Control Mode as the remote server runs in this
case with the priority of the caller.

The bits 8..15 of this parameter is used to define a watchdog timeout in seconds after which
an established remote connection without activity is reset by the server. You should set this
watchdog timeout with the help of the ECM_SETUP_REMOTE_WATCHDOG macro.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 165 of 255

Function Description

Usage:
The function has to be called if the esd EtherCAT Workbench [9] should be connected to control
and/or monitor the remote target.

Requirements:

Support for the Remote Mode (Feature ECM_FEATURE_REMOTING).

See also:

Description of ecmStopRemotingServer(), ecmAttachMaster(), ecmDetachMaster()

Page 166 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.17.2 ecmStopRemotingServer

Stop the EtherCAT master remote access.

Syntax:

ECM_EXPORT int ecmStopRemotingServer(void);

Description:

An application has to stop the remote access to the EtherCAT master. In Control Mode this has
to be called from another thread and in Monitor Mode this terminates the thread which handles
the remote access.

Arguments:

N/A

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Usage:
Stop remote access support.

Requirements:

Support for the Remote Mode (Feature ECM_FEATURE_REMOTING).

See also:

Description of ecmStartRemotingServer().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 167 of 255

Function Description

4.18 Cleanup
This section describes the functions which free allocated resources.

4.18.1 ecmDeleteMaster

Free all resources of a master instance.

Syntax:

ECM_EXPORT int ecmDeleteMaster(ECM_HANDLE hndMaster);

Description:

The function frees all resources of a master instance and its slave instances which are created
while the ENI file is processed with ecmReadConfiguration(). To free the resources it is
necessary that the master instance is detached from it's device instance.

Arguments:

hndMaster
[in] Handle of the master instance.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Requirements:

The master instance has to be detached from the device instance.

See also:

Description of ecmReadConfiguration() and ecmDetachMaster().

This section describes the functions which free allocated resources.

Page 168 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Function Description

4.18.2 ecmDeleteDevice

Free all resources of a device instance.

Syntax:

ECM_EXPORT int ecmDeleteDevice(ECM_HANDLE hndDevice);

Description:

The function frees all resources of a device instance which is created while the ENI file is
processed with ecmReadConfiguration(). To free the resources it is necessary that no master
instance is attached to this device instance. If cyclic worker tasks have been started with
ecmProcessControl() they will be terminated.

Arguments:

hndDevice
[in] Handle of the device instance.

Return Values:

On success, the function returns ECM_SUCCESS. On error, one of the error codes described in
chapter 8.

Requirements:

No master instance is allowed to be attached to this device instance.

See also:

Description of ecmReadConfiguration(), ecmProcessControl() and ecmDeleteMaster().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 169 of 255

Macros

5. Macros
This chapter describes the macros in the header <ecm.h>. Using them simplifies writing the
application and makes the code more readable.

5.1 ECM_CHANGE_STATION_ALIAS
Change the station alias of a slave.

Syntax:

#define ECM_CHANGE_STATION_ALIAS(hndMaster, addr, alias, pResult)

Description:

This macro creates a sequence of asynchronous requests to change the station alias address
of an EtherCAT slave.

Arguments:

hndMaster
Handle of the master instance.

addr
Slave address. See parameter iAddr of ecmWriteEeprom() for details.

alias
The new alias address.

pResult
Address of a variable of type int to store the result.

5.2 ECM_COE_ENTRY_DEFAULT_VALUE
Return a pointer to the (optional) member ucDefaultValue of a ECM_COE_ENTRY_DESCRIPTION
structure.

Syntax:

#define ECM_COE_ENTRY_DEFAULT_VALUE(pEntry)

Description:

This macro returns a pointer to the (optional) member ucDefaultValue in the variable part of an
initialized ECM_COE_ENTRY_DESCRIPTION structure or NULL if the member does not exist. The
data size referenced by the pointer depends on the data type of the object dictionary entry.

Arguments:

pEntry
Reference to an initialized ECM_COE_ENTRY_DESCRIPTION structure.

Page 170 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Macros

5.3 ECM_COE_ENTRY_MAX_VALUE
Return a pointer to the (optional) member ucMaxValue of a ECM_COE_ENTRY_DESCRIPTION
structure.

Syntax:

#define ECM_COE_ENTRY_MAX_VALUE(pEntry)

Description:

This macro returns a pointer to the (optional) member ucMaxValue in the variable part of an
initialized ECM_COE_ENTRY_DESCRIPTION structure or NULL if the member does not exist. The
data size referenced by the pointer depends on the data type of the object dictionary entry.

Arguments:

pEntry
Reference to an initialized ECM_COE_ENTRY_DESCRIPTION structure.

5.4 ECM_COE_ENTRY_MIN_VALUE
Return a pointer to the (optional) member ucMinValue of a ECM_COE_ENTRY_DESCRIPTION
structure.

Syntax:

#define ECM_COE_ENTRY_MIN_VALUE(pEntry)

Description:

This macro returns a pointer to the (optional) member ucMinValue in the variable part of an
initialized ECM_COE_ENTRY_DESCRIPTION structure or NULL if the member does not exist. The
data size referenced by the pointer depends on the data type of the object dictionary entry.

Arguments:

pEntry
Reference to an initialized ECM_COE_ENTRY_DESCRIPTION structure.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 171 of 255

Macros

5.5 ECM_COE_ENTRY_NAME
Return a pointer to the member szName of a ECM_COE_ENTRY_DESCRIPTION structure.

Syntax:

#define ECM_COE_ENTRY_NAME(pEntry)

Description:

This macro returns a pointer to the member szName in the variable part of an initialized
ECM_COE_ENTRY_DESCRIPTION structure.

Arguments:

pEntry
Reference to an initialized ECM_COE_ENTRY_DESCRIPTION structure.

5.6 ECM_COE_ENTRY_UNIT
Return a pointer to the (optional) member ulUnitType of a ECM_COE_ENTRY_DESCRIPTION structure.

Syntax:

#define ECM_COE_ENTRY_UNIT(pEntry)

Description:

This macro returns a pointer to the (optional) member ulUnitType in the variable part of an
initialized ECM_COE_ENTRY_DESCRIPTION structure or NULL f the member does not exist.

Arguments:

pEntry
Reference to an initialized ECM_COE_ENTRY_DESCRIPTION structure.

Page 172 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Macros

5.7 ECM_EEPROM_TO_ECAT
Switch EEPROM access from PDI to EtherCAT.

Syntax:

#define ECM_EEPROM_TO_ECAT(hndMaster, addr, pResult)

Description:

This macro creates an asynchronous request to force the EEPROM access from PDI to
EtherCAT.

Arguments:

hndMaster
Handle of the master instance.

addr
Slave address. See parameter iAddr of ecmWriteEeprom() for details.

pResult
Address of a variable of type int to store the result.

5.8 ECM_FOE_DATA_BYTES
Return the number of data bytes requested in a FoE callback handler.

Syntax:

#define ECM_FOE_DATA_BYTES(x)

Description:

This macro masks out additional meta information bits in the size parameter of a FoE callback

Arguments:

s
Size indication.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 173 of 255

Macros

5.9 ECM_FOE_RESEND_REQUESTED
Check if data has to be retransmitted in a FoE callback handler.

Syntax:

#define ECM_FOE_RESEND_REQUESTED(x)

Description:

Return a value different to 0 if data has to be retransmitted which is indicated as additional meta
information bit in the size parameter of a FoE callback

Arguments:

s
Size indication.

5.10 ECM_GET_CAP_FRM_FLAGS
Return the origin of a captured transmitted or received Ethernet frame.

Syntax:

#define ECM_GET_CAP_FRM_FLAGS(ulCtx)

Description:

This macro extracts the frame origin (Received/Transmitted frame, Primary/Redundant NIC,
Device) from ulCtx. See description of member ucCapFilter of struct ECM_SLAVE_DESC for details
of this value.

Arguments:

ulCtx
Context of the captured Ethernet frame.

5.11 ECM_GET_CAP_FRM_LENGTH
Return the length of a captured transmitted or received Ethernet frame.

Syntax:

#define ECM_GET_CAP_FRM_LENGTH(ulCtx)

Description:

This macro extracts the length in bytes from ulCtx.

Arguments:

ulCtx
Context of the captured Ethernet frame.

Page 174 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Macros

5.12 ECM_GET_PORT_PHYSICS
Return the physics of an ESC port.

Syntax:

#define ECM_GET_PORT_PHYSICS(ucPhys, port)

Description:

This macro extracts a ESC port physics value for the member ucPhysics of the
ECM_SLAVE_DESC structure.

Arguments:

ucPhys
Physics of up to 4 ESC ports.

port
ESC port number 0 – 3.

5.13 ECM_INIT
Initialize member of data structures to zero.

Syntax:

#define ECM_INIT(data)

Description:

This macro initializes all member of a data structure to zero. It should be used for every data
structure which is passed to a function before its members are initialized by the application

Arguments:

data
Data structure to initialize.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 175 of 255

Macros

5.14 ECM_INIT_MAC
Initialize an Ethernet address.

Syntax:

#define ECM_INIT_MAC(d, s)

Description:

This macro initializes an Ethernet address of type ECM_ETHERNET_ADDRESS.

Arguments:

d
Destination address

s
Source address

5.15 ECM_INIT_BROADCAST_MAC
Initialize an Ethernet address with the Ethernet broadcast address.

Syntax:

#define ECM_INIT_BROADCAST_MAC(d)

Description:

This macro initializes an Ethernet address of type ECM_ETHERNET_ADDRESS with the Ethernet
broadcast address.

Arguments:

d
Address to initialize.

Page 176 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Macros

5.16 ECM_RELOAD_EEPROM
Force reloading the EEPROM.

Syntax:

#define ECM_RELOAD_EEPROM(hndMaster, addr, pResult)

Description:

This macro creates an asynchronous request to force the EEPROM to be reloaded.

Arguments:

hndMaster
Handle of the master instance.

addr
Slave address. See parameter iAddr of ecmWriteEeprom() for details.

pResult
Address of a variable of type int to store the result.

5.17 ECM_SET_REMOTE_SERVER_PRIO
Configure the (platform specific) priority of the remote server thread.

Syntax:

#define ECM_SET_REMOTE_SERVER_PRIO(flags, prio)

Description:

This macro configures the (platform specific) priority of the remote server thread.

Arguments:

flags
The ulFlags field which is passed to ecmStartRemotingServer().

prio
A 16-bit (platform specific) priority value.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 177 of 255

Macros

5.18 ECM_SETUP_REMOTE_WATCHDOG
Configure a watchdog for the remote connection.

Syntax:

#define ECM_SETUP_REMOTE_WATCHDOG(flags, timeout)

Description:

This macro configures a watchdog after which a connection without remote client activity is
disconnected by the server.

Arguments:

flags
The ulFlags field which is passed to ecmStartRemotingServer().

timeout
Watchdog timeout in seconds.

5.19 ECM_SOE_ATTR_CONVERSION_FACTOR
Return the SoE conversion factor of a data element.

Syntax:

#define ECM_SOE_ATTR_CONVERSION_FACTOR(attr)

Description:

This macro extracts the SoE conversion factor from the SoE attributes of a data element.

Arguments:

attr
SoE data element attribute.

Page 178 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Macros

5.20 ECM_SOE_ATTR_DATA_LENGTH
Return the data length of an SoE data element.

Syntax:

#define ECM_SOE_ATTR_DATA_LENGTH(attr)

Description:

This macro extracts the data length from the SoE attributes of a data element.

Arguments:

attr
SoE data element attribute.

5.21 ECM_SOE_ATTR_DATA_TYPE
Return the data type of an SoE data element.

Syntax:

#define ECM_SOE_ATTR_DATA_TYPE(attr)

Description:

This macro extracts the data type from the SoE attributes of a data element.

Arguments:

attr
SoE data element attribute.

5.22 ECM_SOE_ATTR_DECIMAL_PLACES
Return the number of decimal places of an SoE data element.

Syntax:

#define ECM_SOE_ATTR_DECIMAL_PLACES(attr)

Description:

This macro extracts the number of decimal places from the SoE attributes of a data element.

Arguments:

attr
SoE data element attribute.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 179 of 255

Macros

5.23 ECM_SOE_GET_DRV_NO
Return the SoE drive number.

Syntax:

#define ECM_SOE_GET_DRV_NO(cmd)

Description:

This macro extracts the drive number from an SoE command.

Arguments:

cmd
SoE command in structure ECM_MBOX_SPEC.

5.24 ECM_SOE_SET_DRV_NO
Set the drive number in an SoE command.

Syntax:

#define ECM_SOE_SET_DRV_NO(cmd, dn)

Description:

This macro sets the drive number of an SoE command.

Arguments:

cmd
SoE command in structure ECM_MBOX_SPEC.

dn
Drive number in the range 0..7.

5.25 ECM_VAR_DT_IS_ENUM
Check if numerical data type value is an ENUM.

Syntax:

#define ECM_VAR_DT_IS_ENUM(usType)

Description:

This macro returns 0 if the value of usType is in the numerical range reserved for ENUMs
(0x0800 – 0xFFF) by the ETG.1020.

Arguments:

usType
Data type value.

Page 180 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

6. Callback interface
The EtherCAT master implements a callback interface as a fast communication mechanism
between the stack and the application to indicate events or to request information. The callback
function must have a specific signature. The prototypes of these functions are described in this
chapter.

Caution: Any application defined callback handler is running in the
context of the EtherCAT stack. For this reason a callback handler is not
allowed to block or to perform time consuming operations. Otherwise the
timing of EtherCAT master stack can be seriously influenced.

6.1 Event Callback Handler
The callback handler for EtherCAT master events is registered together with an application specific
event filter with ecmInitLibrary() described in section 4.1.2. The application defined handler has to
follow the syntax below:

Syntax:

typedef int (*PFN_ECM_EVENT)(ECM_EVENT *pEcmEvent);

The handler gets a reference to an event object.

typedef struct _ECM_EVENT {
 uint32_t ulEvent; /* Event type */
 ECM_HANDLE hnd; /* Event specific handle or NULL */
 uint32_t ulArg1; /* Event type dependent 1st arg */
 uint32_t ulArg2; /* Event type dependent 2nd arg */
} ECM_EVENT, *PECM_EVENT;

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 181 of 255

Callback interface

Arguments:

ulEvent
[in] Specifies the event type as bit value according to the table below.

Event Description

ECM_EVENT_CFG Indication of events parsing the ENI configuration file.

ECM_EVENT_LOCAL Indication of general runtime and/or communication errors.

ECM_EVENT_WCNT Indication of cyclic frames working counter mismatches.

ECM_EVENT_STATE_CHANGE Indication of master state change events.

ECM_EVENT_SLV Indication of slave state events.

ECM_EVENT_COE_EMCY Indication of CoE emergency messages.

ECM_EVENT_SOE Indication of an SoE notification caused by a procedure call.

Table 10: Event Types

hnd
[in] Specifies an event type specific handle or NULL if not applicable.

ulArg1
[in] Specifies an event type specific 1st argument.

ulArg2
[in] Specifies an event type specific 2nd argument.

Description:

If the master stack has to indicate an event to the application it calls the registered callback
handler with a reference to an initialized event object. It is the responsibility of the callback
handler to identify the event type and to handle each one accordingly.

Page 182 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

Configuration events:
A configuration event is indicated to the application if any error occurs parsing an ENI
configuration or as information during validation of the configuration data.

ECM_EVENT_CFG Error parsing the ENI file

hnd ulArg1 ulArg2

N/A Error reason (Table 11). ENI file line number an error was detected or
additional details to an information.

Error Reason
ECM_EVENT_CFG_INTERNAL Internal error condition parsing the ENI file

ECM_EVENT_CFG_MEMORY Out of memory parsing the ENI file.

ECM_EVENT_CFG_IO I/O error parsing the ENI file.

ECM_EVENT_CFG_SYNTAX Syntax error parsing the ENI file. If the flag
ECM_FLAG_CFG_ENI_ERR_REASON is set the MSB of ulArg2
will contain the parser error code defined as
ECM_ENI_ERROR_XXX and the remaining three bytes will
contain the line number.

ECM_EVENT_CFG_DISCARD Warning about an unsupported section in the ENI file

ECM_EVENT_CFG_PARAMETER Invalid parameter for data in the ENI file.

ECM_EVENT_CFG_INCOMPLETE Skipped section because of mandatory missing entries in the
ENI file

ECM_EVENT_CFG_CYCLE_TIME Cycle or shift time configuration mismatch in the ENI file.

Table 11: Configuration Events

An ECM_EVENT_CFG_INCOMPLETE does not mean that the configuration is not
working. There are several sections in an ENI file which do not need to be
evaluated by a master to configure the EtherCAT network.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 183 of 255

Callback interface

Local or communication events:
The local or communication events are indicated to the application if the common slave state is
not operational, a communication or any internal error occurs. The bitmask in the LSW of event
ulArg1, marked yellow in table 12, is identical to the virtual variable DevState (see chapter
3.8.4). The error condition can be detected either on the device (D) or the master (M) layer.

The application will receive the current event reason mask and a copy of the mask from the
previous indication which can be used to figure out which events are new, which are still
pending and which are gone.

ECM_EVENT_LOCAL Internal or communication error

hnd ulArg1 ulArg2

Handle of master
instance

Bitmask with (current) error
reason(s) (Table 12).

Bitmask with error reason(s) of the
previous indication (Table 12).

Error Layer Reason
ECM_LOCAL_STATE_LINK_ERROR_NIC1 D Link lost for primary network interface.

ECM_LOCAL_STATE_LINK_ERROR_NIC2 D Link lost for redundant network interface.

ECM_LOCAL_STATE_LOST_FRAME M Cyclic frame lost.

ECM_LOCAL_STATE_ERROR_RESOURCE D Out of internal transmission objects.

ECM_LOCAL_STATE_WATCHDOG D Watchdog triggered.

ECM_LOCAL_STATE_ERROR_ADAPTER D Error initializing network adapter.

ECM_LOCAL_STATE_DEVICE_INIT M At least one slave in state 'INIT'

ECM_LOCAL_STATE_DEVICE_PREOP M At least one slave in state 'PREOP'

ECM_LOCAL_STATE_DEVICE_SAFE_OP M At least one slave in state 'SAFEOP'

ECM_LOCAL_STATE_DEVICE_ERROR M At least one slave indicates an error.

ECM_LOCAL_STATE_DC_OUT_OF_SYNC M Distributed Clock out of sync.

ECM_LOCAL_STATE_ERROR_WCNT M At least one WKC mismatch in cyclic frames.

ECM_LOCAL_STATE_NO_DATA_NIC1 D No data on primary network interface.

ECM_LOCAL_STATE_NO_DATA_NIC2 D No data on redundant network interface.

ECM_LOCAL_STATE_TRIAL_EXPIRED D/M The trial period of the demo version is expired.

ECM_LOCAL_STATE_CTIME_EXCEEDED D The configured cycle time was exceeded.

Table 12: Local and Communication Events

Page 184 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

Working counter mismatch events:
The working counter mismatch events are indicated to the application if a working counter of an
EtherCAT command in a cyclic frame differs from the expected value. The bitmask in the LSW
of event ulArg1 is identical to the virtual variable FrmXWcState (see chapter 3.8.4).

ECM_EVENT_WCNT Working counter mismatch for command in cyclic frame

hnd ulArg1 ulArg2

Handle of master instance Bitmask representing the
EtherCAT commands within the
cyclic frame.

Number of cyclic frame
counting from 0.

Example:
If ulArg1 is 0x00000012 and ulArg2 is 0 the working counter of command 2 and 5 of the first
cyclic frame of the configuration differ from the expected values.

Master state change events:
The master state change events are indicated to the application if the EtherCAT state of the
master has changed.

ECM_EVENT_STATE_CHANGE Master state change event

hnd ulArg1 ulArg2

Handle of master instance New master state (Table 6). N/A

CoE Emergency events:
The CoE emergency events are indicated if a CoE Emergency message is received from a
complex slave. If the configuration flag ECM_FLAG_SLAVE_AUTOINC_ADR is defined for the slave
the auto increment address is used as 2nd parameter instead of the default physical address.

ECM_EVENT_COE_EMCY CoE emergency event

hnd ulArg1 ulArg2

Handle of the slave instance Bit 0..7: CoE error register.
Bit 8..23: CoE error code.
Bit 24..31: Reserved.

Bit 0..15: Slave address
Bit 16..31: Reserved

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 185 of 255

Callback interface

Slave state change events:

This event is indicated every time the master detects a change in the state of a slave. The LSW
of event ulArg1, marked yellow in table 13 and 14, is identical to the virtual variable
InfoData.State (see chapter 3.8.4). The bits 0..3 contain the actual state of the slave's ESM
(reflecting the ESC AL status register) according to table 13. All other bits belong to the bitmask
defined in table 14. If the configuration flag ECM_FLAG_SLAVE_AUTOINC_ADR is defined for the
slave the auto increment address is used as 2nd parameter instead of the default physical
address.

ECM_EVENT_SLV Slave state change event

hnd ulArg1 ulArg2

Handle of slave instance Slave state Bit 0..15: Slave address
Bit 16..31: Reserved

Slave State Value Description
ECM_ESC_AL_STATUS_INIT 0x01 Slave is in state Init

ECM_ESC_AL_STATUS_PREOP 0x02 Slave is in state Pre-Operational

ECM_ESC_AL_STATUS_BOOTSTRAP 0x03 Slave is in state Bootstrap

ECM_ESC_AL_STATUS_SAFEOP 0x04 Slave is in state Safe-Operational

ECM_ESC_AL_STATUS_OP 0x08 Slave is in state Operational

Table 13: EtherCAT slave device state

Error Reason
ECM_ESC_AL_STATUS_ERROR Device failed to enter a requested state.

ECM_EVENT_SLV_INIT_ERROR General error to indicate that a command sent to
the slave in the course of requesting a state
change was not processed correctly or timely.
This happens usually during network initialization
but is also indicated for any failed state change
during operation.

ECM_EVENT_SLV_ID_ERROR ID verification error (Special case of
ECM_EVENT_SLV_INIT_ERROR)

ECM_EVENT_SLV_NOT_PRESENT Slave not present.

ECM_EVENT_SLV_ERROR_LINK Link error detected.

ECM_EVENT_SLV_MISSING_LINK Missing link detected.

ECM_EVENT_SLV_UNEXPECTED_LINK Unexpected link detected.

ECM_EVENT_SLV_COMM_PORT_A Communication on port 0 (port A) established.

ECM_EVENT_SLV_COMM_PORT_B Communication on port 1 (port B) established.

ECM_EVENT_SLV_COMM_PORT_C Communication on port 2 (port C) established.

ECM_EVENT_SLV_COMM_PORT_D Communication on port 3 (port D) established.

Table 14: Slave state change events

SoE events:

Page 186 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

The SoE events are indicated if an SoE Notification (NFC) command is received
asynchronously as a result of triggering an SoE procedure.

ECM_EVENT_SOE SoE event

hnd ulArg1 ulArg2

Handle of the slave instance Bit 0..15: SoE IDN
Bit 16..23: SoE command
Bit 24..31: Reserved.

Bit 0..3: Procedure command state
Bit 4..7: Reserved
Bit 8: Validity of operation data.
Bit 9..31: Reserved

Invalid operation data of a procedure command is indicated if ECM_SOE_PROC_DATA_INVALID
(bit 8) is set.

Procedure Command State Value Description
ECM_SOE_PROC_IDLE 0x00 Procedure not activated

ECM_SOE_PROC_COMPLETED 0x03 Procedure command executed correctly.

ECM_SOE_PROC_PROCESSING 0x07 Processing of procedure command in progress.

ECM_SOE_PROC_ERROR 0x0F Execution of procedure command failed.

Table 15: EtherCAT SoE Procedure Command State

Remote Access events:

The Remote Access events are indicated if a remote client

ECM_EVENT_REMOTE Remote Access event

hnd ulArg1 ulArg2

Handle of the master instance Event reason N/A

Indication Description
ECM_EVENT_REM_CONNECT Remote client connected

ECM_EVENT_REM_DISCONNECT Remote client disconnected

Table 16: Remote Access Events

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 187 of 255

Callback interface

6.2 Cyclic Data Handler
This is the event handler called with every cyclic data exchange triggered by the cyclic worker.
They are registered with ecmProcessControl(). With every cycle up to three handler can be
called:

1. A handler to indicate the start of a new cycle.

2. A handler after ecmProcessOutputData or ecmProcessInputData() is completed.

3. A handler to indicate the end of the cycle.

The application defined handlers have to follow the syntax below:

Syntax:

typedef int (*PFN_ECM_HANDLER)(ECM_HANDLE hnd, int error);

The handler gets a reference to the device object to distinguish between different device
instances and the status of the I/O cycle.

If the stack is configured for multi master mode this callback affects all
master instances which are attached to this device instance.

6.3 Link State Handler
The EtherCAT master calls the handler cyclically to check the current link or media connect state of
the primary and/or redundant network adapter. The handler is registered with ecmInitLibrary().
The handler has to return if the current link state of the network adapter is connected,
disconnected or unknown as ECM_LINK_STATE. The application defined handler has to follow the
syntax below:

Syntax:

typedef ECM_LINK_STATE (*PFN_ECM_LINK_STATE)(ECM_HANDLE hDevice,
 ECM_NIC_TYPE nic);

The handler gets a reference to the device object to distinguish between different device
instances and to the network adapter (primary or redundant).

This callback handler is only necessary if the HAL implementation is not capable to
detect the current link state because the OS does not provide a hardware independent
API to return this information. Most OS have this possibility and the application does
not need to register this handler.

Page 188 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

6.4 Adjust Master Clock Handler
The EtherCAT master calls the handler cyclically in DC mode to indicate the current deviation
between the local Master Time and the System Time of the DC Reference Clock. The handler is
registered with ecmInitLibrary() and its return value is currently ignored but should be set by the
application to ECM_SUCCESS.

Syntax:

typedef int (*PFN_ECM_ADJUST_CLOCK)(int32_t lDeviation, uint32_t ulPeriod);

The 1st parameter is the deviation between the local Master Time and the System Time of the
DC Reference Clock in nanoseconds (see chapter 3.11.5). A positive value means that the local
clock runs faster than the DC reference clock and has to be slowed down, a negative value
means that the local clock runs slower than DC reference clock and has to be

The 2nd parameter is the period this handler is called in microseconds which is the product of the
cycle time multiplied with the value defined in the member variable usCycleDcCtrl of
ECM_DEVICE_DESC.

This callback handler is only required if the HAL implementation is not capable to
adjust the local clock because the platform does not provide a common API to do so
(in which case the feature flag is not set) or if the application wants to override the
internal control algorithm to adjust the system clock.

6.5 High Resolution Counter Handler
The EtherCAT master calls the handler to capture a high resolution counter. The handler is
registered with ecmInitLibrary() and has to return a revolving 64-bit value.

The application defined handler has to follow the syntax below:

Syntax:

typedef uint64_t (*PFN_ECM_CLOCK_CYCLES)(void);

This callback handler is only necessary if the HAL implementation is not capable to
capture such a counter because the OS does not provide a hardware independent
API to return this information. Most OS have this possibility and the application does
not need to register this handler.
If the application has to register such a handler it has to pass the frequency of the
clock tick with the ecmInitLibrary() call, too.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 189 of 255

Callback interface

6.6 Log Message Handler
The EtherCAT master calls the handler to pass a trace message to the application. The handler is
registered with ecmInitLibrary().

The application defined handler has to follow the syntax below:

Syntax:

typedef void (*PFN_ECM_LOG_MSG)(const char *pszLogMsg);

This callback handler is only required to override the default implementation to log
trace messages and is only available in the debug build version of the EtherCAT
master.

6.7 Frame Capture Handler
The EtherCAT master calls the handler to pass a transmitted or received Ethernet frame to the
application.

The application defined handler has to follow the syntax below:

Syntax:

typedef void (*PFN_ECM_CAPTURE_FRM)(uint64_t ullTimestamp,
 uint32_t ulContext,
 const void * const pPacketData);

The parameter ullTimestamp is the transmission or reception timestamp.

The parameter ulContext contains the meta information of the frame which contains the data
size in bytes and the frame origin. The application should use the macros
ECM_GET_CAP_FRM_FLAGS and ECM_GET_CAP_FRM_LENGTH to return the frame size in
bytes and the flags of origin.

The parameter pPacketData is the reference to the Ethernet frame.

Page 190 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

6.8 FoE Handler
The EtherCAT master calls the FoE handler every time if the application should provide the next
block of FoE data (FoE download) for transmission or process a block of received data (FoE
upload). In both cases the EtherCAT master is the FoE client and the slave the FoE server.

6.8.1 FoE Download

The application defined handler has to follow the syntax below:

Syntax:

typedef int (*PFN_ECM_FOE_DOWNLOAD)(ECM_HANDLE hndSlave, uint8_t **ppData,
 uint16_t *pusSize);

The handler gets a reference to the slave device object to distinguish between different device
instances, a pointer to store the next block of data and the requested block size.

Arguments:

hndSlave
[in] Handle to the slave (FoE server) instance.

ppData
[in/out] Pointer to store the next block of FoE data which should be downloaded to the slave
(FoE server).

pusSize
[in] Requested block size which have to be stored at the memory referenced by *ppData in
bytes. Only the bits 0..11 contain the size. The bits 12..15 are reserved for meta data. To get
the raw request size use the macro ECM_FOE_DATA_BYTES.If the bit ECM_FOE_RESEND_DATA
is set which can be checked with the macro ECM_FOE_RESEND_REQUESTED the application has
to provide again the last block of data.

[out] Number of bytes stored in the memory referenced by *ppData. The last block of data is
indicated to the FoE server by returning less bytes than requested (which includes 0 bytes).

Remark:

The handler will be called to provide consecutive blocks of data or to provide the data of the
previous request again if the flag ECM_FOE_RESEND_DATA is set in parameter pusSize. The
offset management to the data has to be handled by the application.
If the callback handler is called with *pusSize set to 0 the FoE download is completed either
because all data is successfully transmitted or because of a communication error. In either case
the application can expect that this is the last time the handler is called for this FoE transfer.
The application is not called finally with *pusSize set to 0 if the FoE transfer is terminated by
returning a return value different to ECM_SUCCESS.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 191 of 255

Callback interface

Return Values:

On success, the callback should return ECM_SUCCESS. On error, one of the FoE error codes
described in chapter 8.2. Any return value different to ECM_SUCCESS is indicated to the FoE
server as the termination of the FoE transfer.

See also:

Description of ecmFoeDownload().

Page 192 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Callback interface

6.8.2 FoE Upload

The application defined handler has to follow the syntax below:

Syntax:

typedef int (*PFN_ECM_FOE_UPLOAD)(ECM_HANDLE hndSlave, uint8_t *pData,
 uint16_t *pusSize);

The handler gets a reference to the slave device object to distinguish between different device
instances, a pointer with a reference to the received data and the data size.

Arguments:

hndSlave
[in] Handle to the slave (FoE server) instance.

pData
[in/out] Pointer to the block of received data uploaded from the slave (FoE server).

pusSize
[in] Received block size in bytes which is stored at the memory referenced by *pData. To get
the raw received size use the macro ECM_FOE_DATA_BYTES.

Remark:

The handler will be called to process consecutive blocks of data. The offset management to the
data has to be handled by the application.
If the callback handler is called with *pusSize set to 0 the FoE download is completed either
because all data is successfully transmitted or because of a communication error. In either case
the application can expect that this is the last time the handler is called for this FoE transfer.
The application is not called finally with *pusSize set to 0 if the FoE transfer is terminated by
returning a return value different to ECM_SUCCESS.

Return Values:

On success, the callback should return ECM_SUCCESS. On error, one of the FoE error codes
described in chapter 8.2. Any return value different to ECM_SUCCESS is indicated to the FoE
server as the termination of the FoE transfer.

See also:

Description of ecmFoeUpload().

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 193 of 255

Data Types

7. Data Types
For reasons of cross-platform portability with respect to different CPU architectures and compilers
the EtherCAT master stack does not use the native standard integer data types of the C language.
Instead the data types in the header <stdint.h> are used, which defines various integer types
and related macros with size constraints.

Specifier Signing Bytes Range
int8_t Signed 1 −128...127
uint8_t Unsigned 1 0...255
int16_t Signed 2 −32,768...32767
uint16_t Unsigned 2 0...65535
int32_t Signed 4 −2,147,483,648...2,147,483,647
uint32_t Unsigned 4 0...4,294,967,295
int64_t Signed 8 −9,223,372,036,854,775,808...9,223,372,036,854,775,807
uint64_t Unsigned 8 0...18,446,744,073,709,551,615

These data types are part of the ISO/IEC 9899:1999 standard which is also commonly referred to
as C99 standard.

All Microsoft compilers are not C99 compatible an do support the <stdint.h>
header. For this reason the EtherCAT master comes with a free implementation
of this header in the folder /compatib/win32.

All data types defined by the EtherCAT master stack described in this chapter start with the prefix
ECM with respect to a clean namespace.

Page 194 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.1 Simple Data Types
This section describes the simple data types defined for the EtherCAT master stack in alphabetical
order.

7.1.1 ECM_COE_INFO_LIST_TYPE

This enumeration defines the available object dictionary (OD) list types that can be delivered in the
response to a CoE OD list request.

Syntax:

typedef enum
{
 ECM_LIST_TYPE_ALL = 1, /* All objects */
 ECM_LIST_TYPE_RXPDOMAP, /* RxPDO mappable objects */
 ECM_LIST_TYPE_TXPDOMAP, /* TxPDO mappable objects */
 ECM_LIST_TYPE_BACKUP, /* Objects to be stored for device replacement */
 ECM_LIST_TYPE_SETTINGS /* Startup parameter objects */
} ECM_COE_INFO_LIST_TYPE;

7.1.2 ECM_ETHERNET_ADDRESS

The type contains the Media Access Control (MAC) address for a network adapter. For Ethernet
interfaces this physical address is a unique identifier of 6 bytes, usually assigned by the hardware
vendor of the network adapter.

Syntax:

typedef struct _ECM_ETHERNET_ADDRESS
{
 uint8_t b[6];
} ECM_ETHERNET_ADDRESS, *PECMETHERNET_ADDRESS;

7.1.3 ECM_HANDLE

The type contains an opaque reference to an object of the EtherCAT master stack. A handle is the
input or output parameter of all functions requiring a context. As an input parameter the handle is
validated by the called function. If an EtherCAT master function destroys an object which is
referenced by a handle, the application may set this handle to ECM_INVALID_HANDLE afterwards to
assure this handle is not used unintentionally in further calls.

Syntax:

typedef void* ECM_HANDLE;

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 195 of 255

Data Types

7.1.4 ECM_LINK_STATE

This enumeration defines the current state of the network adapter link.

Syntax:

typedef enum
{
 ECM_LINK_STATE_CONNECTED, /* Connected */
 ECM_LINK_STATE_DISCONNECTED, /* Disconnected */
 ECM_LINK_STATE_UNKNOWN /* Unknown */
} ECM_LINK_STATE;

7.1.5 ECM_NIC_TYPE

This enumeration defines the role of the NIC (primary or redundant adapter) as array index in data
types or as argument in functions and callbacks, if the device instance is initialized to work with two
network adapters in cable redundancy mode.

Syntax:

typedef enum
{
 ECM_NIC_PRIMARY = 0, /* Primary NIC */
 ECM_NIC_REDUNDANT /* Redundant NIC */
} ECM_NIC_TYPE;

Page 196 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2 EtherCAT specific data types
This section describes the complex data types defined for the EtherCAT master stack in
alphabetical order.

Some of the complex data types have reserved members to allow future
extensions without changing the ABI. These members are left out in the following
descriptions for a better overview but have to be set to 0 if the data type is
passed as an argument to a function.

7.2.1 ECM_AOE_DEVICE_INFO

The ECM_AOE_DEVICE_INFO structure contains the name and the version number returned by an
AoE capable slave device.

Syntax:

typedef struct _ECM_AOE_DEVICE_INFO {
 uint8_t ucMajorVersion;
 uint8_t ucMinorVersion;
 uint16_t usBuildVersion;
 uint8_t ucDeviceName[16];
} ECM_AOE_DEVICE_INFO;

Members:

ucMajorVersion
Major version number.

ucMinorVersion
Minor version number.

usBuildVersion
Build version number.

ucDeviceName
Device name.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 197 of 255

Data Types

7.2.2 ECM_AOE_STATE

The ECM_AOE_STATE structure contains the state of an AoE capable slave device.

Syntax:

typedef struct _ECM_AOE_STATE {
 uint16_t usAdsState;
 uint16_t usDeviceState;
} ECM_AOE_STATE;

Members:

usAdsState
ADS status.

usDeviceState
Device status.

7.2.3 ECM_CFG_INIT

The ECM_CFG_INIT structure contains information to initialize the master based on an EtherCAT
Network Information (ENI) file.

Syntax:

typedef struct _ECM_CFG_INIT
{
 uint32_t flags; /* Flags of configuration */
 union {
 struct {
 const char *pszEniFile; /* Filename of ENI file */
 const char *pszArchiveFile; /* Filename of archive file */
 const char *pszPassword; /* (Optional) password of archive */
 } File;
 struct {
 const void *pAddress; /* Buffer with configuration data */
 size_t size; /* Size of buffer in bytes */
 const char *pszEniFile; /* Filename of ENI file in archive*/
 const char *pszPassword; /* (Optional) password of archive */
 } Buffer;
 } Config;
 ECM_DEVICE_DESC cfgDataDevice; /* Device configuration data */
 ECM_MASTER_DESC cfgDataMaster; /* Master configuration data */
} ECM_CFG_INIT, *PECM_CFG_INIT;

Members:

flags
Flags to define the format of the ENI file and to override aspects of the ENI configuration
data.

Flag Description
ECM_FLAG_CFG_PARSE_BUFFER This flag indicates that the ENI configuration is

stored in memory instead of a file and the struct
Buffer instead of the struct File of the union
Config is evaluated.

ECM_FLAG_CFG_COMPRESSED This flag indicates that the ENI configuration is
located in a ZIP/GZIP compressed archive. It can be

Page 198 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

Flag Description

combined with ECM_FLAG_CFG_PARSE_BUFFER.

ECM_FLAG_CFG_IGNORE_SRC_MAC Override the source MAC address defined in the
ENI file with the MAC address given in
cfgDataDevice. This flag has to be set if the ENI
configuration is created via a different network
adapter and you don't want to adapt the file
manually to the adapter MAC address of your
target.

ECM_FLAG_CFG_KEEP_PROCVARS The ENI file contains a section with process variable
definitions which is discarded by default. If you want
to use the variable lookup functions described in
section 3.8.3 this flag has to be set to keep this
database

ECM_FLAG_CFG_VIRTUAL_VARS In addition to the real process variables which are
linked to EtherCAT slave devices some
configuration tools define virtual variables for
diagnostic purposes (Refer to section 3.8.4 for
details). If you want support for these kind of
variables this flag has to be set.

ECM_FLAG_CFG_USE_DST_MAC The default behaviour of the master is to send all
Ethernet frames to the broadcast MAC address FF-
FF-FF-FF-FF-FF. If this flag is set you can override
this with the destination MAC address defined in
cfgDataMaster.

ECM_FLAG_CFG_DIAG_STATUS Enable cyclic background monitoring of the ESC AL
and DL status register for all slaves. In addition the
ECM_FLAG_MASTER_DIAG flag has to be set in
cfgDataMaster.

ECM_FLAG_CFG_DIAG_ERRCNT Enable cyclic background monitoring of the ESC
error counter register for all slaves. In addition the
ECM_FLAG_MASTER_DIAG flag has to be set in
cfgDataMaster.

ECM_FLAG_CFG_EVENT_AUTOINC Define the flag ECM_FLAG_SLAVE_AUTOINC_ADR for
every slave (see 7.2.30).

ECM_FLAG_CFG_ENI_ERR_REASON If the flag is set ECM_EVENT_CFG_SYNTAX will also
return the parser error reason code in addition to the
line number.

ECM_FLAG_CFG_SKIP_COMMENTS Save memory by ignoring comments with variable
descriptions if supported in the ENI file which would
otherwise be available in the ECM_VAR_DESC
structure if the flag ECM_FLAG_CFG_KEEP_PROCVARS
is set.

ECM_FLAG_CFG_SKIP_DT Speed up ENI processing by ignoring the data type
of variable descriptions if supported in the ENI file
which would otherwise be available in the
ECM_VAR_DESC structure if the flag
ECM_FLAG_CFG_KEEP_PROCVARS is set.

ECM_FLAG_CFG_DIAG_DC Enable cyclic background monitoring of the ESC
System Time Difference register for all DC enabled

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 199 of 255

Data Types

Flag Description

slaves. In addition the ECM_FLAG_MASTER_DIAG flag
has to be set in cfgDataMaster.

Table 17: ENI Configuration Flags

pszEniFile
Complete path to the ENI configuration file either in the file system or in the ZIP archive
depending on the flags ECM_FLAG_CFG_PARSE_BUFFER and ECM_FLAG_CFG_COMPRESSED.
For a GZIP archive this parameter is ignored as this archive type can only store one file.

pszArchiveFile
Complete path to the ZIP/GZIP archive which contains the ENI configuration if the flag
ECM_FLAG_CFG_PARSE_BUFFER is not set and ECM_FLAG_CFG_COMPRESSED is set.

pszPassword
The password for decryption, if the ENI configuration is stored in an encrypted ZIP archive. If
this member is set NULL the ZIP archive must not be encrypted. If the flag
ECM_FLAG_CFG_COMPRESSED is not set, the parameter is ignored.

pAddress
Pointer to the memory location with the ENI- or ZIP configuration if the flag
ECM_FLAG_CFG_PARSE_BUFFER is set.

size
Size of the buffer referenced by pAddress if the flag ECM_FLAG_CFG_PARSE_BUFFER is set.

cfgDataDevice
Initialized structure with device configuration data. If ECM_FLAG_CFG_IGNORE_SRC_MAC is set
in flags the source MAC address defined here is used to open the adapter device instead the
one defined in the ENI file.

cfgDataMaster
Initialized structure with master configuration data. If ECM_FLAG_CFG_USE_DST_MAC is set in
flags the destination MAC address defined here is used for transmitted packets instead of the
default Ethernet broadcast address.

Page 200 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.4 ECM_COE_EMCY

The ECM_COE_EMCY structure contains the description of a CoE emergency object.

Syntax:

typedef struct _ECM_COE_EMCY
{
 uint16_t usErrorCode; /* Error code */
 uint8_t ucErrorRegister; /* Error register
*/
 uint8_t ucData[5]; /* Manufacturer specific error data
*/
} ECM_COE_EMCY, *PECM_COE_EMCY;

Members:

usErrorCode
Emergency error code.

ucErrorRegister
Emergency error register.

ucData
Manufacture specific data with additional details about the error situation.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 201 of 255

Data Types

7.2.5 ECM_COE_ENTRY_DESCRIPTION

The ECM_COE_ENTRY_DESCRIPTION structure contains the description of a single object
dictionary entry with a fixed number of members and a variable section with an application and
entry specific layout. The application has to set the bits in ucRequestData in the request. The
EtherCAT slave will reset all bits which are not available in the reply. If the amount of data returned
in the reply exceeds the size of the variable section this data is discarded.

Syntax:

typedef struct _ECM_COE_ENTRY_DESCRIPTION {
 uint16_t usSize; /* Data size of request/reply (In/Out) */
 uint16_t usIndex; /* Index (In/Out) */
 uint8_t ucSubindex; /* Subindex (In/Out) */
 uint8_t ucRequestData; /* Values in the response (In/Out) */
 uint16_t usDataType; /* CoE data type of object (Out) */
 uint16_t usBitLen; /* Bit length of object (Out) */
 uint16_t usObjectAccess; /* Access and mapping attributes (Out) */
/* uint32_t ulUnitType; Bit 3 in ucRequestData set
 * uint8_t ucDefaultValue[]; Bit 4 in ucRequestData set
 * uint8_t ucMinValue[]; Bit 5 in ucRequestData set
 * uint8_t ucMaxValue[]; Bit 6 in ucRequestData set
 * char szName[]; Entry description (remaining size) */
} ECM_COE_ENTRY_DESCRIPTION, *PECM_COE_ENTRY_DESCRIPTION;

Members:

usSize
Size of the object in bytes (variable and fixed part).

usIndex
Object dictionary entry index.

ucSubindex
Object dictionary entry subindex.

ucRequestData
Bitmask to indicate which member of the variable part of this data structure is requested or
stored in the result.

usDataType
Data type of this entry according to [5]. They are also defined in the header <ecm.h> as
ECM_COE_TYP_XXX.

usBitLen
Data size of the object in bits.

usObjectAccess
Access attributes of this entry according to [5]. They are also defined in the header <ecm.h>
as ECM_COE_ATTRIB_XXX.

ulUnitType
Unit type of this entry according to [6]. This member is only part of the variable data section if
the ECM_COE_REQ_UNIT bit is set in ucRequestData.

ucDefaultValue
Default value of this entry. This member is only part of the variable data section if the
ECM_COE_REQ_DEFAULT_VALUE bit is set in ucRequestData. The size of the data can be
derived from usBitLen.

Page 202 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

ucMinValue
Default value of this entry. This member is only part of the variable data section if the
ECM_COE_REQ_MIN_VALUE bit is set in ucRequestData. The size of the data can be derived
from usBitLen.

ucMaxValue
Default value of this entry. This member is only part of the variable data section if the
ECM_COE_REQ_MAX_VALUE bit is set in ucRequestData. The size of the data can be derived
from usBitLen.

szName
Entry description as a zero terminated string.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 203 of 255

Data Types

7.2.6 ECM_COE_OBJECT_DESCRIPTION

The ECM_COE_OBJECT_DESCRIPTION structure contains the description of an object dictionary
entry.

Syntax:

typedef struct _ECM_COE_OBJECT_DESCRIPTION
{
 uint16_t usIndex; /* Object dictionary index (In/Out) */
 uint16_t usDataType; /* Refer to data type index (Out) */
 uint8_t ucMaxSubIndex; /* Max sub index (Out) */
 uint8_t ucObjCodeAndCategory; /* Bit 0-3: ECM_COE_OBJ_XXX (Out) */
 /* Bit 4 : ECM_COE_OBJCAT_XXX */
 /* Bit 5-7: Reserved (0) */
 char szName[256]; /* Entry description (Out) */
} ECM_COE_OBJECT_DESCRIPTION, *PECM_COE_OBJECT_DESCRIPTION;

Members:

usIndex
Object dictionary index.

usDataType
Data type of this object according to [5]. They are also defined in the header <ecm.h> as
ECM_COE_TYP_XXX.

ucMaxSubIndex
Maximum subindex of this object.

ucObjCodeAndCategory
Bit 0-3 define the object is a variable (ECM_COE_OBJ_VAR), an array (ECM_COE_OBJ_ARRAY)
or a structured type (ECM_COE_OBJ_RECORD), bit 4 defines if the object is optional
(ECM_COE_OBJCAT_OPTIONAL) or mandatory (ECM_COE_OBJCAT_MANDATORY) the remaining
bits are reserved for future use.

szName
Object description as a zero terminated string.

Page 204 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.7 ECM_COE_OD_LIST

The ECM_COE_OD_LIST structure contains the list of object dictionary indexes which belong to this
CoE list type.

Syntax:

typedef struct _ECM_COE_OD_LIST
{
 uint32_t ulType; /* OD list type */
 uint16_t usCount; /* # of OD entries */
 uint16_t usIndex[1]; /* 1st OD entry */
} ECM_COE_OD_LIST, *PECM_COE_OD_LIST;

Members:

ulType
One of the supported list types defined in [5]. They are defined in the header <ecm.h> as
ECM_LIST_TYPE_XXX as member of the enum ECM_COE_INFO_LIST_TYPE and consequently
must be casted to uint32_t for comparison or assignment.

usCount
As an input parameter this member defines the maximum number of entries that can be
stored in the array usIndex. As an output parameter this member is set to the number of
entries stored in the array usIndex.

usIndex
Array to store the list with indexes of object dictionary entries.

As standard ANSI-C does not support the concept of dynamic arrays the
array is defined with just one element. The application has to allocate the
memory for this type dynamically in order to pass a structure which can return
more than one entry.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 205 of 255

Data Types

7.2.8 ECM_COE_OD_LIST_COUNT

The structure contains the number of object dictionary entries which are available for the different
CoE list types.

Syntax:

typedef struct _ECM_COE_OD_LIST_COUNT
{
 uint16_t usAll; /* All objects */
 uint16_t usRx; /* RxPDO mappable objects */
 uint16_t usTx; /* TxPDO mappable objects */
 uint16_t usBackup; /* Objects to be stored for device replacement */
 uint16_t usSetting; /* Startup parameter objects */
} ECM_COE_OD_LIST_COUNT, *PECM_COE_OD_LIST_COUNT;

Members:

usAll
Number of entries in the list with all objects.

usRx
Number of entries in the list with objects which are mappable in a RxPDO.

usTx
Number of entries in the list with objects which are mappable in a TxPDO.

usBackup
Number of entries in the list with objects which has to be stored for a device replacement.

usSettings
Number of entries in the list with objects which can be used as startup parameter.

Page 206 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.9 ECM_COPY_VECTOR

The structure contains the copy description for process data as pair of offset and length.

Syntax:

typedef struct _ECM_COPY_VECTOR {
 uint32_t ulOffset; /* Offset in process image in bytes */
 uint32_t ulSize; /* Number of bytes to copy */
} ECM_COPY_VECTOR, *PECM_COPY_VECTOR;

Members:

ulOffset
Offset of the data to copy in bytes.

ulSize
Size of the data to copy in bytes.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 207 of 255

Data Types

7.2.10 ECM_DEVICE_DESC

The ECM_DEVICE_DESC structure contains the configuration data of a device instance.

Syntax:

typedef struct _ECM_DEVICE_DESC
{
 ECM_ETHERNET_ADDRESS macAddr[2]; /* MAC address (primary/redundant)*/
 uint32_t ulFlags; /* Flags */
 uint16_t usCycleLinkState;/* # of cycles between link check */
 uint16_t usCycleWatchdog; /* # of cycles for WD trigger */
 uint16_t usCycleDcCtrl; /* # of cycles between DC control */
 uint16_t usAcycCtrl; /* # of acyclic frames / cycle */
 uint8_t ucVport; /* Descriptor of virtual port */
 uint8_t ucCapFilter; /* Capture filter (0 = disabled) */
 uint32_t ulCycleTime; /* (Optional) base cycle time (us)*/
} ECM_DEVICE_DESC, *PECM_DEVICE_DESC;

Members:

macAddr
MAC address of the primary and the redundant network adapter. If no redundancy is defined
the 2nd address should be set to 00-00-00-00-00-00.

ulFlags
Flags to configure the device instance.

Flag Description
ECM_FLAG_DEVICE_UDP This flag indicates to embed the EtherCAT frames in

UDP datagrams instead of using raw Ethernet
frames.

ECM_FLAG_DEVICE_VLAN_SEGMENTS This flag indicates to use VLAN based EtherCAT
slave segment addressing.

ECM_FLAG_DEVICE_PROMISCUOUS This flag indicates to open the device in
promiscuous mode. This is necessary if the
destination address of the EtherCAT frames is not
the broadcast address. In this case the received
frames might be discarded by the network layer if
the network adapter does not operate in the
promiscuous mode.

ECM_FLAG_DEVICE_REDUNDANT Use 2nd network adapter to operate in redundant
mode.

ECM_FLAG_DEVICE_PROFILE_NO_IO Do not include the I/O time spent in the HAL layer in
profiling values.

Table 18: Device Configuration Flags

Page 208 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

usCycleLinksState
Defines the number of cycles between checks of the Ethernet link state. If this value is set to
0 the link state will never be checked and you loose the error diagnostic information that a
communication problem is caused by an erroneous communication between the master NIC
and the 1st EtherCAT slave.

The link state check is performed in ecmProcessAcyclicCommunication().
Depending on the target this can result in time consuming communication
with the PHY which might lead to an unexpected long processing time. In this
case the link state check should be disabled by setting usCycleLinksState to
zero.

usCycleWatchdog
Defines the number of cycles after which ecmProcessInputData() is called implicitly in
ecmProcessAcyclicCommunication(). Usually this value can be set to 0.

usCycleDcCtrl
Defines the number of cycles after which the control implementation to (re-)adjust the Master
Time to the DC System Time is called (see chapter 3.11.6). If this value is set to 0 a default
value of 100 is used.

usCapFilter
Defines Ethernet frame capturing filter and tag for the global frame capture callback handler.
If this value is set to 0 no Ethernet frame is captured for this device.

Flag Description
ECM_FLAG_CAP_FRM_PRI_TX Capture transmitted frames on the primary NIC.

ECM_FLAG_CAP_FRM_PRI_RX Capture received frames on the primary NIC.

ECM_FLAG_CAP_FRM_RED_TX Capture transmitted frames on the redundant NIC.

ECM_FLAG_CAP_FRM_RED_RX Capture received frames on the redundant NIC.

Table 19: Ethernet Frame Capture Flags

ulCycleTime
The base cycle time in micro seconds. If the application is based on the Background Worker
Task the cycle time of this task is known and can be set to 0 as it is configured implicitly. If
the cycle time is defined by the application calling ecmProcessInputData() and
ecmProcessOutputData() the application has to indicate this cycle time to the master stack
via this parameter.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 209 of 255

Data Types

7.2.11 ECM_DEVICE_STATE

The ECM_DEVICE_STATE structure reflects the current state of a device instance.

Syntax:

typedef struct _ECM_DEVICE_STATE
{
 uint32_t ulFlags; /* Device state flags */
 uint32_t ulDcRefClockHigh; /* DC ref clock high (ns) */
 uint32_t ulDcRefClockLow; /* DC ref clock low (ns) */
 uint32_t ulExceededCycles; /* Cycle time exceeded count */
} ECM_DEVICE_STATE, *PECM_DEVICE_STATE;

Members:

ulFlags
Bitmask to indicate device specific error conditions. The bits are identical to the error event
bits described in table 12 of chapter 6.1.

ulDcRefClockHigh
Upper 32 bit of the DC System Time (64 bit) in nanoseconds captured on the Reference
Clock if DC support is active.

ulDcRefClockLow
Lower 32 bit of the DC System Time (64 bit) in nanoseconds captured on the Reference
Clock if DC support is active.

ulExceededCycles
Counter with occurrences the configured I/O cycle time was exceed which is indicated to the
application with a ECM_LOCAL_STATE_CTIME_EXCEEDED event (see 6.1). The counter will
wrap around without notice.

Page 210 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.12 ECM_DEVICE_STATISTIC

The ECM_DEVICE_STATISTIC structure contains statistical data of a device instance.

Syntax:

typedef struct _ECM_DEVICE_STATISTIC
{
 uint32_t ulLostLink; /* # of NIC lost link detections */
 uint32_t ulRxFrames; /* # of received frames */
 uint32_t ulRxEcatFrames; /* # of received ECAT frames */
 uint32_t ulRxDiscarded; /* # of discarded frames */
 uint32_t ulTxEcatFrames; /* # of transmitted ECAT frames */
 uint32_t ulTxError; /* # of failed transmissions */
} ECM_DEVICE_STATISTIC, *PECM_DEVICE_STATISTIC;

Members:

ulLostLink
Counter how many times a lost link situation was detected.

ulRxFrames
Number of received Ethernet frames.

ulRxEcatFrames
Number of received EtherCAT frames.

ulRxDiscarded
Number of discarded Ethernet frames.

ulTxEcatFrames
Number of transmitted EtherCAT frames.

ulTxError
Number of EtherCAT frames which are not transmitted due to an error in the HAL.

Remarks:

All counters will wrap around without notice if the maximum value which can be stored in a
variable of type uint32_t is exceeded. A received Ethernet frame gets discarded for the
following reasons:

➢ The Ethernet frame is too short.
➢ The device is configured for VLAN tagged frames but the frame is untagged.
➢ The Ethernet frame has a wrong frame type and no virtual switch is configured.

If the device operates in the cable redundancy mode the counter ulRxEcatFrames and
ulRxDiscarded are always identical to the counter of the primary interface because of the
internal implementation of redundancy.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 211 of 255

Data Types

7.2.13 ECM_EOE_CONFIG

The ECM_EOE_CONFIG structure contains the configuration which is assigned to an EoE capable
slave device during startup.

Syntax:

typedef struct _ECM_EOE_CONFIG
{
 uint16_t usFlags; /* Structure valid flags */
 ECM_ETHERNET_ADDRESS macAddr; /* MAC address */
 uint32_t ulIpAddr; /* Assigned IP address */
 uint32_t ulSubnetMask; /* Assigned subnet mask */
 uint32_t ulIpGateway; /* Assigned gateway IP address */
 uint32_t ulIpDns; /* Assigned DNS IP address */
 uint8_t szHostName[34]; /* Assigned host name */
} ECM_EOE_CONFIG;

Members:

usFlags
Flags ECM_EOE_INIT_HAS_XXX which indicate the availability and validity of the the following
structure members.

macAddr
Configured MAC address.

ulIpAddr
Configured IPv4 address.

ulSubnetMask
Configured IPv4 subnet mask.

ulIpGateway
Configured IPv4 gateway address.

ulIpDNS
Configured IPv4 DNS server address.

szHostName
Zero terminated configured host name.

Page 212 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.14 ECM_ESI_CATEGORY

The ECM_ESI_CATEGORY union contains data in the ESI EEPROM layout defined for the different
categories.

Syntax:

typedef union _ECM_ESI_CATEGORY {
 char cString[256]; /* Category string */
 ECM_ESI_GENERAL general; /* General category */
 ECM_ESI_FMMU fmmu; /* FMMU category */
 ECM_ESI_SYNCMAN sm; /* SyncManager category */
 ECM_ESI_PDO pdo; /* PDO entry */
 uint32_t ulSize; /* Size of ESI buffer */
} ECM_ESI_CATEGORY, *PECM_ESI_CATEGORY;

Members:

cString
Zero terminated string from the string category (repository).

general
The mandatory general category.

fmmu
The FMMU category.

sm
The Sync Manager category.

pdo
The RxPDO or TxPDO category.

ulSize
Overall ESI information size in bytes.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 213 of 255

Data Types

7.2.15 ECM_ESI_CATEGORY_HEADER

The ECM_ESI_CATEGORY_HEADER structure contains an ESI category type and its size.

Syntax:

typedef struct _ECM_ESI_CATEGORY_HEADER
{
 uint16_t usCategoryType; /* Category type */
 uint16_t usCategorySize; /* Category size (multiple of uint16_t) */
} ECM_ESI_CATEGORY_HEADER, *PECM_ESI_CATEGORY_HEADER;

Members:

usCategoryType
This member contains the type of the category. For vendor specific types the MSB of this
value (ECM_ESI_VENDOR_SPECIFIC) is set. Table 20 contains the category types which are
defined with their layout in [2].

Value Category Type Description
0x000A ECM_ESI_CATEGORY_TYPE_STRING Optional string repository.

0x0014 ECM_ESI_CATEGORY_TYPE_DATA_TYPE Optional category with data types.

0x001E ECM_ESI_CATEGORY_TYPE_GENERAL Mandatory category with general data.

0x0028 ECM_ESI_CATEGORY_TYPE_FMMU Optional category with FMMU related data.

0x0029 ECM_ESI_CATEGORY_TYPE_SYNCMAN Optional category with SM related data.

0x0032 ECM_ESI_CATEGORY_TYPE_TXPDO Optional category with Tx PDO data.

0x0033 ECM_ESI_CATEGORY_TYPE_RXPDO Optional category with Rx PDO data.

0x003C ECM_ESI_CATEGORY_TYPE_DC Optional category with DC related data.

0xFFFF ECM_ESI_CATEGORY_TYPE_END End indication

Table 20: ESI Category Types

usCategorySize
Size of the category in multiple of words (16-bit values).

Page 214 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.16 ECM_FOE_STATE

The ECM_FOE_STATE structure contains the state of the current active or completed FoE transfer.

Syntax:

typedef struct _ECM_FOE_STATE {
 uint32_t ulErrorCode; /* Error code of last FoE */
 uint32_t ulNumBytes; /* # of bytes transferred */
 uint16_t usFlags; /* Flags */
 uint16_t usBusy; /* Busy completion */
 uint8_t ucMessage[ECM_FOE_MAX_ERR_MSG]; /* Optional error message */
} ECM_FOE_STATE, *PECM_FOE_STATE;

Members:

ulErrorCode
FoE error code.

ulNumBytes
Number of received or transmitted bytes.

usFlags

Flag Description
ECM_FOE_FLAG_UPLOAD If set the active or previously completed FoE request was

an upload otherwise a download.

ECM_FOE_FLAG_IO_ACTIVE If set the state refers to an active FoE transfer otherwise a
completed one.

ECM_FOE_FLAG_SERVER_BUSY If set the FoE server has replied the active request with
BUSY. The member busy contains the FoE server
completion status in percent and ucMessage contains the
(optional) FoE busy message.

Table 21: FoE state flags

usBusy
FoE (busy) value in percent. Valid if ECM_FOE_FLAG_SERVER_BUSY is set in usFlags.

ucMessage
Optional error message or busy message if ECM_FOE_FLAG_SERVER_BUSY is set in usFlags.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 215 of 255

Data Types

7.2.17 ECM_LIB_INIT

The ECM_LIB_INIT structure contains (platform specific) configuration data for the stack.

Syntax:

typedef struct _ECM_LIB_INIT {
 uint32_t ulEventMask; /* Event mask */
 uint32_t ulDbgMask; /* Debug mask (Debug build only) */
 PFN_ECM_EVENT pfnEventHandler; /* Event handler */
 PFN_ECM_LINK_STATE pfnLinkState; /* (Optional) media state handler */
 PFN_ECM_ADJUST_CLOCK pfnAdjustClock; /* (Opt) clock adjust handler */
 PFN_ECM_CLOCK_CYCLES pfnClockCycles; /* (Opt) clock cycle handler */
 uint64_t ullCyclesPerSec; /* (Opt) clock cycles per second */
 uint32_t ulPlatformFlags; /* Target platform specific flags */
 uint32_t ulExtClockTickNs; /* (Opt) ext. clock tick in ns */
 const char * pszPlatformConfig; /* (Opt) platform config string */
 ECM_LLD_DESC * pLldDesc; /* (Opt) Static LLD setup */
 PFN_ECM_LOG_MSG pfnLogMessage; /* (Opt) Log handler (Debug) */
 PFN_ECM_CAPTURE_FRM pfnCaptureFrame; /* (Opt) Frame capture handler */
} ECM_LIB_INIT, *PECM_LIB_INIT;

Members:

ulEventMask
Bitmask to define which events are indicated via the application event handler. The bits for
this filter are the event types defined in table 10.

ulDbgMask
The debug build of the EtherCAT master stack offers the possibility to track down problems
with trace messages which are logged in an operating system defined way or to the console.
The level of verbosity can be defined by this bitmask. A release build of the EtherCAT master
stack (which is usually shipped) ignores this parameter and does not log any messages.

Caution: Every debug message affects the I/O timing (especially if they are
dumped on a serial line with a low bit rate). Never use a debug version with
configured debug mask in a production environment.

Bit Description

31 Log error messages.

30 Log warning messages.

29 Use system specific log mechanism:
OS-9:Use the OS-9 debug tools instead of console output.
QNX: Use the slogger instead of console output.

28..21 Reserved for future use.

20 Log SoE protocol.

19 Log FoE protocol.

18 Log CoE protocol.

17 Log EoE protocol.

16 Reserved for future use.

15 Log memory allocation.

14..13 Reserved for future use.

12 Log ESI related messages.

Page 216 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

Bit Description

11 Log remote protocol related messages.

10 Log all Rx frames (Seriously affects I/O timing).

9 Log all Tx frames (Seriously affects I/O timing).

8 Log general mailbox protocol related messages.

7 Log virtual switch messages.

6 Log DC related messages.

5 Log ENI parser related messages.

4 Log master related messages.

3 Log slave related messages.

2 Log device related messages.

1 Reserved for future use.

0 Log HAL related messages.

Table 22: Flags of debug trace messages

pfnEventHandler
Application defined event handler which is called by the EtherCAT master stack if an event
occurred. The events get filtered with the filter defined with ulEventMask. If pfnEventHandler
is NULL, no events are indicated to the application. Refer to chapter 6.1 for details.

pfnLinkState
Application defined handler which is called by the EtherCAT master stack to return the
current network adapter link state and the link speed. This handler is only necessary if this is
not supported by a platform specific API which can be called by the master in the HAL layer.
Otherwise it should be set to NULL. Refer to chapter 6.3 for details.

pfnAdjustClock
Application defined handler which is called by the EtherCAT master stack to synchronize the
Master Local Time with the System Time of the DC Reference clock. This handler is
required if adjusting the local clock with the required granularity is not supported by a
platform specific API which can be called by the master in the HAL layer or the application
wants to override the internal control mechanism. Otherwise it should be set to NULL. Refer
to chapter 6.4 for details.

pfnClockCycles
Application defined handler which is called by the EtherCAT master stack to capture a high
resolution counter. This handler is only necessary if this is not supported by a platform
specific API which can be called by the master in the HAL layer. Otherwise it should be set to
NULL. Refer to chapter 6.5 for details.

ullCyclesPerSec
Ticks per second of the high resolution counter. If the high resolution counter is captured by
means of an application defined handler pfnClockCycles this parameter has to be set to the
frequency of this clock source so it is available to the HAL layer.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 217 of 255

Data Types

ulPlatformFlags
Bitmask to define target platform specific flags. The flags will be not available at compile time
on the specific target platform.

OS Flag Description

Win ECM_FLAG_NIC_FRIENDLY_NAME Return the user assigned friendly (alias)
name in member szName of ECM_NIC
instead of the system assigned (NDIS)
name.

Win ECM_FLAG_NO_WSA_STARTUP Do not call WSAStartup() in the EtherCAT
master library if this is already done in the
application.

OS-9 ECM_FLAG_NO_MEMORY_DEBUGGING Use the d_xxx() heap management
functions (if linked to the d_clib.l)

OS-9 ECM_FLAG_ENABLE_PREEMPTION Enable system state pre-emption for the
cyclic worker threads which decreases the
local jitter (general available since OS-9 6.x).

QNX ECM_FLAG_STACK_NOTLAZY Allocate physical memory for the whole
stack up front instead of on demand.

VxWorks ECM_FLAG_FP_TASK Start cyclic worker threads with support for
floating point enabled.

Linux ECM_FLAG_SCHED_FIFO Worker threads using the scheduling policy
SCHED_FIFO instead of SCHED_RR.

Table 23: Target specific flags

pszPlatformConfig

Platform specific configuration string with configuration parameter in the format

Key=Value

separated by colons.

Target Key Description

OS-9 NIC Network device name which should be used for EtherCAT (e.g. 'spee1')
as OS-9 does not support an enumeration of them.

OS-9 SPF Numerical value with network instance to use if OS-9 is configured with
separated network instances for EtherCAT and for TCP/IP.

N/A STACK Stack size of threads started by the stack in bytes to override the default
value. A stack size change affects the worker threads for the cyclic data
exchange as well as the thread which is responsible for the remote
access to the master.

Table 24: Target specific configuration keys

Page 218 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

ulExtClockTickNs
A value different from 0 enables an external tick which drives the EtherCAT cycle which has
no relation to the source of the high resolution counter and defines it’s period in
nanoseconds. It is used for the direct DC mode (see chapter 3.11.6.3 for details).

pLldDesc
Reference to an array of ECM_LLD_DESC structures to configure Link Level Driver which are
statically linked to the EtherCAT master. The array has to be terminated with an entry which
contains all zeroes.

pfnLogMessages
Optional application defined handler which is called by the EtherCAT master stack (only as
debug version) for each trace message which verbosity level is configured with ulDbgMask
described above. The handler overrides the OS specific way to dump trace messages. A
release build of the EtherCAT master stack (which is usually shipped) ignores this parameter
and does not log any messages. Refer to chapter 6.6 for details.

Caution: Every trace message affects the I/O timing (especially if they are
dumped on a serial line with a low bit rate). Never use a debug version with
configured debug mask in a production environment.

pfnCaptureFrame
Optional application defined handler which is called by the EtherCAT master stack with a
reference to any transmitted and/or received Ethernet frame. In addition to provide this
handler the application must define an individual capture filter for each device object (see
chapter 7.2.10 for details). Refer to chapter 6.7 for details.

Caution: Processing every raw Ethernet frame may affect heavily the I/O
timing. If capturing the raw Ethernet communication is possible with standard
tools (Wireshark, tcpdump, …) using these tools is the preferred diagnostic
method.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 219 of 255

Data Types

7.2.18 ECM_LLD_DESC

The ECM_LLD_DESC configures statically linked Link Level Driver.

Syntax:

typedef struct _ECM_LLD_DESC {
 char szName[12]; /* Instance name */
 uint8_t ucInstance; /* Instance number */
 uint8_t ucPhyAddr; /* Phy address 0..31 */
 ECM_ETHERNET_ADDRESS macAddr; /* MAC address */
 PFN_ECM_LLD_REGISTER pfnLldRegister; /* Handler to register LLD driver */
} ECM_LLD_DESC, *PECM_LLD_DESC;

Members:

szName
Name of the instance.

ucInstance
Unique instance number to distinguish different hardware instances.

ucPhyAddr
Address of the network PHY (0..31) attached to the hardware instance via MDIO.

macAddr
MAC address which is used for the communication.

pfnLldRegister
Handler which is called to register the hardware instance for communication.

Page 220 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.19 ECM_MASTER_DESC

The ECM_MASTER_DESC structure contains the configuration data of a master instance. It is
used as an input parameter for configuration as well as an output parameter for information.

Syntax:

typedef struct _ECM_MASTER_DESC
{
 ECM_ETHERNET_ADDRESS macAddr; /* Destination MAC address */
 char szName[ECM_SZ_NAME+1]; /* Device name */
 uint8_t ucAlignment; /* (Copy vector) alignment */
 uint8_t ucEsiEepromDelay; /* Delay (ms) for slow EEPROMS */
 uint32_t ulFlags; /* Flags */
 uint32_t ulSzInput; /* Input buffer size (bytes) */
 uint32_t ulSzOutput; /* Output buffer size (bytes) */
 void *pInput; /* Pointer to input data */
 void *pOutput; /* Pointer to output data */
 uint16_t vlanTCI; /* VLAN Tag Control Id */
 uint16_t usMboxCount; /* # of checked mailboxes */
 uint32_t ulMboxStateAddr; /* Logical adr. of MBOX states */
 uint32_t ulMaxFrames; /* Max # of frames (EoE) */
 uint32_t ulMaxMACs; /* Max # of MAC addresses(EoE) */
 uint16_t usMaxPorts; /* Max # of virtual ports(EoE) */
 uint16_t usAcycFrameTimeout; /* Acyclic frame timeout in ms */
 uint16_t usDcStartTimeShift; /* DC start time shift in ms */
 int16_t sDcUserShift; /* DC user shift master in us */
 uint16_t usDcSyncWindow; /* DC Sync Window in ns */

uint8_t ucDcSysTimeEpoch; /* DC System Time epoch */
uint8_t ucDcDriftCompFrames; /* DC Drift comp frames/cycle */
uint16_t ucDcDriftCompCycles; /* DC Drift comp cycles */

} ECM_MASTER_DESC, *PECM_MASTER_DESC;

Members:

macAddr
Destination Ethernet address of the EtherCAT frames.

szName
Textual description of the master instance. This member is also used to return the ENI file
name and the EtherCAT Workbench project GUID which is configured with the member
ulFlags described below on request.

ucAlignment
Alignment of the process data in bytes. This parameter has to be a power of 2. A value of 0 is
implicitly changed to a byte alignment (value 1). If the memory of the process data is
allocated by the master the requested allocation size given by ulSzInput and ulSzOutput is
rounded up to the given alignment.

ulEsiEepromDelay
Delay in ms to wait for the acknowledgement after writing to the ESI EEPROM of a slave with
ecmWriteEeprom(). This parameter can be changed to a value different to the default value
of 0 ms if the operation fails because the EEPROM is too slow.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 221 of 255

Data Types

ulFlags
Flags to configure the master instance.

Flag Description
ECM_FLAG_MASTER_MBOX Initialize the EtherCAT mailbox protocol support for

this master instance.

ECM_FLAG_MASTER_DST_ADDR_VALID This flag indicates to use the destination address in
macAddr instead of the default Ethernet broadcast
address.

ECM_FLAG_MASTER_VIRTUAL_SWITCH Initialize the virtual switch support which is
necessary for the EoE protocol. In this case the
member ulMaxFrames, ulMaxMACs and ulMaxPorts
described below are applied.

ECM_FLAG_MASTER_DC Initialize the support for distributed clocks and
perform the DC clock synchronization process (see
chapter 3.11.1 for details).

ECM_FLAG_MASTER_DC_RESYNC Perform a continuous DC clock drift compensation
during operation (see chapter 3.11.2 for details).

ECM_FLAG_MASTER_DCM_CLOCK_SHIFT Activates master clock synchronization (see chapter
3.11.6.1 for details and limitations) by shifting the
local master timer to follow the local timer of the DC
reference clock. This method flag can not be
combined with other methods for master clock
synchronization.

ECM_FLAG_MASTER_DIAG Initialize support for continuous background slave
state monitoring (ESC AL Status and AL Status
Code register).

ECM_FLAG_MASTER_RESET_SLAVES Send a standard initialization sequence which sets
all slaves into a known state before the network
startup according to the given configuration.

ECM_FLAG_MASTER_PACKED_LAYOUT The process image is defined in the compact
Packed Layout instead of the standard Framed
Layout (see chapter 3.8.1 for details).

ECM_FLAG_MASTER_CYCLE_DOMAINS Allow configured Cycle Domains for cyclic frames
instead of exchanging all process data in each I/O
cycle (see chapter 3.7.2 for details).

ECM_FLAG_MASTER_PROJECT_GUID On request set member szName to EtherCAT
Workbench defined unique project GUID stored in
the ENI as vendor specific information instead of the
project name.

ECM_FLAG_MASTER_ENI_FILENAME On request set member szName to the ENI file
name without path instead of the project name.

ECM_FLAG_MASTER_REMOTE_INSTANCE Mark master as instance which is monitored if
remote access is configured in Monitor Mode (see
chapter 3.13.2 for details).

Page 222 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

Flag Description
ECM_FLAG_MASTER_DCS_CLOCK_SHIFT Activates master clock synchronization (see chapter

3.11.6.2 for details and limitations) by shifting the
local slave timer of the DC reference clock to follow
the local timer of the master clock This method flag
can not be combined with other methods for master
clock synchronization.

ECM_FLAG_MASTER_DC_CLOCK_LOCAL Activates master clock synchronization (see chapter
3.11.6.3 for details and limitations) by using the local
timer as DC reference (Direct DC mode). This
method flag can not be combined with other
methods for master clock synchronization.

Table 25: Master Configuration Flags

ulSzInput
Size of the input process image in bytes.

ulSzOutput
Size of the output process image in bytes.

pInput
Pointer to the memory location of the input process image. If this parameter is set to NULL the
memory is allocated by the EtherCAT master stack.

pOutput
Pointer to the memory location of the output process image. If this parameter is set to NULL
the memory is allocated by the EtherCAT master stack.

vlanTci
If the ECM_FLAG_DEVICE_VLAN_SEGMENTS is set in the device configuration to address
several EtherCAT slave segments via VLAN tags this tag is used if it is not set.

usMboxCount
Number of slaves where the availability of new data in the mailbox is checked via a SM
status bit which is mapped to a logical address instead of polling the mailbox cyclically.

ulMboxStateAddr
The logical address of the bit array of all mailboxes whose availability of new data in the
mailbox is checked via a SM status bit instead of being polled cyclically. The size of this area
in bits is defined by usMboxCount and the position of the slave's mailbox status bit is defined
with usMboxStatusBitAddr of struct ECM_SLAVE_DESC.

ulMaxFrames
Defines the maximum number of Ethernet frames which can be queued by the virtual switch
which is implemented to support the EoE protocol. The memory is allocated dynamically
during startup and each frame requires about 1540 bytes to store the raw data and the
internal management overhead. If EoE is configured and this value is set to 0 a default
configuration with 50 + 10 * usMaxPorts is used.

ulMaxMACs
Defines the maximum number of MAC addresses in the lookup table of the virtual switch
which is implemented to support the EoE protocol. The memory is allocated dynamically
during startup and each entry requires about 50 bytes. If EoE is configured and this value is
set to 0 a default configuration with 20 + 10 * usMaxPorts is used.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 223 of 255

Data Types

usMaxPorts
Defines the maximum number of ports which can be connected to the virtual switch which is
implemented to support the EoE protocol. This can be usually set to the physical number of
slaves with EoE capabilities plus one extra port for the virtual implementation of the
EtherCAT master (if supported).

usAcycFrameTimeout
Defines the timeout in ms for acyclic frames. The minimum (default) value is 50 ms.

usDcStartTimeShift
Common shift in milliseconds of the SYNC0 Start Time relative to the end of the DC clock
synchronization process (see 3.11.4). A value of 0 is implicitly changed to the default value of
100 ms.

sDcUserShift
Non-deterministic part of the Global Shift Time in microseconds between Master System
Time and DC System Time (see 3.11.5). A value of 0 is implicitly changed to the default value
which is 10% of the cycle time.

usDcSyncWindow
Defines the size of the sync window in nanoseconds which is used for the DC Sync
Window Monitoring (see 3.12.3). A value of 0 is implicitly changed to the default value of
100 ns.

ucDcSysTimeEpoch
Absolute value the System Time is configured to during the DC offset compensation
process (see chapter 3.11.3) by adapting the DC offset of the Reference Clock. Possible
values are:

Value Description
ECM_SYSTIME_EPOCH_DC Configure the absolute value of the DC System

Time to the DC epoch (January 1st, 2000 - 00:00 h).

ECM_SYSTIME_EPOCH_UNIX Configure the absolute value of the DC System
Time to the value which is returned with the ANSI-C
library call time() on the target platform of the
EtherCAT master.

ECM_SYSTIME_EPOCH_NONE Leave the current absolute offset value of the DC
Reference Clock untouched.

Table 26: DC System Time Epoch Values

ucDcDriftCompFrames
Defines the number of frames per cycle transmitted during the initial DC drift compensation
(see 3.11.1). More frames per cycle reduce the required time for the initial DC drift
compensation but it is up to the application’s responsibility to prevent exceeding the I/O
cycle time. If this value is set to 0 the EtherCAT stack adapts dynamically to an optimal
number of static drift compensation frames per cycle which depends on the platform as well
as the configured cycle time.

Page 224 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

usDcDriftCompCycles
Defines the number of cycles the stacks performs the initial DC drift compensation (see
3.11.1). The product of ucDcDriftCompFrames with usDcDriftCompCycles gives the total
number of frames sent by the master for the initial compensation of static deviations of the
slave’s DC clocks. If this value is set to 0 the EtherCAT stack will stop performing the drift
compensation afeter at least the recommended (see /1/) 15000 individual frames are sent.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 225 of 255

Data Types

7.2.20 ECM_MASTER_STATE

The ECM_MASTER_STATE structure reflects the current state of a master instance.

Syntax:

typedef struct _ECM_MASTER_STATE
{
 uint32_t ulFlags; /* Master state flags */
 uint16_t usNumSlaves; /* # of configured slaves */
 uint16_t usNumMboxSlaves; /* # of (complex) slaves */
 uint16_t usActiveSlaves; /* # of active slaves */
 uint16_t usPrimarySlaves; /* # of slaves on primary NIC */
 uint16_t usRedundantSlaves; /* # of slaves on redundant NIC */
 uint16_t usNumCyclicFrames; /* # of cyclic frames */
 int32_t lDeviation; /* DC deviation (in ns) */
 int32_t lSmToSync0Delay; /* SM to SYNC0 delay (in ns) */
 uint32_t ulDcSysTimeDiff; /* System time difference (ns) */
} ECM_MASTER_STATE, *PECM_MASTER_STATE;

Members:

ulFlags
Bitmask to indicate master specific error conditions. The bits are identical to the error event
bits described in table 12 of chapter 6.1 and cover the master related error conditions as well
as error conditions of the underlying device. The LSW of this value is identical to the virtual
variable DevState described in chapter 3.8.4.

usNumSlaves
Total number of configured slaves. This value is identical to the virtual variable
CfgSlaveCount described in chapter 3.8.4.

usNumMboxSlaves
Number of complex slaves with mailbox support.

usActiveSlaves
Total number of active slaves. It's identical to usNumSlaves as long as all slaves of the
configuration are alive.

usPrimarySlaves
Number of active slaves which process the data received from the primary network adapter.
This value is identical to the number of usActiveSlaves for configurations without EtherCAT
cable redundancy support or as long as there is no redundancy situation for configurations
with EtherCAT cable redundancy support. This value is identical to the virtual variable
SlaveCount described in chapter 3.8.4.

usRedundantSlaves
Number of active slaves which process the data received from the redundant network
adapter. This value is 0 for configurations without EtherCAT cable redundancy support or as
long as there is no redundancy situation for configurations with EtherCAT cable redundancy
support. This value is identical to the virtual variable SlaveCount2 described in chapter 3.8.4.

usNumCyclicFrames
Number of exchanged cyclic frames.

Page 226 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

lDeviation
Difference between the DC Sytem Time and the Master Local Time in nanoseconds. Refer to
chapter 6.4 for details.

lSmToSync0Delay
Difference between the Sytem Time an Ethernet Frame is received and the System Time of
the next SYNC0 pulse in nanoseconds. Refer to chapter 3.12.3.2 for details.

ulDcSysTimeDiff
The absolute value (without the sign bit 31) of the mean difference between the local copy of
the system time and the received system time in nanoseconds. Refer to chapter 3.12.3 for
details.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 227 of 255

Data Types

7.2.21 ECM_MASTER_STATISTIC

The ECM_MASTER_STATISTIC structure contains statistical data of a master instance.

Syntax:

typedef struct _ECM_MASTER_STATISTIC
{
 uint32_t ulRxDiscarded; /* # of discarded frames */
 uint32_t ulRxCyclicFrames; /* # of processed cyclic frames */
 uint32_t ulRxCyclicDiscarded;/* # of discarded frames */
 uint32_t ulRxAcyclicFrames; /* # of processed acyclic frames */
 uint32_t ulRxAcyclicDiscarded;/* # of discarded frames */
 uint32_t ulRxAsyncFrames; /* # of processed async frames */
 uint32_t ulTxCyclicFrames; /* # of transmitted cyclic frames */
 uint32_t ulTxAcyclicFrames; /* # of transmitted acyclic frames */
 uint32_t ulTxAsyncFrames; /* # of transmitted async frames */
} ECM_MASTER_STATISTIC, *PECM_MASTER_STATISTIC;

Members:

ulRxDiscarded
Number of discarded EtherCAT frames. An EtherCAT frame at this stage of processing is
discarded if the master can not match this frame to one of the previously transmitted frames.

ulRxCyclicFrames
Number of received and processed cyclic EtherCAT frames.

ulRxCyclicDiscarded
Number of discarded cyclic EtherCAT frames. A cyclic EtherCAT frame at this stage of
processing is discarded if the master can not match this frame to one of its previously
transmitted cyclic frames or a protocol error is encountered.

ulRxAcyclicFrames
Number of received acyclic EtherCAT frames.

ulRxAcyclicDiscarded
Number of discarded acyclic EtherCAT frames. An acyclic EtherCAT frame on this stage of
processing gets discarded if the master is out of internal resources to perform a further
processing.

ulRxAsyncFrames
Number of received asynchronous EtherCAT frames.

ulTxCyclicFrames
Number of transmitted cyclic EtherCAT frames.

ulTxAcyclicFrames
Number of transmitted acyclic EtherCAT frames.

ulTxAsyncFrames
Number of transmitted asynchronous EtherCAT frames.

Remarks:

All counters will wrap around without notice if the maximum value which can be stored in a
variable of type uint32_t is exceeded.

Page 228 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.22 ECM_MBOX_SPEC

The ECM_MBOX_SPEC structure is used for protocol specific data of a mailbox request. It contains a
union with protocol specific parameter. Supported protocols are: CoE, SoE.

Syntax:

typedef union _ECM_MBOX_SPEC
{
 /* CoE data */
 struct {
 uint16_t usIndex; /* In/Out: SDO index */
 uint8_t ucSubindex; /* In/Out: SDO subindex */
 uint8_t ucFlags; /* In/Out: Flags */
 } coe;

 /* SoE data */
 struct {
 uint8_t ucCommand; /* In/Out: Flags, Drive Number */
 uint8_t ucElements; /* In/Out: Element ECM_SOE_ELEM_XXX */
 union {
 uint16_t usIDN; /* In: Data Block IDN */
 uint16_t usError; /* Out: Error code */
 } u;
 } soe;

 /* AoE data */
 struct {
 uint16_t In/Out: usTargetPortId;
 union {
 struct {
 uint32_t In/Out: ulIndexGroup;
 uint32_t In/Out: ulIndexOffset;
 } rw;
 } u1; /* For AoE Read or Write requests */
 } aoe;
 /* VoE data */
 struct {
 uint32_t ulVendorId;
 uint16_t usVendorType;
 } voe;
} ECM_MBOX_SPEC, *PECM_MBOX_SPEC;

Members:

coe.usIndex
OD index of a CoE request/reply.

coe.ucSubindex
OD subindex of a CoE request/reply.

coe.ucFlags
Flags of a CoE request/reply.

Flag Dir Description
ECM_COE_FLAG_ABORT_CODE Reply Destination buffer contains abort code

ECM_COE_FLAG_COMPLETE_ACCESS Request Request with complete access support.

Table 27: Flags of CoE mailbox request/reply

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 229 of 255

Data Types

soe.ucCommand
Flags and SoE Drive number.

Flag Dir Description
ECM_SOE_FLAG_ERROR Reply SoE protocol error. Error code stored in soe.usError

ECM_SOE_FLAG_INCOMPLETE Reply Insufficient buffer to store all received data.

Table 28: Flags of SoE mailbox request/reply

soe.ucElements
Requested/Replied SoE data element.

soe.usIDN
SoE Identification Number (IDN) of the SoE request/reply.

soe.usError
SoE error code if ECM_SOE_FLAG_ERROR is set in soe.ucCommand of a SoE reply.

aoe.usTargetPortId
Target port.

aoe.rw.ulIndexGroup
ADS Read/Write command Index Group of the data which should be read/written.

aoe.rw.ulIndexOffset
ADS Read/Write command Index Offset of the data which should be read/written.

Remarks:

If the flag ECM_COE_FLAG_COMPLETE_ACCESS is set in the CoE request the entire object (with all
sub-indices) is transferred with a single SDO service. In this case only the values 0 or 1 are
allowed for the member ucSubindex.

Page 230 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.23 ECM_NIC

The ECM_NIC structure contains information about a network adapter or a network interface card
(NIC) available for EtherCAT communication.

Syntax:

typedef struct ECM_NIC
{
 char szName[ECM_SZ_NAME + 1]; /* NIC name */
 ECM_ETHERNET_ADDRESS macAddr; /* MAC address */
} ECM_NIC, *PECM_NIC;

Members:

szName
Zero terminated textual description of the network adapter.

macAddr
The hardware or physical address of the network adapter as described in section 7.1.2.

7.2.24 ECM_NIC_STATISTIC

The ECM_NIC_STATISTIC structure contains statistical data for a network adapter.

Syntax:

typedef struct _ECM_NIC_STATISTIC
{
 uint32_t ulSupportedMask; /* Mask with supported statistics */
 uint32_t ulRxFrames; /* # of received frames w/o errors */
 uint32_t ulTxFrames; /* # of transmitted frames w/o errors */
 uint32_t ulRxErrors; /* # of received frames with errors */
 uint32_t ulTxErrors; /* # of transmitted frames with errors*/
 uint32_t ulRxDiscarded; /* # of discarded received frames */
 uint32_t ulTxDiscarded; /* # of discarded transmitted frames */
 uint32_t ulRxBytes; /* # of received bytes */
 uint32_t ulTxBytes; /* # of transmitted bytes */
} ECM_NIC_STATISTIC, *PECM_NIC_STATISTIC;

Members:

ulSupportedMask
Bitmask with a platform specific indication which statistical data is available for the adapter.

Flag Description
ECM_STATISTIC_RX_FRAMES Counter ulRxFrames valid.

ECM_STATISTIC_TX_FRAMES Counter ulTxFrames valid.

ECM_STATISTIC_RX_ERRORS Counter ulRxErrors valid.

ECM_STATISTIC_TX_FRAMES Counter ulTxErrors valid.

ECM_STATISTIC_RX_DISCARD Counter ulRxDiscarded valid.

ECM_STATISTIC_TX_DISCARD Counter ulTxDiscarded valid.

ECM_STATISTIC_RX_BYTES Counter ulRxBytes valid.

ECM_STATISTIC_TX_FRAMES Counter ulTxBytes valid.

Table 29: NIC statistic member valid mask

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 231 of 255

Data Types

ulRxFrames
Number of received Ethernet frames.

ulTxFrames
Number of transmitted Ethernet frames.

ulRxErrors
Number of receive errors.

ulTxErrors
Number of transmit errors.

ulRxDiscarded
Number of discarded received Ethernet frames.

ulTxDiscarded
Number of discarded transmitted Ethernet frames.

ulRxBytes
Number of received bytes.

ulTxBytes
Number of transmitted bytes.

Remarks:

All counters will wrap around without notice if the maximum value which can be stored in a
variable of type uint32_t is exceeded.
As the availability of each statistical counter is very HAL specific the application has to check
the ulSupportedMask before using this statistical value.

The network adapter statistic is very HAL specific so the behaviour can differ
from platform to platform. This means that e.g. the counter may be reset to 0
if the adapter has lost its link on one platform whereas the counter may be
remained untouched on another platform.

Page 232 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.25 ECM_PROC_CTRL

The ECM_PROC_CTRL structure contains the configuration data for the worker tasks.

Syntax:

typedef struct _ECM_PROC_CTRL
{
 uint32_t ulAcylicPeriod; /* Period of acyclic worker task (us) */
 uint32_t ulAcyclicPrio; /* Priority of acyclic worker task */
 uint32_t ulCyclicPeriod; /* Period of cyclic worker task (us) */
 uint32_t ulCyclicPrio; /* Priority of cyclic worker task */
 PFN_ECM_HANDLER pfnHandler; /* Cyclic callback handler */
 PFN_ECM_HANDLER pfnBeginCycle; /* (Optionally) called at cycle start */
 PFN_ECM_HANDLER pfnEndCycle; /* (Optionally) called at cycle end */
} ECM_PROC_CTRL, *PECM_PROC_CTRL;

Members:

ulAcyclicPeriod
Period of the acyclic worker task in multiples of us. If set to 0 the related worker task is not
started or the already active worker task is stopped.

ulAcyclicPrio
Priority of acyclic worker task. See remark below for the parameter range.

ulCyclicPeriod
Period of the cyclic worker task in multiples of us. If set to 0 the related worker task is not
started or the already active worker task is stopped.

ulCyclicPrio
Priority of cyclic worker task. See remark below for the parameter range.

pfnHandler
Application defined handler which gets called in the middle of the data exchange cycle. Set
to NULL to prevent the handler being called.

pfnBeginCycle
Application defined handler which gets called at the beginning of a data exchange cycle. Set
to NULL to prevent the handler being called.

pfnEndCycle
Application defined handler which gets called at the end of a data exchange cycle. Set to
NULL to prevent the handler being called.

Remarks:

If the acyclic worker task can be prioritized against the cyclic worker task and the valid
parameter for the priority depends on the HAL specific implementation of the (cyclic) timer. If the
implementation does not allow a prioritization ulAcyclicPrio and ulAcyclicPrio are ignored.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 233 of 255

Data Types

7.2.26 ECM_PROC_DATA_TYPE

The ECM_PROC_DATA_TYPE enumeration to indicate the reference to input/output data.

Syntax:

typedef enum {
 ECM_INPUT_DATA = 0, /* Input data (Received from the slaves) */
 ECM_OUTPUT_DATA /* Output data (Transmitted to the slaves) */
} ECM_PROC_DATA_TYPE;

Members:

ECM_INPUT_DATA
Input data (received from the slaves).

ECM_OUTPUT_DATA
Output data (transmitted to the slaves).

Remarks:

N/A.

7.2.27 ECM_PROFILING_DATA

The ECM_PROFILING_DATA structure contains results of the internal profiling mechanism.

Syntax:

typedef struct _ECM_PROFILING_DATA
{
 uint32_t ulMin; /* Minimum time (us) */
 uint32_t ulMax; /* Maximum time (us) */
 uint32_t ulAvg; /* Average time (us) */
 uint32_t ulCount; /* Number of captured samples */
} ECM_PROFILING_DATA, *PECM_PROFILING_DATA;

Members:

ulMin
Minimum time required to execute the profiled code section in nanoseconds.

ulMax
Maximum time required to execute the profiled code section in nanoseconds.

ulAvg
Average time required to execute the profiled code section in nanoseconds.

ulCount
Total number of times the code was profiled.

Remarks:

N/A.

Page 234 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.28 ECM_PROFILING_TYPE

The ECM_PROFILING_TYPE enumeration defines a profiling category.

Syntax:

typedef enum
{
 ECM_PROFILE_ACYCLIC = 0, /* Data of ecmProcessAcyclicCommunication() */
 ECM_PROFILE_INPUT, /* Data of ecmProcessInputData() */
 ECM_PROFILE_OUTPUT, /* Data of ecmProcessOutputData() */
 ECM_PROFILE_CYCLIC_START, /* Data of cycle start application callback */
 ECM_PROFILE_CYCLIC_HANDLER, /* Data of cyclic handler callback */
 ECM_PROFILE_CYCLIC_END, /* Data of cyclic end application callback */
 ECM_PROFILE_CYCLIC_WORKER, /* Data of complete cyclic worker task */
 ECM_PROFILE_FRAME_TX, /* Data of Ethernet frame transmission */
 ECM_PROFILE_USER1, /* Application specific profile data 1 */
 ECM_PROFILE_USER2, /* Application specific profile data 2 */
 ECM_PROFILE_FRAME_RX, /* Data of Ethernet frame reception */
} ECM_PROFILING_TYPE;

Members:

ECM_PROFILE_ACYCLIC
Execution time of ecmProcessAcyclicCommunication().

ECM_PROFILE_INPUT
Execution time of ecmProcessInputData() comprising the time returned with the
ECM_PROFILE_FRAME_RX profiling category.

ECM_PROFILE_OUTPUT
Execution time of ecmProcessOutputData() comprising the time returned with the
ECM_PROFILE_FRAME_TX profiling category.

ECM_PROFILE_CYCLIC_START
Execution time of the (optional) cycle start handler defined in struct ECM_PROC_CTRL.

ECM_PROFILE_CYCLIC_HANDLER
Execution time of the cyclic handler defined in struct ECM_PROC_CTRL comprising the time
returned with the ECM_PROFILE_INPUT and ECM_PROFILE_INPUT profiling categories.

ECM_PROFILE_CYCLIC_END
Execution time of the (optional) cyclic end handler defined in struct ECM_PROC_CTRL.

ECM_PROFILE_CYCLIC_WORKER
Execution time of the complete cyclic worker task comprising the time returned with the
ECM_PROFILE_CYCLIC_XXX profiling categories.

ECM_PROFILE_FRAME_TX
Execution time of the HAL to transmit Ethernet frames.

ECM_PROFILE_FRAME_RX
Execution time of the HAL to receive Ethernet frames.

ECM_PROFILE_USER_X
Application specific profiling category.

Remarks:

N/A.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 235 of 255

Data Types

7.2.29 ECM_SLAVE_ADDR

The ECM_SLAVE_ADDR union contains a physical or logical EtherCAT slave address.

Syntax:

typedef union
{
 struct
 {
 uint16_t adp; /* Physical address (Fixed or Auto Increment) */
 uint16_t ado; /* Physical memory address (offset) */
 } p;
 uint32_t l; /* Logical address for LRD, LWR and LRW commands */
} ECM_SLAVE_ADDR;

Members:

p.adp
Physical fixed or auto increment address.

p.ado
Physical memory address offset.

l
Logical address.

Remarks:

The interpretation of the union depends of the EtherCAT command which is used in combination
with this slave address.

Page 236 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.30 ECM_SLAVE_DESC

The ECM_SLAVE_DESC structure contains the configuration data of a slave instance. It is used as an
input parameter for configuration as well as an output parameter for information.

Syntax:

typedef struct _ECM_SLAVE_DESC
{
 uint32_t ulFlags; /* Flags */
 uint16_t usAutoIncAddr; /* Auto increment address */
 uint16_t usPhysAddr; /* Physical address */
 char szName[ECM_SZ_NAME+1]; /* Slave description */
 uint32_t ulVendorId; /* Vendor Id */
 uint32_t ulProductCode; /* Product code */
 uint32_t ulRevisionNo; /* Revision number */
 uint32_t ulSerialNo; /* Serial number */
 uint32_t ulRecvBitStart; /* Bit position of inputs */
 uint32_t ulRecvBitLength; /* Bit size of inputs */
 uint32_t ulSendBitStart; /* Bit position of outputs */
 uint32_t ulSendBitLength; /* Bit size of outputs */
 uint16_t usMboxStatusBitAddr; /* Bit offset in logical area */
 uint16_t usMboxPollTime; /* Cycle time for mbox polling */
 uint16_t usMboxOutStart[2]; /* Phys. address of output mbx */
 uint16_t usMboxOutLen[2]; /* Size of output mailbox */
 uint16_t usMboxInStart[2]; /* Phys. address of input mbx */
 uint16_t usMboxInLen[2]; /* Size of input mailbox */
 uint8_t ucPhysics; /* Physics type for port A-D */
 uint8_t ucDcPrevPort; /* Port number of previous dev */
 uint16_t usDcPrevPhysAddr; /* Phys. addr of previous dev */
 uint32_t ulCycleTime0; /* Cycle time (ns) Sync0 event */
 uint32_t ulCycleTime1; /* Cycle time (ns) Sync1 event */
 int32_t lShiftTime; /* Shift time (ns) Sync0 event */
 uint32_t ulReserved[12]; /* Reserved for future use */
} ECM_SLAVE_DESC, *PECM_SLAVE_DESC;

Members:

ulFlags
Configuration flags of the slave instance.

Flag Description
ECM_FLAG_SLAVE_MBOX The slave supports the EtherCAT mailbox protocol

(complex slave).

ECM_FLAG_SLAVE_MBOX_POLLING If the flag is set the mailbox is polled for new data with
the cycle time defined in usMboxPollTime. If not set one
FMMU is configured to map the SM status bit into the
cyclic process data at the bit offset defined in
usMboxStatusBitAddr.

ECM_FLAG_SLAVE_MBOX_DLL If the flag is set the master enables for this slave the
support for the DL layer service to check the counter of
the mailbox protocol to repeat a request in case of a lost
mailbox reply. The flag has to match the capabilities of
the EtherCAT slave.

ECM_FLAG_SLAVE_DC The slave supports synchronization based on the
distributed clocks (DC) mechanism and is synchronized if
DC synchronization is enabled.

ECM_FLAG_SLAVE_DC64 If the flag is set the ESC supports 64-bit DC time values.
If not set only 32-bit time values are supported.

ECM_FLAG_SLAVE_DC_REFCLOCK The DC slave contains the DC reference clock. This is
usually the first DC-enabled slave in the slave segment.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 237 of 255

Data Types

Flag Description
ECM_FLAG_SLAVE_DIAG_STATUS If the flag is set the master will send autonomously

requests in an acyclic frame to monitor the slave's AL
Status register (0x130:0x131), AL Status Code register
(0x134:0x135) and DL Status register (0x110:0x111).
This flag is ignored if ECM_FLAG_MASTER_DIAG is not set
in member ulFlags of ECM_MASTER_DESC. The result is
stored in the ECM_SLAVE_STATE structure, the
ECM_SLAVE_DIAG structure, in the virtual variable
InfoData.State (see chapter 3.8.4) and is also reflected
as slave state event (see chapter 6.1).

ECM_FLAG_SLAVE_DIAG_ERRCNT If the flag is set the master will send autonomously
requests in an acyclic frame to monitor the slave's Errror
Counter register (0x300:0x313). This flag is ignored if
ECM_FLAG_MASTER_DIAG is not set in member ulFlags of
ECM_MASTER_DESC. The result is stored in the
ECM_SLAVE_DIAG structure.

ECM_FLAG_SLAVE_DIAG_WDOG If the flag is set the master will send autonomously
requests in an acyclic frame to monitor the slave's
Watchdog Counter register (0x402:0x403). This flag is
ignored if ECM_FLAG_MASTER_DIAG is not set in member
ulFlags of ECM_MASTER_DESC. The result is stored in the
ECM_SLAVE_DIAG structure.

ECM_FLAG_SLAVE_AUTOINC_ADR Use the slave's auto increment address as 2nd parameter
for the events (see chapter 6.1) ECM_EVENT_SLV and
ECM_EVENT_COE_EMCY instead of the default physical
address.

ECM_FLAG_SLAVE_AUTO_REINIT If the communication to a slave was interrupted, the
master will restart the slave from INIT→OP once the
connection has been restored. The occurrence of this
action is counted in the member ucCntDisconnect of
ECM_SLAVE_DESC.

ECM_FLAG_SLAVE_AUTO_RESTORE If the slave has left its requested state for inherent
reasons (loss of power, synchronization error), the
EtherCAT master automatically tries to put the slave back
to this state. The occurrence of this action is counted in
the member ucCntStateChange of ECM_SLAVE_DESC.

ECM_FLAG_SLAVE_DIAG_DC If the flag is set the master will send autonomously
requests in an acyclic frame to monitor the slave's
System Time Difference register (0x92C:0x92F). This
flag is ignored if ECM_FLAG_SLAVE_DC is not set or
ECM_FLAG_MASTER_DIAG is not set in member ulFlags of
ECM_MASTER_DESC. The result is stored in the
ECM_SLAVE_STATE structure.

ECM_FLAG_SLAVE_EOE If the flag is set the slave supports the EoE mailbox
protocol.

ECM_FLAG_SLAVE_COE If the flag is set the slave supports the CoE mailbox
protocol.

ECM_FLAG_SLAVE_FOE If the flag is set the slave supports the FoE mailbox
protocol.

Page 238 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

Flag Description
ECM_FLAG_SLAVE_SOE If the flag is set the slave supports the SoE mailbox

protocol.

Table 30: Slave Configuration Flags

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 239 of 255

Data Types

usAutoIncAddr
The slave's auto-increment address.

usPhysAddr
The slave's fixed/physical address.

szName
Textual description of the slave instance as zero terminated string.

ulVendorId
The slave's vendor id.

ulProductCode
The slave's product code.

ulRevisionNumber
The slave's revision number.

ulSerialNumber
The slave's serial number.

ulRecvBitStart
Offset of the slave's output data in the master's process image in bits.

ulRecvBitLength
Size of the slave's output data in bits.

ulSendBitStart
Offset of the slave's input data in the master's process image in bits.

ulSendBitLength
Size of the slave's input data in bits.

usMboxStatusBitAddr
Bit position the status bit of a complex slave's SM is mapped into the cyclic command to
indicate new mailbox data if the flag ECM_FLAG_SLAVE_MBOX_POLLING is not set.

usMboxPollTime
Cycle time in us the mailbox of a complex slave is polled for new data if the flag
ECM_FLAG_SLAVE_MBOX_POLLING is set.

usMboxOutStart[2]
Physical start address of the output mailbox. The first array entry contains the configuration
for the standard mode the second entry for the optional bootstrap mode.

usMboxOutLen[2]
Size of the output mailbox in bytes. The first array entry contains the configuration for the
standard mode the second entry for the optional bootstrap mode.

usMboxInStart[2]
Physical start address of the input mailbox. The first array entry contains the configuration for
the standard mode the second entry for the optional bootstrap mode.

usMboxInLen[2]
Size of the input mailbox in bytes. The first array entry contains the configuration for the
standard mode the second entry for the optional bootstrap mode.

Page 240 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

ucPhysics
Bitmask with physics type of the up to 4 ESC ports.

Bit 6..7 4..5 2..3 0..1

ESC Port 3 2 1 0

The macro ECM_GET_PORT_PHYSICS can be used to get the physics of a port. Supported
values are:

➢ ECM_PHYS_TYPE_UNUSED: Port unused.
➢ ECM_PHYS_TYPE_ETHER_COPPER: Ethernet copper (100 Base Tx)
➢ ECM_PHYS_TYPE_EBUS: E-Bus backplane (LVDS)
➢ ECM_PHYS_TYPE_ETHER_FIBER: Ethernet fiber (100 Base Fx)

ucDcPrevPort
Port number of predecessor ESC in the range from 0..3.

ucDcPrevPhysAddr
Physical address of predecessor ESC.

ucCycleTime0
Cycle time of the SYNC0 signal in nanoseconds (see chapter 3.11.4).

ucCycleTime1
Cycle time of the SYNC1 signal in nanoseconds (see chapter 3.11.4).

lShiftTime
Local shift of the System Start time in nanoseconds (see chapter 3.11.4).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 241 of 255

Data Types

7.2.31 ECM_SLAVE_DIAG

The ECM_SLAVE_DIAG structure contains the diagnostic data of a slave instance.

Syntax:

typedef struct _ECM_SLAVE_DIAG
{
 uint16_t usControl; /* In: Flags */
 /* Out: Revolving request count */
 uint16_t usAddr; /* Slave address */
 uint16_t usDlStatus; /* DL Status Register */
 uint8_t ucWdCntPd; /* Watchdog PD error counter */
 uint8_t ucWdCntPdi; /* Watchdog PDI error counter */
 ECM_ESC_ERROR_COUNTER counter; /* ESC error counters */
 uint8_t ucCntDisconnect; /* Disconnect counter */
 uint8_t ucCntStateChange; /* State change counter */
} ECM_SLAVE_DIAG, *PECM_SLAVE_DIAG;

Members:

usControl
[Out] Revolving request counter which gets incremented with each successful DL Status
Register reply. Data is only updated if the ECM_FLAG_SLAVE_DIAG_STATUS flag is set (see
table 30).

[In] Flags to control diagnostic requests.

Flag Description
ECM_FLAG_DIAG_RESET_ESC_COUNTER Reset ESC error counter with the next request.

ECM_FLAG_DIAG_RESET_WD_COUNTER Reset watchdog counter with the next request.

ECM_FLAG_DIAG_RESET_LOC_COUNTER Reset local counter with the next request.

Table 31: Diagnostic Control Flags

usDlStatusRegister
The slave's DL status register. Only updated if the ECM_FLAG_SLAVE_DIAG_STATUS flag is set
(see table 30).

counter
The slave's ESC error counter registers. Data is only updated if the
ECM_FLAG_SLAVE_DIAG_ERRCNT flag is set (see table 30).

ucWdCntPd
The slave's watchdog Process Data Counter register. Data is only updated if the
ECM_FLAG_SLAVE_DIAG_WDOG flag is set (see table 30).

ucWdCntPdi
The slave's watchdog PDI Counter register. Data is only updated if the
ECM_FLAG_SLAVE_DIAG_WDOG flag is set (see table 30).

ucCntDisconnect
The master's counter of slave disconnects as a result of communication errors.

ucCntStateChange
The master's counter of unexpected slave state changes.

Page 242 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.32 ECM_SLAVE_STATE

The ECM_SLAVE_STATE structure reflects the current state of a slave instance.

Syntax:

typedef struct _ECM_SLAVE_STATE
{
 uint32_t ulFlags; /* Slave state flags */
 uint16_t usState; /* Device state */
 uint16_t usFeatures; /* ESC feature register (0x8) */
 uint16_t usEmcyReceived; /* # of received EMCY messages */
 uint16_t usEmcyDiscarded; /* # of discarded EMCY messages */
 uint16_t usStatusCode; /* AL Status Code */
 uint16_t usReserved; /* Reserved for future use */
 int32_t lDcSysTimeDiff; /* System time difference (ns) */
 uint32_t ulReserved[3]; /* Reserved for future use */
} ECM_SLAVE_STATE, *PECM_SLAVE_STATE;

Members:

ulFlags
Bitmask reflecting the actual slave state. The meaning of these bits is identical to the
argument of the slave state event described in table 13 and 14 of chapter 6.1. The LSW of
this value is identical to the virtual variable InfoData.State described in chapter 3.8.4.

usState
Actual slave device state according to table 6.

usFeatures
Reflects EtherCAT slave controller capabilities (Register ESC Features supported).

usEmcyReceived
Circulating counter which contains the total number of received CoE emergency messages
for a complex slave. An application might poll this value to detect if new CoE Emergency
messages are stored in the error history.

usEmcyDiscarded
Circulating counter which contains the total number of discarded CoE emergency messages
for a complex slave. An application might poll this value to detect if the error history of CoE
Emergency messages is overrun.

usStatusCode
The last received AL status code for this slave according to table 1.

lDcSystemTimeDiff
Slave specific mean difference (with sign bit 31) between the local copy of the System Time
and the received System Time values (see 3.12.3.1).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 243 of 255

Data Types

7.2.33 ECM_SOE_ARRAY8

Type for an SoE list (array) of 8-bit values.

Syntax:

typedef struct _SOE_ARRAY_8 {
 uint16_t usLength; /* Length of buffer (in bytes) */
 uint16_t usMaxLength; /* Max. length of buffer (in bytes) */
 uint8_t ucData[1]; /* 1st element of array */
} ECM_SOE_ARRAY_8, *PECM_SOE_ARRAY_8;

Members:

usLength
Length of buffer (in bytes).

usMaxLength
Maximum length of buffer (in bytes).

ucData
Array data.

7.2.34 ECM_SOE_ARRAY16

Type for an SoE list (array) of 16-bit values.

Syntax:

typedef struct _SOE_ARRAY_16 {
 uint16_t usLength; /* Length of buffer (in bytes) */
 uint16_t usMaxLength; /* Max. length of buffer (in bytes) */
 uint16_t usData[1]; /* 1st element of array */
} ECM_SOE_ARRAY_16, *PECM_SOE_ARRAY_16;

Members:

usLength
Length of buffer (in bytes).

usMaxLength
Maximum length of buffer (in bytes).

usData
Array data.

Page 244 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.35 ECM_SOE_ARRAY32

Type for an SoE list (array) of 32-bit values.

Syntax:

typedef struct _SOE_ARRAY_32 {
 uint16_t usLength; /* Length of buffer (in bytes) */
 uint16_t usMaxLength; /* Max. length of buffer (in bytes) */
 uint32_t ulData[1]; /* 1st element of array */
} ECM_SOE_ARRAY_32, *PECM_SOE_ARRAY_32;

Members:

usLength
Length of buffer (in bytes).

usMaxLength
Maximum length of buffer (in bytes).

ulData
Array data.

7.2.36 ECM_SOE_STRING

Type for an SoE string returned for the SoE element Name and Unit.

Syntax:

typedef struct _ECM_SOE_STRING {
 uint8_t ucLength; /* Length of buffer */
 uint8_t ucAlwaysZero1; /* Always 0 */
 uint8_t ucMaxLength; /* Max. length of buffer (Same as ucLength) */
 uint8_t ucAlwaysZero2; /* Always 0 */
 char cString[1]; /* 1st byte of (non zero terminated string) */
} ECM_SOE_STRING, *PECM_SOE_STRING;

Members:

ucLength
Length of buffer (in bytes).

ucMaxLength
Maximum length of buffer (in bytes).

cString
Non zero terminated string.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 245 of 255

Data Types

7.2.37 ECM_VAR_DESC

The structure contains the description of a process variable.

Syntax:

typedef struct _ECM_VAR_DESC {
 const char *pszName; /* Variable name */
 const char *pszComment; /* (Optional) comment */
 uint16_t usDataType; /* (Optional) data type and direction */
 uint16_t usBitSize; /* Data size in bits */
 uint32_t ulBitOffs; /* Offset in process image in bits */
} ECM_VAR_DESC, *PECM_VAR_DESC;

Members:

pszName

The variable name.

pszComment

(Optional) comment for this variable. Set to NULL if not present. To save memory you can
force the parser to ignore these comments in ENI file by setting
ECM_FLAG_CFG_SKIP_COMMENT.

usDataType

(Optional) data type of the variable. Set to ECM_VAR_DT_UNKNOWN if not available. The MSB of
the data type indicates if it is an input or output variable. If the MSB (ECM_FLAG_VAR_INPUT)
is set it is an input variable located in the input process image, otherwise it is an output
variable located in the output process image. To reduce ENI file processing time you can
force the parser to ignore this meta information by setting ECM_FLAG_CFG_SKIP_DATA_TYPE.
The following table contains the list of supported data types (see [7]):

Define ENI file type name Description
ECM_VAR_DT_UNKNOWN N/A Data type not available

ECM_VAR_DT_BOOL BOOL Boolean (True/False)

ECM_VAR_DT_BIT BIT Bit (0/1)

ECM_VAR_DT_SINT SINT 8 bit signed integer

ECM_VAR_DT_INT INT 16 bit signed integer

ECM_VAR_DT_DINT DINT 32 bit signed integer

ECM_VAR_DT_USINT USINT 8 bit unsigned integer

ECM_VAR_DT_UINT UINT 16 bit unsigned integer

ECM_VAR_DT_UDINT UDINT 32 bit unsigned integer

ECM_VAR_DT_REAL REAL Floating point (32 bit)

ECM_VAR_DT_STRING STRING(n) Sequence of n characters

ECM_VAR_DT_ARRAY_OF_BYTE ARRAY [0..n] OF BYTE Sequence of (n+1) BYTE

ECM_VAR_DT_ARRAY_OF_UINT ARRAY [0..n] OF UINT Sequence of (n+1) UINT

ECM_VAR_DT_INT24 INT24 24 bit signed integer

Page 246 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

Define ENI file type name Description
ECM_VAR_DT_LREAL LREAL Floating point (64 bit)

ECM_VAR_DT_INT40 INT40 40 bit signed integer

ECM_VAR_DT_INT48 INT48 48 bit signed integer

ECM_VAR_DT_INT56 INT56 56 bit signed integer

ECM_VAR_DT_ULINT LINT 64 bit signed integer

ECM_VAR_DT_UINT40 UINT40 40 bit unsigned integer

ECM_VAR_DT_UINT48 UINT48 48 bit unsigned integer

ECM_VAR_DT_UINT56 UINT56 56 bit unsigned integer

ECM_VAR_DT_ULINT ULINT 64 bit unsigned integer

ECM_VAR_DT_GUID GUID 128 bit GUID

ECM_VAR_DT_BYTE BYTE Octet field (1 byte)

ECM_VAR_DT_WORD WORD Octet field (2 byte)

ECM_VAR_DT_DWORD DWORD Octet field (4 byte)

ECM_VAR_DT_ARR8 BITARR8 Bit string (8 bit)

ECM_VAR_DT_ARR16 BITARR16 Bit string (16 bit)

ECM_VAR_DT_ARR32 BITARR32 Bit string (32 bit)

ECM_VAR_DT_BIT1 BIT1 Bit field (1 bit)

ECM_VAR_DT_BIT2 BIT2 Bit field (2 bit)

ECM_VAR_DT_BIT3 BIT3 Bit field (3 bit)

ECM_VAR_DT_BIT4 BIT4 Bit field (4 bit)

ECM_VAR_DT_BIT5 BIT5 Bit field (5 bit)

ECM_VAR_DT_BIT6 BIT6 Bit field (6 bit)

ECM_VAR_DT_BIT7 BIT7 Bit field (7 bit)

ECM_VAR_DT_BIT8 BIT8 Bit field (8 bit)

ECM_VAR_DT_BIT9 BIT9 Bit field (9 bit)

ECM_VAR_DT_BIT10 BIT10 Bit field (10 bit)

ECM_VAR_DT_BIT11 BIT11 Bit field (11 bit)

ECM_VAR_DT_BIT12 BIT12 Bit field (12 bit)

ECM_VAR_DT_BIT13 BIT13 Bit field (13 bit)

ECM_VAR_DT_BIT14 BIT14 Bit field (14 bit)

ECM_VAR_DT_BIT15 BIT15 Bit field (15 bit)

ECM_VAR_DT_BIT16 BIT16 Bit field (16 bit)

ECM_VAR_DT_ARRAY_OF_INT ARRAY [0..n] OF INT Sequence of (n+1) INT

ECM_VAR_DT_ARRAY_OF_SINT ARRAY [0..n] OF SINT Sequence of (n+1) SINT

ECM_VAR_DT_ARRAY_OF_UINT ARRAY [0..n] OF UINT Sequence of (n+1) UINT

ECM_VAR_DT_ARRAY_OF_UDINT ARRAY [0..n] OF UDINT Sequence of (n+1) UDINT

ECM_VAR_DT_PROP_AMSADDR N/A Unsupported TwinCAT AMS Adr

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 247 of 255

Data Types

Define ENI file type name Description
ECM_VAR_DT_PROP_AMSNETID N/A Unsupported TwinCAT NetID

ECM_VAR_DT_PROP_OCTID N/A Unsupported TwinCAT OCT Id

ECM_VAR_DT_INVALID N/A Data type is invalid

Table 32: Variable Data Types

In order to check if the data type describes an ENUM object you should use the macro
ECM_VAR_DT_IS_ENUM (see 5.25).

usBitSize

Data size of this variable in bits.

The application can figure out the number of elements of an array by dividing
the bit size of the variable by the size of its base data type.

ulBitOffset

Offset of this variable in the process image indicated by ECM_FLAG_VAR_INPUT in
usDataType in bits.

Page 248 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

7.2.38 ECM_VERSION

The structure contains the version of the EtherCAT master stack, utilized libraries as well as
additional information on the runtime environment.

Syntax:

typedef struct _ECM_VERSION
{
 uint16_t usVersionMaster; /* Revision of the master */
 uint16_t usVersionParser; /* Revision of the XML parser */
 uint32_t ulFeatures; /* Feature flags */
 uint32_t ulMinCycleTime; /* Minimum worker thread cycle time (us) */
 uint16_t usVersionZlib; /* Revision of the Zlib */
 uint16_t usVersionOs; /* Operating system version */
 uint16_t usTypeOs; /* Operating system */
 uint16_t usVersionHal; /* Revision of the HAL */
 uint16_t usVersionRemote; /* Revision of remote protocol */
 const char* pszBuildString; /* Build string */
} ECM_VERSION, *PECM_VERSION;

Members:

usVersionMaster
The version of the EtherCAT master stack.

usVersionParser
The version of the OS independent XML parser.

ulFeatureFlags
Bitmask with features supported by this version of the library.

Feature Flag Description
ECM_FEATURE_UDP_SUPPORT Supports EtherCAT over UDP.

ECM_FEATURE_ENI_SUPPORT Supports ENI based network configuration.

ECM_FEATURE_FILE_IO Supports file I/O for ENI configuration.

ECM_FEATURE_ASYNC_FRAME_SUPPORT Supports communication of application defined
asynchronous EtherCAT commands.

ECM_FEATURE_DIAGNOSTIC Supports extended diagnostic and error
information interface.

ECM_FEATURE_MBOX Supports mailbox communication.

ECM_FEATURE_ASYNC_MBOX_SUPPORT Supports communication of application defined
asynchronous mailbox communication.

ECM_FEATURE_COMPRESSED_ENI Supports (ZIP/GZ) compressed ENI configuration.

ECM_FEATURE_VIRTUAL_PORT Supports a virtual port for EoE on the target.

ECM_FEATURE_DC Supports Distributed Clocks (DC) configuration.

ECM_FEATURE_CABLE_REDUNDANCY Supports cable redundancy with 2nd NIC.

ECM_FEATURE_SLAVE_TO_SLAVE_COPY Supports slave to slave copy.

ECM_FEATURE_REMOTING Supports the remote access.

ECM_FEATURE_MASTER_SYNC Supports system tick adjustment (in the HAL).

ECM_FEATURE_LLD Supports Link Level Driver (in the HAL).

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 249 of 255

Data Types

Feature Flag Description
ECM_FEATURE_TRIAL_VERSION Indicates a time limited trial version of the

EtherCAT master.

ECM_FEATURE_DEBUG_BUILD Indicates a debug version of the EtherCAT master
which contains trace messages for debugging
purposes.

ECM_FEATURE_AOE Supports the ADS over EtherCAT (AoE) mailbox
protocol.

ECM_FEATURE_COE Supports the CAN application protocol over
EtherCAT (CoE) mailbox protocol.

ECM_FEATURE_EOE Supports the Ethernet over EtherCAT (EoE)
mailbox protocol and a virtual switch
implementation.

ECM_FEATURE_FOE Supports the File transfer over EtherCAT (FoE)
mailbox protocol.

ECM_FEATURE_SOE Supports the Servo drive profile over EtherCAT
(SoE) mailbox protocol.

ECM_FEATURE_VOE Supports the Vendor over EtherCAT (VoE) mailbox
protocol.

Table 33: Master Feature Flags

ulMinCycleTime
Minimum cycle time in us for the background worker threads controlled with
ecmProcessControl(). This value depends on the operating system and/or its current
configuration.

usVersionZlib
The version of the (ZIP) compression library if compressed ENI files are supported, indicated
by the feature flag ECM_FEATURE_COMPRESSED_ENI.

usVersionOs
The version of the target operating system.

usTypeOs
The bits 0..7 represent the type of the target operating system as defined in the table below
which can be masked with the ECM_OS_TYPE_MASK. For operating systems which support
little endian as well as big endian CPU architectures the ECM_OS_BIG_ENDIAN flag is set if the
CPU architecture is big endian. For a 64-bit architecture the ECM_OS_64BIT is set, otherwise
it is a 32-bit architecture.

All other bits of this value are reserved for future use and are set to 0.

OS Type Operating system

ECM_OS_TYPE_UNKNOWN Unknown or no operating system

ECM_OS_TYPE_WIN32 32-Bit / 64-bit Windows (XP or later)

ECM_OS_TYPE_LINUX Linux

ECM_OS_TYPE_NTO QNX/Neutrino 6.5 or later

ECM_OS_TYPE_VXWORKS VxWorks

ECM_OS_TYPE_RTX RTX / RTX64

Page 250 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Data Types

ECM_OS_TYPE_OS9 OS-9

ECM_OS_TYPE_FREE_RTOS FreeRTOS

Table 34: Operating System Types

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 251 of 255

Data Types

usVersionHal
The version of the Hardware Abstraction Layer (HAL).

usVersionRemote
The version of the remote protocol implementation.

pszBuildString
Platform specific string with build information which includes at least build date and time.

Remarks:

The members which contain a version are composed of major version (4 bit), minor version (4
bit) and a revision (8 bit).

Bit 12..15 Bit 8..11 Bit 0..7

Major Minor Revision

Example: The version 1.2.3 is represented as 0x1203.

Page 252 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Error Codes

8. Error Codes
This chapter describes the error codes which are used by the EtherCAT master. The application
can call ecmFormatError() to get a textual representation of the error (numbers) in various
formats.

8.1 Return codes
In case of an error the EtherCAT master functions return one of the following error codes.

Error code Error reason
ECM_SUCCESS No error

ECM_E_FAIL General error without more detailed reason.

ECM_E_UNSUPPORTED The requested operation is unsupported. As described in chapter
3.1 the master consists of a core component with several optional
modules. If a function requires a module which is not available this
error code is returned. With the help of the feature flags (see table
33) the available modules and services can be verified at runtime.

ECM_E_SIZE_MISMATCH The size of a buffer is too small to store the data.

ECM_E_INVALID_DATA Failed because the given data is invalid.

ECM_E_BUSY The request can not be executed because another request using
the same internal resources is still pending.

ECM_E_OUT_OF_MEMORY Failed because of an internal out of memory condition.

ECM_E_INVALID_PARAMETER Failed because a parameter of the request is invalid.

ECM_E_NOT_FOUND Failed because an object which is referenced by the request is not
present.

ECM_E_INVALID_STATE Failed because the current (EtherCAT) state does not allow this
request.

ECM_E_INTERNAL Failed because an internal error has occurred.

ECM_E_TIMEOUT The request timed out.

ECM_E_OPEN_ADAPTER Failed because the network adapter could not be opened.

ECM_E_TX_ERROR Failed because of a transmission error.

ECM_E_INVALID_HANDLE Failed because the handle defined in the request is invalid.

ECM_E_INIT_ADAPTER Failed because the network adapter could not be initialized.

ECM_E_INVALID_CMD Failed because the EtherCAT command is invalid.

ECM_E_INVALID_ADDR Failed because the address of an EtherCAT command is invalid.

ECM_E_NO_MBX_SLAVE Failed because the slave does not support a mailbox
communication (simple slave).

ECM_E_INVALID_MBX_CMD Failed because the EtherCAT mailbox command is invalid.

ECM_E_INVALID_SIZE Failed because the data size of the request is invalid.

ECM_E_PROTO Failed because of a general mailbox communication protocol error.

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 253 of 255

Error Codes

Error code Error reason
ECM_E_INVALID_OFFSET Failed because the offset index of the CoE request is not present in

the slave's object dictionary.

ECM_E_INVALID_INDEX Failed because the index of the CoE request is not present in the
slave's object dictionary.

ECM_E_INVALID_SUBINDEX Failed because the sub-index of the CoE request is not present in
the slave's object dictionary.

ECM_E_DATA_RANGE Failed because the data of a CoE request is validated as out of
range by the slave.

ECM_E_ACCESS CoE: Failed because the access type (read/write) for the CoE
object is not allowed by the slave.
FoE: Failed because the password and/or the file name of the
request is invalid.

ECM_E_OPEN_FILE Failed because the ENI configuration file could not be opened.

ECM_E_ENI Failed because of a syntax or parameter error parsing ENI data.

ECM_E_ARCHIVE Failed reading ZIP/GZ-compressed ENI data.

ECM_E_COMPAT Failed because of incompatibility reasons.

ECM_E_INCOMPLETE Failed because the requested operation was not completed.

ECM_E_NO_DC_REFCLOCK Failed because DC support is configured without specification of
the slave which is the DC master.

ECM_E_NO_DATA Internal return value of the HAL to indicate to the EtherCAT master
core that no more Ethernet frames are available for processing.
This is usually not passed to the application.

ECM_E_NO_DRV Failed because the NIC or filter driver for EtherCAT is not installed
or properly started

ECM_E_TRIAL_EXPIRED Failed because the trial period of an EtherCAT master stack trial
version is expired.

ECM_E_ABORTED An asynchronous CoE SDO request was aborted by the EtherCAT
slave. The abort code is returned with ecmCoeGetAbortCode().

ECM_E_CRC Returned by ecmWriteEeprom() if ESI EEPROM configuration
contains an invalid checksum.

ECM_E_DCM_SYNC_ACTIVE Failed because the local master tick re-adjustment is already
configured to follow a different DC reference clock.

ECM_E_CYCLE_TIME Missing cycle time configuration.

ECM_E_NO_LINK I/O operation failed because the NIC link is missing.

Table 35: API Return Codes

Page 254 of 255 Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 EtherCAT Master

Error Codes

8.2 FoE Error Codes
The FoE protocol defines several error codes to indicate (communication) errors during a FoE
transfer. These error codes are mapped to the API return codes described in the previous chapter
in the following way.

FoE Error code Master Error Code Error reason
ECM_FOE_ERR_NOT_DEFINED ECM_E_FAIL General error.

ECM_FOE_ERR_NOT_FOUND ECM_E_NOT_FOUND Object not found.

ECM_FOE_ERR_ACCESS ECM_E_ACCESS Access denied.

ECM_FOE_ERR_DISK_FULL ECM_E_OUT_OF_MEMORY Not enough memory to store the data.

ECM_FOE_ERR_ILLEAGAL ECM_E_INTERNAL Illegal

ECM_FOE_ERR_INVALID_PACKENO ECM_E_PROTO Invalid packet number.

ECM_FOE_ERR_EXISTS ECM_E_EXISTS Object already exists.

ECM_FOE_ERR_NOUSER ECM_E_FAIL No user.

ECM_FOE_ERR_BOOTSTRAP_ONLY ECM_E_INVALID_STATE Only allowed in bootstrap state.

ECM_FOE_ERR_NOT_BOOTSTRAP ECM_E_INVALID_STATE Not in bootstrap state.

ECM_FOE_ERR_NO_RIGHTS ECM_E_ACCESS Access error.

ECM_FOE_ERR_PROGRAM_ERROR ECM_E_INVALID_DATA Program Error.

Table 36: FoE Error Codes

EtherCAT Master Application Developers Manual • Doc. No.: P.4500.91 / Rev. 1.14 Page 255 of 255

	1. Introduction
	1.1 Scope
	1.2 Overview
	1.3 Features
	1.4 Limitations of the trial version
	1.5 Getting Started

	2. EtherCAT Technology
	2.1 Overview
	2.2 Network Topology
	2.3 Protocol
	2.4 Cable Redundancy
	2.5 EtherCAT State Machine (ESM)
	2.5.1 ESM Control

	2.6 Distributed Clocks (DC)
	2.6.1 Basic Principals
	2.6.2 Key Technical Parameters and Terms

	3. Implementation
	3.1 Architecture
	3.2 Hardware Abstraction Layer
	3.2.1 Default Link Layer Access
	3.2.2 Link Level Driver

	3.3 Programming Model
	3.4 Use Cases
	3.4.1 Cable Redundancy Mode
	3.4.2 Multi Master Mode I
	3.4.3 Multi Master Mode II

	3.5 Initialization
	3.6 Configuration
	3.6.1 EtherCAT Network Information (ENI)
	3.6.2 Ethernet Address

	3.7 Communication
	3.7.1 Data Exchange
	3.7.2 Cyclic Data
	3.7.3 Acyclic Data
	3.7.4 Background Worker Task
	3.7.5 Mailbox Support
	3.7.6 Asynchronous Requests
	3.7.7 ESI EEPROM Support

	3.8 Process Data
	3.8.1 Data Composition
	3.8.2 Memory allocation
	3.8.3 Process Variables and Endianness
	3.8.4 Virtual variables
	3.8.5 Slave-to-Slave Communication
	3.8.5.1 Topology Dependent
	3.8.5.2 Topology Independent

	3.9 Fail Safe over EtherCAT (FSoE)
	3.10 Mailbox Protocols
	3.10.1 Servo drive profile over EtherCAT (SoE)
	3.10.1.1 Data Blocks
	3.10.1.2 Data Access
	3.10.1.3 Procedure Commands
	3.10.1.4 SoE State Machine
	3.10.1.5 Process Data and Synchronization

	3.10.2 File Access over EtherCAT (FoE)

	3.11 Distributed Clocks (DC)
	3.11.1 Clock Synchronization
	3.11.2 Continuous Drift Compensation
	3.11.3 System Time Epoch
	3.11.4 SYNC Generation
	3.11.5 Master and Slave I/O Cycle
	3.11.6 Master Clock Synchronization
	3.11.6.1 Master Clock Shift
	3.11.6.2 Slave Clock Shift
	3.11.6.3 Direct DC

	3.12 Diagnostic and Error Detection
	3.12.1 Protocol and Communication Errors
	3.12.2 Slave State Monitoring
	3.12.3 DC Quality
	3.12.3.1 Sync Window Monitoring
	3.12.3.2 Master Jitter

	3.12.4 Performance Profiling
	3.12.5 Ethernet Frame Capturing

	3.13 Remote Access
	3.13.1 Control Mode
	3.13.2 Monitoring Mode
	3.13.3 ESDCP
	3.13.4 Network Ports

	4. Function Description
	4.1 Initialization
	4.1.1 ecmGetVersion
	4.1.2 ecmInitLibrary
	4.1.3 ecmGetNicList

	4.2 Configuration
	4.2.1 ecmReadConfiguration
	4.2.2 ecmGetSlaveHandle
	4.2.3 ecmGetSlaveHandleByAddr
	4.2.4 ecmUpdateSlave

	4.3 Network State Control
	4.3.1 ecmAttachMaster
	4.3.2 ecmDetachMaster
	4.3.3 ecmRequestSlaveState
	4.3.4 ecmRequestState
	4.3.5 ecmGetState

	4.4 Data Exchange
	4.4.1 ecmProcessAcyclicCommunication
	4.4.2 ecmProcessControl
	4.4.3 ecmProcessInputData
	4.4.4 ecmProcessOutputData

	4.5 Process Data
	4.5.1 ecmGetCopyVector
	4.5.2 ecmGetDataReference
	4.5.3 ecmGetVariable
	4.5.4 ecmLookupVariable

	4.6 Asynchronous Requests
	4.6.1 ecmAsyncRequest
	4.6.2 ecmAsyncRequests
	4.6.3 ecmReadEeprom
	4.6.4 ecmWriteEeprom

	4.7 CoE Protocol
	4.7.1 ecmCoeGetAbortCode
	4.7.2 ecmCoeGetEmcy
	4.7.3 ecmCoeGetEntryDescription
	4.7.4 ecmCoeGetObjDescription
	4.7.5 ecmCoeGetOdEntries
	4.7.6 ecmCoeGetOdList
	4.7.7 ecmCoeSdoDownload
	4.7.8 ecmCoeSdoUpload

	4.8 SoE Protocol
	4.8.1 ecmSoeDownload
	4.8.2 ecmSoeIdnToString
	4.8.3 ecmSoeStringToIdn
	4.8.4 ecmSoeUpload

	4.9 FoE Protocol
	4.9.1 ecmFoeDownload
	4.9.2 ecmFoeGetState
	4.9.3 ecmFoeUpload

	4.10 EoE Protocol
	4.10.1 ecmEoeGetConfig

	4.11 AoE Protocol
	4.11.1 ecmAoeGetAbortCode
	4.11.2 ecmAoeRead
	4.11.3 ecmAoeReadDeviceInfo
	4.11.4 ecmAoeReadState
	4.11.5 ecmAoeReadWrite
	4.11.6 ecmAoeWrite
	4.11.7 ecmAoeWriteControl

	4.12 VoE Protocol
	4.12.1 ecmVoeRead
	4.12.2 ecmVoeWrite

	4.13 Diagnostic and Status Data
	4.13.1 ecmGetCycleRuntime
	4.13.2 ecmGetDeviceState
	4.13.3 ecmGetDeviceStatistic
	4.13.4 ecmGetMasterState
	4.13.5 ecmGetMasterStatistic
	4.13.6 ecmGetNicStatistic
	4.13.7 ecmGetProfilingData
	4.13.8 ecmGetSlaveDiag
	4.13.9 ecmUpdateProfilingData

	4.14 ESI EEPROM Support
	4.14.1 ecmCalcEsiCrc
	4.14.2 ecmGetEsiCategoryList
	4.14.3 ecmGetEsiCategory

	4.15 Portability
	4.15.1 ecmBusyWait
	4.15.2 ecmCpuToLe
	4.15.3 ecmGetClockCycles
	4.15.4 ecmSleep

	4.16 Miscellaneous
	4.16.1 ecmDcToUnixTime
	4.16.2 ecmFormatError
	4.16.3 ecmGetPrivatePtr
	4.16.4 ecmSetPrivatePtr

	4.17 Remote Access Support
	4.17.1 ecmStartRemotingServer
	4.17.2 ecmStopRemotingServer

	4.18 Cleanup
	4.18.1 ecmDeleteMaster
	4.18.2 ecmDeleteDevice

	5. Macros
	5.1 ECM_CHANGE_STATION_ALIAS
	5.2 ECM_COE_ENTRY_DEFAULT_VALUE
	5.3 ECM_COE_ENTRY_MAX_VALUE
	5.4 ECM_COE_ENTRY_MIN_VALUE
	5.5 ECM_COE_ENTRY_NAME
	5.6 ECM_COE_ENTRY_UNIT
	5.7 ECM_EEPROM_TO_ECAT
	5.8 ECM_FOE_DATA_BYTES
	5.9 ECM_FOE_RESEND_REQUESTED
	5.10 ECM_GET_CAP_FRM_FLAGS
	5.11 ECM_GET_CAP_FRM_LENGTH
	5.12 ECM_GET_PORT_PHYSICS
	5.13 ECM_INIT
	5.14 ECM_INIT_MAC
	5.15 ECM_INIT_BROADCAST_MAC
	5.16 ECM_RELOAD_EEPROM
	5.17 ECM_SET_REMOTE_SERVER_PRIO
	5.18 ECM_SETUP_REMOTE_WATCHDOG
	5.19 ECM_SOE_ATTR_CONVERSION_FACTOR
	5.20 ECM_SOE_ATTR_DATA_LENGTH
	5.21 ECM_SOE_ATTR_DATA_TYPE
	5.22 ECM_SOE_ATTR_DECIMAL_PLACES
	5.23 ECM_SOE_GET_DRV_NO
	5.24 ECM_SOE_SET_DRV_NO
	5.25 ECM_VAR_DT_IS_ENUM

	6. Callback interface
	6.1 Event Callback Handler
	6.2 Cyclic Data Handler
	6.3 Link State Handler
	6.4 Adjust Master Clock Handler
	6.5 High Resolution Counter Handler
	6.6 Log Message Handler
	6.7 Frame Capture Handler
	6.8 FoE Handler
	6.8.1 FoE Download
	6.8.2 FoE Upload

	7. Data Types
	7.1 Simple Data Types
	7.1.1 ECM_COE_INFO_LIST_TYPE
	7.1.2 ECM_ETHERNET_ADDRESS
	7.1.3 ECM_HANDLE
	7.1.4 ECM_LINK_STATE
	7.1.5 ECM_NIC_TYPE

	7.2 EtherCAT specific data types
	7.2.1 ECM_AOE_DEVICE_INFO
	7.2.2 ECM_AOE_STATE
	7.2.3 ECM_CFG_INIT
	7.2.4 ECM_COE_EMCY
	7.2.5 ECM_COE_ENTRY_DESCRIPTION
	7.2.6 ECM_COE_OBJECT_DESCRIPTION
	7.2.7 ECM_COE_OD_LIST
	7.2.8 ECM_COE_OD_LIST_COUNT
	7.2.9 ECM_COPY_VECTOR
	7.2.10 ECM_DEVICE_DESC
	7.2.11 ECM_DEVICE_STATE
	7.2.12 ECM_DEVICE_STATISTIC
	7.2.13 ECM_EOE_CONFIG
	7.2.14 ECM_ESI_CATEGORY
	7.2.15 ECM_ESI_CATEGORY_HEADER
	7.2.16 ECM_FOE_STATE
	7.2.17 ECM_LIB_INIT
	7.2.18 ECM_LLD_DESC
	7.2.19 ECM_MASTER_DESC
	7.2.20 ECM_MASTER_STATE
	7.2.21 ECM_MASTER_STATISTIC
	7.2.22 ECM_MBOX_SPEC
	7.2.23 ECM_NIC
	7.2.24 ECM_NIC_STATISTIC
	7.2.25 ECM_PROC_CTRL
	7.2.26 ECM_PROC_DATA_TYPE
	7.2.27 ECM_PROFILING_DATA
	7.2.28 ECM_PROFILING_TYPE
	7.2.29 ECM_SLAVE_ADDR
	7.2.30 ECM_SLAVE_DESC
	7.2.31 ECM_SLAVE_DIAG
	7.2.32 ECM_SLAVE_STATE
	7.2.33 ECM_SOE_ARRAY8
	7.2.34 ECM_SOE_ARRAY16
	7.2.35 ECM_SOE_ARRAY32
	7.2.36 ECM_SOE_STRING
	7.2.37 ECM_VAR_DESC
	7.2.38 ECM_VERSION

	8. Error Codes
	8.1 Return codes
	8.2 FoE Error Codes

