
ELLSI Manual
EtherCAN Low Level Socket Interface

Software Manual

to Product C.2051.xx

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 1 of 27

 esd electronic system design gmbh
 Vahrenwalder Str. 207 • 30165 Hannover • Germany
 http://www.esd.eu
Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document, and assumes no
responsibility for any errors that may appear in this document. In particular descriptions and
technical data specified in this document may not be constituted to be guaranteed product features
in any legal sense.

esd reserves the right to make changes without notice to this, or any of its products, to improve
reliability, performance or design.

All rights to this documentation are reserved by esd. Distribution to third parties, and reproduction
of this document in any form, whole or in part, are subject to esd's written approval.

© 2014 esd electronic system design gmbh, Hannover

esd electronic system design gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Phone: +49-511-372 98-0

Fax: +49-511-372 98-68

E-Mail: info@esd.eu

Internet: www.esd.eu

Trademark Notices

All trademarks, product names, company names or company logos used in this manual are reserved by their respective
owners.

Page 2 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

http://www.esd.eu/
mailto:info@esd.eu

Document file: I:\Texte\Doku\MANUALS\PROGRAM\CAN\ELLSI\ELLSI_Manual_en_17.odt

Date of print: 2014-01-14

Document type
number:

DOC0800

ELLSI version: 2.0.1

Document History

The changes in the document listed below affect changes in the software as well as changes in the
description of the facts, only.

Revision Chapter Changes versus previous version Date

1.6

- Converted to new manual template / editorial changes

2013-04-17

2.5.1
Updated statement about sequence numbering. (CAN
telegrams have own numbering separated from other
telegrams)

2.6 Added new command ELLSI_CMD_UNREGISTER.

2.6.8

Added new sub-commands ELLSI_IOCTL_CAN_STATUS,
ELLSI_IOCTL_BUS_STATISTIC,
ELLSI_IOCTL_GET_TIMESTAMP,
ELLSI_IOCTL_GET_TIMESTAMP_FREQ and
ELLSI_IOCTL_GET_SERIAL.

2.6.5 ellsiExtRegistration struct was enhanced.

2.6.4,
2.6.8.4

ELLSI_CMD_REGISTER and
ELLSI_IOCTL_SET_SJA1000_ACMR now deprecated.

2.4 Added chapter “Future protocol changes/enhancements”.

3. Added chapter “ELLSI over WebSocket”.

1.7 2.6.5 Added flag to “ELLSI_CMD_REGISTERX” 2014-01-14

Technical details are subject to change without further notice.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 3 of 27

Table of contents
1. Overview..6

1.1 Intention...6
1.2 Functional principle..6
1.3 ELLSI vs. esd NTCAN API...6
1.4 Restrictions..7

 1.4.1 ELLSI API..7
 1.4.2 Number of client connections..7
 1.4.3 TCP/IP vs. UDP/IP..7
 1.4.4 CAN interaction...7
 1.4.5 Some thoughts about performance...7

2. The ELLSI-Protocol..8
2.1 Data layout...8
2.2 Port.. 8
2.3 Byte order..8
2.4 Future protocol changes/enhancements..8
2.5 Header...9

 2.5.1 Sequence numbering..9
2.6 Commands..10

 2.6.1 Numerical values of commands...10
 2.6.2 Numerical values of sub-commands..10
 2.6.3 ELLSI_CMD_NOP...10
 2.6.4 ELLSI_CMD_REGISTER..11
 2.6.5 ELLSI_CMD_REGISTERX..11
 2.6.6 ELLSI_CMD_CAN_TELEGRAM...13

2.6.6.1 ellsiCMSG_T...13
2.6.6.2 ELLSI_SUBCMD_TXDONE..15

 2.6.7 ELLSI_CMD_HEARTBEAT...15
 2.6.8 ELLSI_CMD_CTRL...16

2.6.8.1 ELLSI_IOCTL_CAN_ID_ADD/DELETE..16
2.6.8.2 ELLSI_IOCTL_CAN_SET_BAUDRATE..17
2.6.8.3 ELLSI_IOCTL_CAN_GET_BAUDRATE...18
2.6.8.4 ELLSI_IOCTL_SET_SJA1000_ACMR..18
2.6.8.5 ELLSI_IOCTL_GET_LAST_STATE..19
2.6.8.6 ELLSI_IOCTL_CAN_STATUS..20
2.6.8.7 ELLSI_IOCTL_BUS_STATISTIC..21
2.6.8.8 ELLSI_IOCTL_GET_TIMESTAMP...22
2.6.8.9 ELLSI_IOCTL_GET_TIMESTAMP_FREQ..23
2.6.8.10 ELLSI_IOCTL_GET_SERIAL..24
2.6.8.11 ELLSI_SUBCMD_AUTOACK...24

 2.6.9 ELLSI_CMD_UNREGISTER...25

3. ELLSI over WebSocket..26

4. Order Information...27

Page 4 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

Overview

1. Overview

1.1 Intention
ELLSI offers the possibility to use an esd EtherCAN/2 on all platforms not (yet) supported by esd
NTCAN drivers (e.g. Mac OS, PLCs with Ethernet capability, etc.).

For all platforms with an existing NTCAN driver, we suggest to use NTCAN instead of ELLSI for
communication with the EtherCAN/2.

1.2 Functional principle
We tried to develop ELLSI as simple as possible. We don’t provide an API to use ELLSI, but there
is some sample code, which should help you to build such an API yourself. Using ELLSI is “simply”
assembling UDP-datagrams plus transmitting them to the ELLSI-server on the esd EtherCAN/2
and analysing UDP-datagrams obtained from the ELLSI-server on the esd EtherCAN/2 hardware.

At first the ELLSI-client has to register itself at the ELLSI-server. After this, both sides have to send
heartbeat-messages at regular intervals if there is no data exchange.

If the client has not received any data or heartbeat from the server within a given time interval, the
client will assume that the server has disappeared. Maybe the network connection is broken,
somebody did a reset on the EtherCAN/2, etc. In consequence of this, the client has to try to
register at the server again.

If the server has not seen any data or heartbeat from the client within a given time interval, it
assumes the client has disappeared. The server no longer transfers any data and heartbeat to the
client then.

After the client has registered itself, it must set a baud rate and enable all CAN IDs it wants to
receive data for. Now the client is ready for transmission and reception of CAN telegrams.

To be sure CAN telegrams are sent / received in correct order, there is a sequence number.

1.3 ELLSI vs. esd NTCAN API
esd carefully tried to develop ELLSI as compatible as possible with the standard esd NTCAN API.
We would therefore recommend to read the esd NTCAN API documentation in parallel to this
document. The esd NTCAN API documentation far often delivers more detailed information about
the esd NTCAN philosophy than this document.

Page 6 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

Overview

1.4 Restrictions

1.4.1 ELLSI API
esd electronics does not support and maintain an official API for ELLSI, but you can use the
provided examples, in particular ellsiCommon.c, ellsiCommon.h in combination with ellsiClnt.c and
ellsiClnt.h as a base for your personal ELLSI API. For all platforms with an existing NTCAN driver,
we suggest to use NTCAN instead of ELLSI for communication with the esd EtherCAN/2.

1.4.2 Number of client connections
The number of client connections to the ELLSI server is currently limited to 8, to not overstrain the
EtherCAN/2 hardware.

1.4.3 TCP/IP vs. UDP/IP
At the moment the ELLSI-server only supports UDP. For future versions it is planned to also
support TCP-connections. (See also chapter 3., “ELLSI over WebSocket”)

1.4.4 CAN interaction
The standard esd NTCAN drivers maintain a feature called interaction. This feature allows CAN
messages transmitted on a certain CAN ID on a certain CAN bus also to be received by other
processes reading CAN messages on the same physical CAN bus (CAN card). ELLSI does not
support this feature in the current release. But for future releases it is planned to allow the user to
reactivate interaction (as optional parameter for the ELLSI_CMD_REGISTERX command).

1.4.5 Some thoughts about performance
Here are some proposals to maximize ELLSI performance on an esd EtherCAN/2:

• Try to send as many CAN TX messages as possible in one ELLSI telegram. Furthermore,
the ELLSI server automatically tries to pack multiple CAN RX messages into a single ELLSI
telegram to improve the performance (use ELLSI_REGFLAG_CANMAXTHROUGHPUT in
RegisterX telegram to provoke this)

• Only enable those CAN IDs for reception you’re really interested in
• Minimize the number of clients connected to the ELLSI server
• Make use of the auto-acknowledge (ELLSI_SUBCMD_AUTOACK) feature wherever it is

possible
• If your application allows it, avoid sending CAN TX telegrams using the TX-DONE feature

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 7 of 27

The ELLSI-Protocol

2. The ELLSI-Protocol

2.1 Data layout
The data always consists of a header plus trailing payload data. The payload data itself consists of
the data according to a single command or to n-CAN-telegrams.

Header Command data or n * ellsiCMSG_T

Thus it is possible to send or receive multiple CAN telegrams at the “same” time. Using this feature
you can greatly improve the performance of the esd EtherCAN/2.

2.2 Port
The default port for the ELLSI UDP server is 2209.

2.3 Byte order

Attention:
All ELLSI-telegram data has to be given (or is given) in network byte order! (i.e. most
significant byte first)

E.g. Intel x86 processors host byte order is least significant byte first. So always be aware of your
host byte order before assembling ELLSI-telegrams!

2.4 Future protocol changes/enhancements
To stay compatible to future protocol changes an ELLSI client must set reserved values to 0 when
sending telegrams to the server and ignore reserved/unknown values from server.
Additionally a client must accept increasing payload lengths from server and ignore the new, not
yet known to him, content.
It’s also recommended to avoid ELLSI_CMD_REGISTER and to use ELLSI_CMD_REGISTERX
instead – that includes the client’s supported protocol version (use ELLSI_IOCTL_CAN_STATUS
to obtain the server’s protocol version).

Page 8 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.5 Header
The header mentioned above looks like this (see ellsiCommon.h):
typedef struct {

uint32_t magic;
uint32_t sequence;
uint32_t command;
uint32_t payloadLen;
uint32_t subcommand;
union {

int32_t i[8];
int8_t c[32];

} reserved;
} ellsiHeader;

Member Size Description

magic unsigned 32-bit

Magic number: ELLSI_MAGIC = 0x454c5349
It’s mandatory to have this value (switched to network byte
order!) in every ELLSI telegram. ELLSI clients should first
check this value before doing anything else with a received
ELLSI telegram.

sequence unsigned 32-bit Sequence number or 0

command unsigned 32-bit ELLSI_CMD_* (see ellsiCommon.h)

payloadLen unsigned 32-bit Length of payload data (in bytes)

subcommand unsigned 32-bit ELLSI_SUBCMD_* or ELLSI_IOCTL_* (see ellsiCommon.h)

reserved 32 bytes For future protocol extensions

2.5.1 Sequence numbering
UDP does not guarantee to receive the datagrams in the same order they were transmitted. In
local Ethernets without routing, you normally don’t have to bother about this. To avoid sending
CAN telegrams in wrong order to the CAN bus, the ELLSI-client can make use of the sequence-
element. If sequence equals zero, the ELLSI- server does not take care of the sequence number
and unconditionally will send CAN telegrams to the CAN-bus. If non-zero, the ELLSI-server
discards CAN TX telegrams if the sequence number is less or equal to the sequence number of
the last CAN TX telegram.

For the other direction, the ELLSI-server will increment the sequence-element for every telegram
send to the ELLSI-client (while CAN telegrams have a separated squence number).

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 9 of 27

The ELLSI-Protocol

2.6 Commands

2.6.1 Numerical values of commands
You can find the following defines in ellsiCommon.h:
ELLSI_CMD_NOP 0
ELLSI_CMD_CAN_TELEGRAM 1
ELLSI_CMD_HEARTBEAT 2
ELLSI_CMD_CTRL 3
ELLSI_CMD_REGISTER 4
ELLSI_CMD_REGISTERX 5
ELLSI_CMD_UNREGISTER 6

2.6.2 Numerical values of sub-commands
You can find the following defines in ellsiCommon.h:
ELLSI_IOCTL_NOP 0
ELLSI_SUBCMD_NONE 0
ELLSI_IOCTL_CAN_ID_ADD 1
ELLSI_IOCTL_CAN_ID_DELETE 2
ELLSI_IOCTL_CAN_SET_BAUDRATE 3
ELLSI_IOCTL_CAN_GET_BAUDRATE 4
ELLSI_IOCTL_GET_LAST_STATE 5
ELLSI_IOCTL_SET_SJA1000_ACMR 6
ELLSI_IOCTL_CAN_STATUS 7
ELLSI_IOCTL_BUS_STATISTIC 8
ELLSI_IOCTL_GET_TIMESTAMP 9
ELLSI_IOCTL_GET_TIMESTAMP_FREQ 10
ELLSI_IOCTL_GET_SERIAL 11
ELLSI_SUBCMD_TXDONE 128
ELLSI_SUBCMD_AUTOACK 256

2.6.3 ELLSI_CMD_NOP
A type of no-operation command:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_NOP

payloadLen 0

subcommand 0

reserved 0

ELLSI_CMD_NOP will always set lastState to 0.

Page 10 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.4 ELLSI_CMD_REGISTER
As the first operation the ELLSI-client has to register itself at the ELLSI-server. Therefore a
telegram like this must be set up:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_REGISTER

payloadLen 0

subcommand 0 or ELLSI_SUBCMD_AUTOACK

reserved 0

This command is deprecated, please use ELLSI_CMD_REGISTERX instead.
(ELLSI_CMD_REGISTER is still supported for backward-compatibility)

lastState is set to 0 for successful registration. All values unequal to 0 stand for a failed
registration.

2.6.5 ELLSI_CMD_REGISTERX
This command supersedes the register command described above, it allows the user to have
influence on some ELLSI-server parameters and informs the server about the client’s protocol
version. For that you need to setup a telegram like this:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_REGISTERX

payloadLen sizeof(ellsiExtRegistration)

subcommand 0 or ELLSI_SUBCMD_AUTOACK

reserved 0

Payload ellsiExtRegistration

The ellsiExtRegistration structure mentioned above looks like this:
typedef struct {

uint32_t heartBeatIntervall;
uint32_t clientDeadMultiplier;
uint32_t canTxQueueSize;
uint32_t canRxQueueSize;
uint32_t socketSendMaxNTelegrams;
uint32_t socketSendIntervall;
uint16_t flags;
uint8_t clientProtocolVersion;
uint8_t netNumber;
uint32_t reserved[7];

} ellsiExtRegistration;

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 11 of 27

The ELLSI-Protocol

Member Size Description

heartBeatIntervall
unsigned

32-bit

ELLSI server heartbeat interval in ms. Use 0 for
default value (default is 2500 ms).
The valid range is 250 <= x <= 30000.

clientDeadMultiplier
unsigned

32-bit

After
clientDeadMultiplier / 10 * heartBeatTime [ms] we
assume a client as “dead”. Use 0 for default value.
Default is 30 (which is equivalent to a multiplier of
30/10 = 3.0).
The valid range is 10 <= x <= 100.

canTxQueueSize
unsigned

32-bit

Size of message queue used for CAN TX telegrams
Use 0 for default (default is 128).
The valid range is 1 <= x <= 2048.

canRxQueueSize
unsigned

32-bit

Size of queue used for CAN RX telegrams. Use 0 for
default (default is 512). The valid range is 1 <= x <=
2048.

socketSendMaxNTelegrams
unsigned

32-bit

Maximum numbers of CAN RX telegrams to store in a
UDP telegram. Use 0 for default.
(default is CAN_READ_MAXLEN= 50)
The valid range is
1 <= x <= CAN_READ_MAXLEN.

socketSendIntervall
unsigned

32-bit

Try to collect CAN RX data for up to
socketsendintervall ms before sending an UDP
telegram to the client.
Use 0 for default (default is 0 ms).
<Not yet implemented>

flags
unsigned

16-bit

Ignored when clientProtocolVersion is 0.
Bit 0: netNumber is valid.
Bit 1: maximize CAN throughput (try to send multiple
frames in a single telegram, by small delay)

clientProtocolVersion
unsigned

8-bit
Value from ELLSI_PROTOCOL_VERSION #define
shall be used.

netNumber
unsigned

8-bit
CAN net number on server side that shall be used.
(Needs bit in flags to be enabled, see above)

reserved[7]
7x

unsigned
32-bit

Reserved for future use (set to 0)

lastState is set to 0 for successful registration. Non-zero values indicate failed registration.

Page 12 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.6 ELLSI_CMD_CAN_TELEGRAM
ELLSI telegram layout for received CAN telegrams and CAN telegrams to be send:

Header

magic ELLSI_MAGIC

sequence Sequence# [or 0]

command ELLSI_CMD_CAN_TELEGRAM

payloadLen n * sizeof(ellsiCMSG_T)

subcommand 0 [or ELLSI_SUBCMD_TXDONE]

reserved 0

Payload

ellsiCMSG_T #1

...

ellsiCMSG_T #n

2.6.6.1 ellsiCMSG_T

The ellsiCMSG_T data structure of CAN messages mentioned above looks like this:
typedef struct {

uint32_t id;
uint8_t len;
uint8_t msg_lost;
uint8_t reserved[2];
uint8_t data[8];
ellsiCAN_TIMESTAMP timestamp;

} ellsiCMSG_T;

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 13 of 27

The ELLSI-Protocol

Member Size Description

id unsigned 32-bit
11- or 29-bit CAN ID data was received on or data should be
transmitted on

len unsigned 8-bit

Bit 0-3 : Number of CAN data bytes [0..8]
Bit 4 : RTR
Bit 5 : TXDONE (see ELLSI_SUBCMD_TXDONE)
Bit 6-7 : Reserved

msg_lost unsigned 8-bit

Counter for lost CAN RX messages. Allows the user to detect
data overrun on server side:
msg_lost = 0 : no lost messages
0 < msg_lost < 255 : # of lost frames = value of msg_lost
msg_lost = 255 : # of lost frames ≥ 255

reserved[2]
2x

unsigned 8-bit

Only meaningful together with ELLSI_SUBCMD_TXDONE.
In this case used to allow association of TX-DONE messages
with previously sent CAN TX messages
(see ELLSI_SUBCMD_TXDONE)

data[8]
8x

unsigned 8-bit
CAN data bytes

timestamp 64-bit

Time stamp for CAN RX messages.
See also ELLSI_IOCTL_GET_TIMESTAMP_FREQ and ELLSI_
IOCTL_GET_TIMESTAMP.
Must be set to 0 for CAN TX messages

To ease porting applications between ELLSI and NTCAN, this structure is compatible to the
CMSG_T-structure in the esd NTCAN API. (see ntcan.h)

Note:

The msg_lost member does not reflect messages lost by lost ELLSI telegrams – the
actual number of lost frames can be much higher.

lastState, after issuing a CAN TX message using ELLSI_CMD_CAN_TELEGRAM, contains the
return value given by the canSend()-function of the esd NTCAN API. Concrete, 0 stands for
successful completion of canSend() and the respective ELLSI_CMD_CAN_TELEGRAM-command.
All non-zero values will indicate an error condition.

Seeing lastState as 0 indicates successful completion of the ELLSI-server internal canSend()-
command, but does not necessarily indicate a successful transmission of the corresponding
CAN frame(s) on the CAN bus, because canSend() is a non-blocking function! Therefore, if you
are interested in knowing, if the appropriate CAN telegram has been successfully send on the CAN
bus, lastState will not help you. See ELLSI_SUBCMD_TXDONE instead.

Page 14 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.6.2 ELLSI_SUBCMD_TXDONE

As mentioned above, requesting the last state of an ELLSI_CMD_CAN_TELEGRAM command
does not necessarily indicate a successful transmission of a CAN telegram to the CAN bus. If
you’ve the need to know if your CAN telegram was successfully transmitted, don’t query lastState.
Instead, while assembling a CAN TX message using ELLSI_CMD_CAN_TELEGRAM, set the
headers subcommand element to ELLSI_SUBCMD_TXDONE. The ELLSI-server then will send
you a transfer-done message (TX-DONE message) after successful transmission on the CAN bus.
This TX-DONE message is assembled very similar to a “normal” CAN RX telegram.

To distinguish a normal CAN telegram from a TX-DONE telegram, the length element in the
corresponding ellsiCMSG_T is logically ORed with ELLSI_CMSGT_LEN_TXDONE (0x20).
Additionally, the two reserved bytes in ellsiCMSG_T are echoed back! If you e.g. set this two
reserved bytes to the two last significant bytes of the sequence number, you will easily be allowed
to associate a received TX-DONE to a previously sent CAN telegram.

In short:

TXDONE frames are received like all other CAN frames and identified by a bit in the len
member.

2.6.7 ELLSI_CMD_HEARTBEAT
Both sides (ELLSI-client and ELLSI-server) have to send heartbeat-messages at regular intervals if
there is no data exchange. At the moment this interval is fix 2500 ms. Future releases will add the
possibility to change the interval(s) used by the ELLSI-server.

If the client has not seen any data or heartbeat from the server within a given time interval, the
client will assume that the server has disappeared. Maybe the network connection is broken,
somebody did a reset on the EtherCAN/2, etc. In consequence of this, the client has to try to
register at the server again.

If the server has not seen any data or heartbeat from the client within a given time interval, it
assumes the client as disappeared. The ELLSI-server no longer will transfer any data and
heartbeat to the client then.

Telegram layout for a heartbeat message:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_HEARTBEAT

payloadLen 0

subcommand 0

reserved 0

ELLSI_CMD_HEARTBEAT will (contrary to the very similar looking ELLSI_CMD_NOP command)
not set lastState.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 15 of 27

The ELLSI-Protocol

2.6.8 ELLSI_CMD_CTRL
Setting the headers command element to ELLSI_CMD_CTRL, the client can send special
commands to the ELLSI-server. This special commands are specified by setting the headers
subcommand element.

Currently the following sub-commands exist:

2.6.8.1 ELLSI_IOCTL_CAN_ID_ADD/DELETE

By means of ELLSI_IOCTL_CAN_ID_ADD the client can enable CAN IDs for reception. Using
ELLSI_IOCTL_CAN_ID_DELETE the client can disable (previously enabled) IDs, to no longer
receive data on this CAN IDs.

The IDs to be enabled or disabled are given in the efficient form of an array of ellsiCanIdRange
structures. Telegram layout for enabling / disabling CAN IDs:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen n * sizeof(ellsiCanIdRange)

subcommand

ELLSI_IOCTL_CAN_ID_ADD
or

ELLSI_IOCTL_CAN_ID_DELETE

reserved 0

Payload

ellsiCanIdRange #1

...

ellsiCanIdRange #n

ellsiCanIdRange:
typedef struct {

uint32_t rangeStart;
uint32_t rangeEnd;

} ellsiCanIdRange;

Member Size Description

rangeStart unsigned 32-bit
Interval start, CAN ID(s) to be enabled for reception / disabled
from reception

rangeEnd unsigned 32-bit
Interval end, CAN ID(s) to be enabled for reception / disabled
from reception

The complete range, including rangeStart and rangeEnd itself, will be enabled or disabled. If
rangeEnd is less or equal to rangeStart, only the CAN ID given by rangeStart will be enabled or
disabled.

lastState is set to 0 for success, non-zero for failure.

Page 16 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.8.2 ELLSI_IOCTL_CAN_SET_BAUDRATE

By means of this sub-command you can set the baud rate to be used on the CAN bus.

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_CAN_SET_BAUDRATE

reserved 0

Payload baudrate

Baud rate values
baudrate has to be seen as a 32-bit unsigned integer. The predefined baud rates are:

Baud
rate

CAN bit
rate

[kbit/s]
0x0 1000

0x1 666.6

0x2 500

0x3 333.3

0x4 250

0x5 166

0x6 125

0x7 100

0x8 66.6

0x9 50

0xA 33.3

0xB 20

0xC 12.5

0xD 10

If the LSB (bit 31) of parameter baudrate is set to 1, the value will be evaluated differently. In this
case, the register value for the bit-timing registers BTR0 and BTR1 transmitted in modules with
CAN controllers 82C200, SJA1000, 82527 (and all other controllers with this baud rate structure) is
defined directly. For further information on this topic, see our esd NTCAN API documentation.

lastState represents the return value of NTCAN canSetBaudrate(), so 0 stands for success and
non-zero for failure.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 17 of 27

The ELLSI-Protocol

2.6.8.3 ELLSI_IOCTL_CAN_GET_BAUDRATE

To read back the currently baud rate set on the EtherCAN/2, send the following telegram to the
ELLSI-server:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_CAN_GET_BAUDRATE

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_CAN_GET_BAUDRATE

reserved 0

Payload baudrate

There should be no reason for anyone to query the lastState after an
ELLSI_IOCTL_CAN_GET_BAUDRATE. Nevertheless, if you do it:

0 means NTCAN canGetBaudrate()-function and the ELLSI-server completed successfully, non-
zero means failure.

2.6.8.4 ELLSI_IOCTL_SET_SJA1000_ACMR

Deprecated. Not available in EtherCAN/2.

Page 18 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.8.5 ELLSI_IOCTL_GET_LAST_STATE

ELLSI_IOCTL_GET_LAST_STATE allows to get some information about the last command
processed by ELLSI on the EtherCAN/2 module and will most times be used to see, if important
commands, like registering the client, setting the baud rate or enabling CAN IDs, etc., reached the
ELLSI-server and were successfully processed.

To request the “last state” from the ELLSI-server send the following telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_GET_LAST_STATE

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen sizeof(ellsiLastState)

subcommand ELLSI_IOCTL_GET_LAST_STATE

reserved 0

Payload ellsiLastState

ellsiLastState:
typedef struct {

uint32_t lastCommand;
uint32_t lastSubcommand;
int32_t lastState;
uint32_t lastRxSeq;
uint32_t reserved[4];

} ellsiLastState;

Member Size Description

lastCommand
unsigned

32-bit

Last command processed by the ELLSI-server:
ELLSI_CMD_NOP, ELLSI_CMD_CAN_TELEGRAM,
ELLSI_CMD_HEARTBEAT, etc.

lastSubcommand
unsigned

32-bit

Last sub-command processed by ELLSI-server:
ELLSI_IOCTL_NOP, ELLSI_IOCTL_CAN_ID_ADD,
ELLSI_IOCTL_CAN_SET_BAUDRATE, etc.

lastState 32-bit
For states returned by the commands and sub-commands see
the corresponding descriptions of commands and sub-
commands

lastRxSeq
unsigned

32-bit
The last sequence number the ELLSI-client sent by the
appropriate command to the ELLSI-server

reserved 16 bytes For future protocol extensions

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 19 of 27

The ELLSI-Protocol

2.6.8.6 ELLSI_IOCTL_CAN_STATUS

CAN_IF_STATUS:
typedef struct
{

uint16_t hardware;
uint16_t firmware;
uint16_t driver;
uint16_t dll;
uint32_t boardstatus;
uint8_t boardid[14];
uint16_t features;

} CAN_IF_STATUS;

Please refer to NTCAN API manual for details. Only the dll member has a different meaning with
ELLSI: it’s the server’s ELLSI protocol version.

To request the interface status from the ELLSI-server send the following telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_CAN_STATUS

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 4 + sizeof(CAN_IF_STATUS)

subcommand ELLSI_IOCTL_CAN_STATUS

reserved 0

Payload
result (unsigned 32-bit)

CAN_IF_STATUS

When result is non-zero only the dll member (the server’s ELLSI protocol version) is valid. The
lastState value is set to result.

Page 20 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.8.7 ELLSI_IOCTL_BUS_STATISTIC

NTCAN_BUS_STATISTIC:
typedef struct
{

uint64_t timestamp;
NTCAN_FRAME_COUNT rcv_count;
NTCAN_FRAME_COUNT xmit_count;
uint32_t ctrl_ovr;
uint32_t fifo_ovr;
uint32_t err_frames;
uint32_t rcv_byte_count;
uint32_t xmit_byte_count;
uint32_t aborted_frames;
uint32_t reserved[2];
uint64_t bit_count;

} NTCAN_BUS_STATISTIC;

NTCAN_FRAME_COUNT:
typedef struct {

uint32_t std_data;
uint32_t std_rtr;
uint32_t ext_data;
uint32_t ext_rtr;

} NTCAN_FRAME_COUNT;

Please refer to NTCAN API manual for details.

To request the bus statistics from the ELLSI-server send the following telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_BUS_STATISTIC

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 4 + sizeof(NTCAN_BUS_STATISTIC)

subcommand ELLSI_IOCTL_BUS_STATISTIC

reserved 0

Payload
result (unsigned 32-bit)

NTCAN_BUS_STATISTIC

When result is non-zero NTCAN_BUS_STATISTIC is not valid. The lastState value is set to result.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 21 of 27

The ELLSI-Protocol

2.6.8.8 ELLSI_IOCTL_GET_TIMESTAMP

To request the current CAN timestamp from the ELLSI-server send the following telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_GET_TIMESTAMP

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 12

subcommand ELLSI_IOCTL_GET_TIMESTAMP

reserved 0

Payload
result (unsigned 32-bit)

timestamp (unsigned 64-bit)

When result is non-zero timestamp is not valid. The lastState value is set to result.

Page 22 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.8.9 ELLSI_IOCTL_GET_TIMESTAMP_FREQ

To request the CAN timestamp frequency (in Hz) from the ELLSI-server send the following
telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_GET_TIMESTAMP_FREQ

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 12

subcommand ELLSI_IOCTL_GET_TIMESTAMP_FREQ

reserved 0

Payload
result (unsigned 32-bit)

timestampFrequency (unsigned 64-bit)

When result is non-zero timestampFrequency is not valid. The lastState value is set to result.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 23 of 27

The ELLSI-Protocol

2.6.8.10 ELLSI_IOCTL_GET_SERIAL

To request the device serial number from the ELLSI-server send the following telegram:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_CTRL

payloadLen 4

subcommand ELLSI_IOCTL_GET_SERIAL

reserved 0

As answer you will get a telegram like this:

Header

magic ELLSI_MAGIC

sequence x

command ELLSI_CMD_CTRL

payloadLen 8

subcommand ELLSI_IOCTL_GET_SERIAL

reserved 0

Payload
result (unsigned 32-bit)

serial (32 bit)

When result is non-zero serial is not valid. The lastState value is set to result. Please refer to
NTCAN API manual for details about the serial number format.

2.6.8.11 ELLSI_SUBCMD_AUTOACK

To speed up the procedure of sending a command and afterwards using
ELLSI_IOCTL_GET_LAST_STATE to request the state of this command, we introduced
ELLSI_SUBCMD_AUTOACK.

By a disjunction of subcommand with ELLSI_SUBCMD_AUTOACK, the ELLSI-server will
automatically generate a telegram analogue to the one generated by using the
ELLSI_IOCTL_GET_LAST_STATE described above.

Page 24 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

The ELLSI-Protocol

2.6.9 ELLSI_CMD_UNREGISTER
As UDP is connection-less a “disconnected” client could be recognized only by timeouts. With
version 2.0.0 of the ELLSI-server this command has been added to optionally perform a proper
“disconnect”.
As the client is usually “cleared” immediately when the server receives this command it’s not valid
to request lastState afterwards (and the server usually won’t respond to it).

Send this telegram to unregister:

Header

magic ELLSI_MAGIC

sequence 0

command ELLSI_CMD_UNREGISTER

payloadLen 0

subcommand 0

reserved 0

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 25 of 27

ELLSI over WebSocket

3. ELLSI over WebSocket
Beginning with Version 2.0.0 of the ELLSI-server it also supports the WebSocket protocol, which is
TCP/IP based.
The UDP Datagrams described here can be imagined as WebSocket messages then – the
protocol remains the same, which means:

• The server will still unregister idle clients – although TCP is connection oriented
• The server will still ignore CAN telegrams with wrong sequence number – although TCP

guarantees ordered packets
• and so on

The EtherCAN/2 supports using ELLSI over WebSocket parallel to ELLSI over UDP, each of it with
its own limit of max clients – it’s not recommended to exhaust these limits, see also 1.4.5, “Some
thoughts about performance”.

Page 26 of 27 Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 ELLSI Manual

Order Information

4. Order Information

Type Properties Order No.

EtherCAN/2
Ethernet-CAN-Gateway
(Incl. CAN-DRV-CD Windows/Linux)

C.2051.02

Software

CAN-DRV-CD
Windows/Linux

CAN-DRV-CD CD-ROM Windows & Linux
(Incl. Hostdrivers for EtherCAN/2, incl. ELLSI
samples)

*

* Current drivers are available for download at www.esd.eu

Table 1: Order information

PDF Manuals
Manuals are available in English and usually in German as well. For availability of English manuals
see table below.
Please download the manuals as PDF documents from our esd website www.esd.eu for free.

Manuals Order No.

ELLSI Manual-ME ELLSI manual in English – this manual C.2051.23

CAN-API-ME

NTCAN Part 1: Structure, Function and C/C++ API,
Application Developers Manual (English)

NTCAN Part 2: Installation, Configuration and
Firmware Update, Installation Guide (English)

C.2001.21

Table 2: Available manuals

Printed Manuals
If you need a printout of the manual additionally, please contact our sales team: sales@esd.eu for
a quotation. Printed manuals may be ordered for a fee.

ELLSI Manual Software Manual • Doc. No.: C.2051.23 / Rev. 1.7 Page 27 of 27

mailto:sales@esd.eu
http://www.esd.eu/
http://www.esd.eu/

	1. Overview
	1.1 Intention
	1.2 Functional principle
	1.3 ELLSI vs. esd NTCAN API
	1.4 Restrictions
	1.4.1 ELLSI API
	1.4.2 Number of client connections
	1.4.3 TCP/IP vs. UDP/IP
	1.4.4 CAN interaction
	1.4.5 Some thoughts about performance

	2. The ELLSI-Protocol
	2.1 Data layout
	2.2 Port
	2.3 Byte order
	2.4 Future protocol changes/enhancements
	2.5 Header
	2.5.1 Sequence numbering

	2.6 Commands
	2.6.1 Numerical values of commands
	2.6.2 Numerical values of sub-commands
	2.6.3 ELLSI_CMD_NOP
	2.6.4 ELLSI_CMD_REGISTER
	2.6.5 ELLSI_CMD_REGISTERX
	2.6.6 ELLSI_CMD_CAN_TELEGRAM
	2.6.6.1 ellsiCMSG_T
	2.6.6.2 ELLSI_SUBCMD_TXDONE

	2.6.7 ELLSI_CMD_HEARTBEAT
	2.6.8 ELLSI_CMD_CTRL
	2.6.8.1 ELLSI_IOCTL_CAN_ID_ADD/DELETE
	2.6.8.2 ELLSI_IOCTL_CAN_SET_BAUDRATE
	2.6.8.3 ELLSI_IOCTL_CAN_GET_BAUDRATE
	2.6.8.4 ELLSI_IOCTL_SET_SJA1000_ACMR
	2.6.8.5 ELLSI_IOCTL_GET_LAST_STATE
	2.6.8.6 ELLSI_IOCTL_CAN_STATUS
	2.6.8.7 ELLSI_IOCTL_BUS_STATISTIC
	2.6.8.8 ELLSI_IOCTL_GET_TIMESTAMP
	2.6.8.9 ELLSI_IOCTL_GET_TIMESTAMP_FREQ
	2.6.8.10 ELLSI_IOCTL_GET_SERIAL
	2.6.8.11 ELLSI_SUBCMD_AUTOACK

	2.6.9 ELLSI_CMD_UNREGISTER

	3. ELLSI over WebSocket
	4. Order Information

