
CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 1 of 65

 esd electronics gmbh
 Vahrenwalder Str. 207 • 30165 Hannover • Germany
 http://www.esd.eu
Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

CANopen Slave
Software Manual

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 2 of 65

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document, and assumes no
responsibility for any errors that may appear in this document. In particular descriptions and technical
data specified in this document may not be constituted to be guaranteed product features in any legal
sense.

esd reserves the right to make changes without notice to this, or any of its products, to improve
reliability, performance or design.

All rights to this documentation are reserved by esd. Distribution to third parties and reproduction of
this document in any form, whole or in part, are subject to esd’s written approval.
© 2018 esd electronics gmbh, Hannover

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Phone: +49-511-372 98-0
Fax: +49-511-372 98-68
E-mail: info@esd.eu
Internet: www.esd.eu

Trademark Notices
CiA® and CANopen® are registered community trademarks of CAN in Automation e.V.
All other trademarks, product names, company names or company logos used in this manual are reserved by their
respective owners.

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 3 of 65

Manual File: I:\Texte\Doku\MANUALS\PROGRAM\CAN\CAL-COPN\CANOPEN\CANopen-Slave_Soft
ware-Manual_en_23.wpd

Date of Print: 2018-08-29

Described Software: CANopen-Slave

Revision: 2.2.x

Changes in the chapters

The changes in the user's manual listed below affect changes in the software, as well as changes in the
description of the facts only.

Version Alterations in the appendix versus previous revisions
Alterations in

software
Alterations in
documentation

2.2

Extended documentation of SYNC and NMT error
control objects.

x x

Documentation of new entry
canOpenCreateNetworkEx().

x x

Documentation of SYNC generation. x x

Revised canOpenExtendDictionary() and
canOpenInitDictionary()

x

Documentation of new entry canOpenInitDictionaryTs() x x

Documentation of the entry canOpenSetParameter() x

Documentation of the new entry
canOpenGetParameter()

x x

Documentation of object handler with timestamps. x x

Documentation of EV_BOOTUP for the node’s event
handler

x x

Documentation of new macros
BEGIN_DICTIONARY_TABLE_TS and
END_DICTIONARY_TABLE_TS

x

2.3

Software order number deleted x

Description of example for
canOpenExtendedDictionary() corrected

x

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 4 of 65

Contents Page

1. Reference 6

2. Introduction 7

3. CANopen Slave 8
3.1 Overview 8
3.2 Object Dictionary. .. 11
3.3 NMT state machine. 11
3.4 Heartbeat, Node Guarding and Life Guarding 11
3.5 Synchronization (SYNC) Object 12
3.6 Emergency (EMCY) Object 12

4. Program Interface 15
4.1 Management Services 15

canOpenCreateNetwork() 15
canOpenCreateNetworkEx() 15
canOpenRemoveNetwork() 17
canOpenCreateNode() 17
canOpenCreateNodeEx() 20
canOpenDeleteNode() 25
canOpenActivateNode() 25
canOpenGetNodeInfo() 26
canOpenResetNode() 26
canOpenWaitForNodeState() 27

4.2 Local Object Directory .. 28
canOpenExtendDictionary() 28
canOpenInitDictionary() 30
canOpenInitDictionaryTS() 31
canOpenReadDictionary() 32
canOpenWriteDictionary() 33
canOpenGetDictionaryHnd() 34
canOpenReadDictionaryHnd() 35
canOpenWriteDictionaryHnd() 35

4.3 PDO Services 36
canOpenDefinePDO() 36
canOpenWritePDO() 38
canOpenReadPDO() 39
canOpenRequestPDO() 39

4.4 Error Situations and Emergency (EMCY) Objects 40
canOpenSetError() 43
canOpenResetError() 44

4.5 Assistant Functions .. 45
canOpenGetVersions() 45
canOpenSetParameter() 46
canOpenGetParameter() 47

4.6 Event handler 48
Object Eventhandler without timestamps 48
Object Eventhandler with timestamps 48

4.7 Macros 51

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 5 of 65

Dictionary Entry Tables 51
PDO Mapping Tables 53
PDO Tables 54

5. Error Codes of Slave-Service Functions . 57

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 6 of 65

1 Reference

/1/: CiA DS-301, CANopen - Application Layer and Communication Profile V4.0.2, February
2002

/2/: electronic system design gmbh, CAN-Interface Manual, December 1996

/3/: electronic system design gmbh, CAL/CANopen Systeminterface Manual, December 1996

/4/: electronic system design gmbh, CAL/CANopen Porting Guide, December 1996

/5/: CiA DS-102, CAN Physical Layer for Industrial Applications, April 1994

/6/: CiA DS-201, CAN Reference Model, February 1996

/7/: CiA DS-401, Device Profile for I/O-Modules, December 1996

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 7 of 65

2 Introduction

The CANopen slave library allows an easy development of CANopen based slave devices for
sophisticated process control of current automation systems or for simulation and test purposes.

Some highlights of the library are:

� Comprehensive set of services based on the CANopen specification CiA DS-301 V4.1 to easily
integrate CANopen slave functionality into an application.

� Support for several (real-time) operating systems and CAN adapter available with the same OS
and hardware independent proven CANopen slave core.

� Comes as fully multi-threaded shared or static library which can be used by several applications
at the same time. All CANopen related tasks like SDO server replies, error control, etc. is handled
in background.

� Allows the implementation of several independent CANopen devices with separated object
dictionaries communicating on the same or different physical CAN ports.

� All CANopen slave functionality is fully configurable at runtime.
� Consistent API independent of the CPU architecture, operating system or CAN hardware makes

a migration to a different platform easy.
� Support to optionally timestamp received data.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 8 of 65

��� ���

���� ��

��

	
 ���

����

PDO

�����������

������� �������� 	
 ! ���

������� �������� !
	
 ���

"�#�� $�������
%������ �������� 	

&�'��(�)*��+(

%������ �������� !

������� �������� 	
 ! ���

������� �������� !
	
 ���

3 CANopen Slave

Based on this library it is possible to create up to 255 independent virtual CANopen slave devices for
up to 16 physical CAN nets.

The application programming interface (API) of the CANopen slave library is a procedural API which
is defined in the header file scanopen.h.

Depending on the operating system the library has to be either linked to the application or is
implemented as a shared library which can be loaded dynamically.

In order to understand this document some basic principles of CANopen are explained in this chapter.
For further details please refer to /1/.

3.1 Overview

The application creates one or more CANopen slaves with a node-ID that has to be unique in the
physical CAN network. Each CANopen slave node has an individual object directory, at least one
service data object (SDO) and one emergency object (EMCY) whose defaults COB-IDs are based on
the node-ID (default connection set). The application can extend the object directory with
manufacturer specific entries or according to standardized device profiles (/7/) and map the process
variables into the object directory as shown in figure 1. The entries of the object dictionary can be
mapped into process data objects (PDO) which are transmitted or received using the CAN bus.

Fig. 1: Operation mode of CANopen slave

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 9 of 65

The COB identifiers of the PDOs, the PDO mapping and a number of additional parameter can be
configured by the application as well as by a CANopen manager (dynamic mapping).

The communication between the application and the CANopen library is based on a procedural
interface, the asynchron communication from the CANopen library to the application is event driven
based on callback handlers.

The following steps are necessary creating a virtual slave node and make this node available for
configuration and control by a CANopen manager and communication with further CANopen slaves.

1. Initialization of the CAN bus and start of the NMT daemon by calling canOpenCreateNetwork()
or canOpenCreateNetworkEx().

2. Initialization of the virtual slave by attaching the node event handler and defining the entries of the
object directory in the Communication Profile Area calling canOpenCreateNodeEx().

3. Creation of additional entries in the Manufacturer Specific Area and the Standardized Device
Profile Area of the object directory by calling canOpenExtendDictionary(). Initializion of these
entries and assignment of the object event handler by calling canOpenInitDictionary() or
canOpenInitDictionaryTs(). Alternatively you can use a set of macros to ease the programming
effort.

4. Creation and initialization of the PDOs by calling canOpenDefinePDO(). Alternatively you can
use a set of macros to ease the programming effort.

5. Change the node state to Pre-Operational by calling canOpenActivateNode().

6. If the node state changes to Operational, PDOs can be exchanged with other CANopen slave
nodes. PDO communication is different for synchronous and asynchronous PDOs and depends on
the configured PDO communication parameter:

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 10 of 65

,-./01.231-415146738 ,-./01.231-415791 ,-./01.:;41.9<=,4=7.-3> ,-./01.?.=4<=,4=7.-3>

,-./01.@1A7B15146738 ,-./01.<1C1415791

,-./01.D,4=B-415791

,-./01.E14:3373

,-./01.F145791?.G7

,-./01.@1H145791

,-./01.<1G=.1I</

,-./01.@1H14:3373

,-./01.@1-9<=,4=7.-3>

,-./01.J3=41<=,4=7.-3>

,-./01.J-=4K735791E4-41

,-./01.@1-9I</

,-./01.@1LM1H4I</

,-./01.J3=41I</

Fig. 2: Flow chart of API Calls

The flow chart above shows the order of API calls to create and manage the CANopen slave. A
detailed description of the API is described in chapter 4.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 11 of 65

3.2 Object Dictionary.

The object dictionary is the crucial part for process data exchange between the application and the
CANopen slave library. The object dictionary entries in the Device Profile Specific Area and the
Manufacturer Specific Area are fully configurable by the application. The PDOs as well as the SDO
services work directly with these dictionary entries. For an object dictionary entry, mapped into a
TPDO, an update performed by the application might, depending on the PDO confguration,
immediately cause the transmission of this PDO. For every entry mapped into an RPDO a callback
handler can be attached, so the CANopen slave library supports a very fast event-based mechanism to
indicate the update caused by another CANopen slave device.

3.3 NMT state machine.

The CANopen slave implements the NMT state machine according to /1/. After creating the node with
canOpenCreateNodeEx() the slave is in the special state NodeInit. In this state it’s possible for the
application to extend and initialize the local dictionary and define the PDOs. In this state the CANopen
slave node isn’t active on the CAN bus. After this task is completed a call to canOpenActivateNode()
changes the node state to Pre-Operational or to Operational if configured as auto-start device.
Further node state changes between Pre-Operational, Operational and Stopped or a node reset are
caused by NMT messages of the CANopen manager. The application keeps track of the current node
state with the help of it’s node event handler and/or the API canOpenGetNodeInfo(). The application
can switch back into the NodeInit state with the API canOpenResetNode().

3.4 Heartbeat, Node Guarding and Life Guarding

The CANopen specification /1/ defines a Heartbeat and a Node Guarding mechanism for error control
which are both supported by the slave stack.

If configured for Node Guarding the NMT manager “polls” the CANopen device for it’s current node
state on a regular basis to detect failures. In addition the node can setup a timer with each NMT
master request and can use the expiration of this timer as an indication that the communication with
the NMT master is interrupted (Life Guarding).

If configured for Heartbeat the slave node transmits the heartbeat message with it’s current node state
autonomously with a configurable heartbeat producer time which is checked by the NMT master. To
support a similar mechanism to the Life Guarding the node can also be configured as a heartbeat
consumer to monitor the heartbeat of the NMT master and other CANopen nodes.

Today it is recommended to use the heartbeat mechanism instead of the node guarding because it
consumes less CAN bus bandwidth (no polling) and is more flexible.

The CANopen stack handles both error control mechanisms completely in background and indicates
all error control related events to the application, which can configure an application specific behavior
in case of a NMT error control failure.

CANopen-Slave

1 The ability to generate SYNC objects depens on the support by the CAN hardware and the CAN driver. Only
hardware/driver combinations which support the Scheduling of CAN frames support the generation of the SYNC object.

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 12 of 65

3.5 Synchronization (SYNC) Object

According to /1/ the synchronous communication in CANopen is based on a SYNC object, which is
a special message with no data. The COB-ID of the SYNC object can be configured for each node
individually to allow multiple SYNC signals in a system. The common use case is to have only one
SYNC object with the default COB-ID of 0x80.

The CANopen slave can be configured as SYNC consumer and/or SYNC generator1. As a SYNC
consumer on reception of the SYNC object all objects mapped into synchronous RPDOs, received
since the last SYNC object, are indicated to the application and new data for all objects mapped into
synchronous TPDOs is requested by the application.

The generation of the SYNC object requires a special CAN device driver or hardware which supports
SYNC generation with a minimized jitter. These device drivers are currently not available for all
supported OS platforms and/or CAN devices. If a CANopen node is configured as SYNC generator
you have to make sure that there is only one SYNC generator for this SYNC signal on the same
network.

3.6 Emergency (EMCY) Object

According to /1/ error states are indicated on the CAN bus by means of the Emergency (EMCY)
object. Such an error condition can be assigned to one of the following categories:

Communication and Configuration Errors:

- Errors on CAN controller communication layer.
- Receive buffer overflow.
- Heartbeat or Life Guarding Errors.
- Configured PDO size mismatches.

Application Errors:

All types of errors, which are application specific like problems related to current, voltage,
temperature, etc.

Errors which belong to the 1st category are detected by the CANopen stack autonomously. In addition
to send an EMCY object the error is indicated to the application via the node’s event handler. Errors
of the 2nd category have to be indicated to the stack using the related slave API.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 13 of 65

The 8 byte EMCY object has the following structure:

Identifier Data

Default:

0x80 +
NodeID

0 1 2 3 4 5 6 7

Emergency Error
Code

Error
Register

Manufacturer Specific Error Code

Index
0x1014

Index 0x1003
(Bit 0 - 15)

Index
0x1001

Index 0x1003
(Bit 16 - 31)

The Emergency Error Code describes the reason for the error. A list of pre-defined error codes is
defined in /1/. Additional error codes may be defined in the CANopen device profiles. If the slave
stack is configured to support an error history via the pre-defined error field (0x1003) the Emergency
Error Code becomes the LSW of the related entry in the error history. The EMCY object also reflects
the current state of the Error Register (0x1001), which groups errors in certain categories to indicate
if further error conditions are pending. The EMCY message also contains a maufacturer-specific part
which describes the error in more detail. A repaired error situation is indicated with the Emergency
Error Code set to 0 (Reset Error).

If the EMCY object is caused by a communication or configuration error detected internally the
manufacturer specific part is used as described below and the bytes 3 and 4 of the EMCY object
become the MSW of the related entry in the error history.

Data Byte 3 4 5 6 7

Description Temporary Bits Sticky Bits Reason Info1 Info2

The Temporary Bits indicate temporary error conditions which are reset if the error is repaired:

Bit Description

0 NMT Error Control (Guarding/Heartbeat error).

1 CAN Controller Passive.

2 CAN Controller Bus Off

3-4 Reserved for future use by the CANopen stack.

5-7 Application specific temporary error.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 14 of 65

The Sticky Bits indicate error conditions which are indicated even if the error is already repaired.

Bit Description

0 CAN Controller Error.

1 Receive FIFO Overrun.

2 PDO Length Error.

3-4 Reserved for future use by the CANopen stack.

5-7 Application specific temporary error.

The parameter Reason, Info1 and Info2 contain additional information to an internal generated EMCY
object because of a communication or configuration error. The table below lists the internally
generated EMCY messages and the meaning of the related manufacturer-specific parameter.

Error Code Description Reason Info1 Info2

0x8100 Message Lost Error 1 = Rx Daemon FIFO # of Lost Messages 0

0x8110 CAN overrun (objects lost) 0 0 0

0x8120 CAN in error passive mode 0 0 0

0x8130 Life Guard or Heartbeat Error 0 0 0

0x8140 Recover from Bus-Off 0 0 0

0x8210 PDO not processed (length error) Internal PDO number CAN msg length PDO length

0x8220 PDO length exceeded Internal PDO number CAN msg length PDO length

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 15 of 65

4 Program Interface

The following chapter describes the interface of the CANopen slave. The meaning of error codes of
the returned values is shown in the appendix.

4.1 Management Services

The services described below serve the initialization, control and monitoring of CANopen networks
and CANopen slaves.

canOpenCreateNetwork()

Name: canOpenCreateNetwork() - initializing the network (deprecated)

Synopsis: int canOpenCreateNetwork
(
int NetNo, /* number of CAN interface */
char * NetName, /* textual description */
unsigned short Baudrate /* baudrate */
)

Description: This routine initializes interface NetNo and generates a network object in the
internal database. Optionally a pointer to a textual description can be given.
Baudrate is specified in kbit/s. The support of baudrates depends on CAN-layer-2
driver.

Return: 0 or an error code described in the appendix.

canOpenCreateNetworkEx()

Name: canOpenCreateNetworkEx() - Extended initialization of the CANopen network

Synopsis: int canOpenCreateNetworkEx
(
int NetNo, /* Number of CAN interface */
SLAVE_NET_INO *pNetInfo, /* Network configuration */
)

Description: This routine initializes interface NetNo and generates a network object in the
internal database. The caller configures the parameter with the pointer pNetInfo
to an initialized structure of the type SLAVE_NET_INFO described below.

The structure SLAVE_NET_INFO comprises all crucial network or stack specific
parameter. The complete structure should be filled with zeros before it is
initialized. Some flags of ulOptions just indicate which other members of the
structure have to be initialized with proper values or can be left set to 0. The

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 16 of 65

following table should provide an overview of ulOptions.

Flag in ulOptions Affected structure member or Description

THREAD_PRIOS_OVERWRITE sPrioNMT, sPrioSDO, sPrioPDO and sPrioEMCY

THREAD_PRIOS_NATIVE sPrioNMT, sPrioSDO, sPrioPDO and sPrioEMCY

NORMALIZE_TIMESTAMPS Timestamps of the node’s data callback handler are
normalized to 1 us instead using raw values.

pNetName N/A

Optional pointer to a textual description of this network or NULL.

usBaudrate N/A

The CAN bit rate which should be used for CAN communication.

usDebugMask N/A

In special debug builds of the slave stack this parameter configures a mask to control the
debug trace. In release builds of the stack this parameter is ignored.

sPrioNMT THREAD_PRIO_OVERWRITE and
THREAD_PRIOS_NATIVE

Thread priority of the NMT thread.

sPrioSDO THREAD_PRIO_OVERWRITE and
THREAD_PRIOS_NATIVE

Thread priority of the SDO thread.

sPrioPDO THREAD_PRIO_OVERWRITE and
THREAD_PRIOS_NATIVE

Thread priority of the PDO thread.

sPrioEMCY THREAD_PRIO_OVERWRITE and
THREAD_PRIOS_NATIVE

Thread priority of the EMCY thread.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 17 of 65

canOpenRemoveNetwork()

Name: canOpenRemoveNetwork() - removing a network

Synopsis: int canOpenRemoveNetwork
(
int NetNo /* number of CAN interface */
)

Description: This routine removes the network object of net NetNo from the database.

Return: 0 or an error code described in the appendix.

canOpenCreateNode()

Name: canOpenCreateNode() - Initialize a CANopen node (deprecated).

Synopsis: int canOpenCreateNode
(
int NetNo, /* number of CAN interface */
char * NodeName, /* name of slave node */
int ModID, /* module number of node */
unsigned long DevType, /* device type */
int Options, /* default properties */
int MaxErrors, /* size of error history */
char * DeviceName, /* device name */
char * HardwareVers, /* hardware-version number */
char * SoftwareVers, /* software-version number */
unsigned short GuardTime, /* default guardtime in ms */
unsigned short LifeTime, /* default lifetime factor */
unsigned short ServerObjects, /* number of additional SDO servers */
unsigned short ClientObjects, /* number of additional SDO clients */
int (* EventHandler)(int, int, int, int) /* event handler of CANopen node */
HNDO * HNode /* handle of this CANopen node */
)

Description: Using this API is deprecated as improvements and extensions introduced with
DS-301 V4.x can not be configured and the node event handler only supports a
limited number of possible events. New applications should use
canOpenCreateNodeEx instead. This API remains only for backward
compatibility of existing applications.

This function generates a CANopen-node object with object directory for net
NetNo.The entries DeviceType (0x1000) and Error Register (0x1001) required
following /1/ as well as the optional entry Node-ID (0x100B) are automatically
created in the object directory.

NodeName is a pointer to a textual description of the node with module number
ModID in the range of 1 to 127. The module number determines the COB
identifiers for the SDO server, the identifier for node guarding and the emergency
object according to /1/.

CANopen-Slave

2 In the current version of the slaves it is not possible to generate additional SDO servers and SDO clients.

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 18 of 65

DevType is the device type which is returned after reading out directory entry
0x1000. The 16 LSB are the Device Profile Number, the MSB contain device-
and/or profile-specific information.
The bitmask set in options determines the additional entries in the object directory
and the validity of the following parameters.

Option Meaning
BLOCK_TRANSFER support of the SDO block transfer.
STATE_REGISTER generate object entry 0x1002
ERROR_REGISTER generate object entry 0x1003
ADDITIONAL_PDOS generate object entry 0x1004
SYNCHRON_PDOS generate object entries 0x1005-0x1007
MANUFACTURER_INFO generate object entries 0x1008-0x100A
GUARDING generate object entries 0x100C-0x100E
PARAMETER_STORE generate object entry 0x100F
PARAMETER_RESET generate object entry 0x1010
ADDITIONAL_SDOS generate object entry 0x1011

If BLOCK_TRANSFER is set in options, the SDO server of the CANopen node
support the SDO block transfer in addition to the standard SDO transfers.

If State_REGISTER is set in options, the entry for the state register in the
object directory is generated.

If ERROR_REGISTER is set in options, MaxErrors determines the size of the
error history.

If SYNCHRON_PDOS is set in options, the directory entries COB-ID SYNC
message (0x1005), communication cycle period (0x1006) and synchronous
window length (0x1007) are generated. The definition of synchronous PDOs is
only possible, if this flag has been set.

If MANUFACTURER_INFO is set in options, it is possible to store the device
name and the hardware and software versions in the object directory by means of
DeviceName, HardwareVers and SoftwareVers.

The strings transferred have to be in a static area of the application and not on the
stack, because the slave only refers to these areas by pointers.

If GUARDING is set in options, the node supports life- and nodeguarding. The
default values for guard time and life-time factor can be defaulted by means of
GuardTime and LifeTime.

If ADDITIONAL_SDOS is set in options, the number of additional SDO servers
and SDO clients2 can be determined in ServerObjects and ClientObjects. The
default SDO server has to be included in ServerObjects.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 19 of 65

It is possible to to connect a callback function by means of EventHandlers. If an
event occurs, the code of this handler is executed. A detailed description of the
callback handler can be taken from section 4.6.

If the returned value of the call is 0, the handle with which it is possible to access
the node at further API calls is in HNode. If initialization was successful the node
enters state NodeOffline.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 20 of 65

canOpenCreateNodeEx()

Name: canOpenCreateNodeEx() - Extended initialization of a CANopen node.

Synopsis: int canOpenCreateNodeEx
(
int iNetNo, /* Number of logical CAN network */
int iModID, /* Module number of node */
int (* EventHandler)(SLAVE_EVENT *pEvent), /* Application event handler */
SLAVE_NODE_INFO *pSlaveInfo, /* Ptr to node configuration */
HNDO * HNode /* handle of this CANopen node */
)

Description: This API call initializes a CANopen node with the Node-ID iModID for the
logical CAN net iNetNo. The caller determines the extend of “Communication
Profile Area” objects /1/ and their default values with the pointer pSlaveInfo to an
initialized structure of the type SLAVE_NODE_INFO which is described below. One
member of this structure affects the kind of node events which are handled in the
node event handler EventHandlers. A detailed description of the node events can
be found in section 4.6.

If the API call returned without errors the node handle which is the argument for
further API calls is stored at the memory location given by Hnode. After
successful initialization the node enters the node state NodeOffline.

The structure SLAVE_NODE_INFO comprises all crucial information to describe
extend and default values of the “Communication Profile Area” and other node
specific configuration values. The complete structure should be filled with zeros
before it is initialized..The basic idea of this structure is that the ulOptions
member is a bitmask that defines which other members of the structure have to be
initialized with proper values or can be left set to 0. The following table should
provide an overview which flag in ulOptions causes which entry in the object
dictionary to be created, which entries are created implicitly as CANopen /1/
defines them as mandatory and which other member variables in the
SLAVE_NODE_INFO structure must be initialized. An index that is not listed in this
table is either not supported or is reserved in /1/.

Index Name Flag in ulOptions Member to initialize

0x1000 Device Type Created implicitly ulDeviceType

0x1001 Error Register Created implicitly -

0x1002 Manufacturer Status STATE_REGISTER -

0x1003 Pre-defined error
field

ERROR_REGISTER ucMaxErrors

0x1005
to
0x1007

COB-ID SYNC,
Comm. cycle period,
Sync. Window length

SYNCHRON_PDOS
SYNC_GENERATION

ulSyncCobID
ulCyclePeriod

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 21 of 65

0x1008
to
0x100A

Manufacturer device
name, HW version
and SW version

MANUFACTURER_INFO pszDevicename,
pszHwVersion,
pszSwVersion

0x100C
0x100D

Guard time and
Lifetime factor

GUARDING usGuardTime,
ucLifeTime

0x1010 Store parameters PARAMETER_STORE -

0x1011 Restore defaults PARAMETER_RESET -

0x1014 COB-ID EMCY Created implicitly ulEmcyCobId,

0x1015 Inhibit time EMCY Created implicitely usEmcyInhibit

0x1016 Consumer Heartbeat
Time

CONSUMER_HEARTBEAT ucMaxConsumerHB,
pulListCHBT

0x1017 Producer Hearbeat PRODUCER_HEARTBEAT usProducerHBTime

0x1018 Identity Object Created implicitly ucMaxIdentityObject,
ulVendorId,
ulProductCode,
ulRevisionNumber,
ulSerialNumber

0x1020 Verify Configuration PARAMETER_STORE -

0x1028 Emergency consumerEMCY_CONSUMER

0x1029 Error behaviour ERROR_BEHAVIOUR_OB
JECT

ucErrorBehaviour

- - ADDITIONAL_SDOS ucServerSDO,
ucClientSDO

- Support SDO block
transfer.

BLOCK_TRANSFER -

The following tables provide a description about every supported member in the
SLAVE_NODE_INFO structure.

usRxPDO Mandatory

Defines the maximum number of Rx-PDOs of this node.

usTxPDO Mandatory

Defines the maximum number of Tx-PDOs of this node.

ucServerSDO Mandatory if ADDITIONAL_SDOS is set

Defines the maximum number of SDO server. If ADDITIONAL_SDOS isn’t set the
default SDO server will be created.

ucClientSDO -

Reserved for future use

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 22 of 65

ucMaxErrors Mandatory if ERROR_REGISTER is set

Defines the maximum number of errors (1-127) that can be stored in the error history.

ucMaxIdentityObject Mandatory

Defines the number of subindices (1-4) of entry Identity Object (0x1018).

ulVendorId Mandatory

CiA registered vendor id for this device

ulProductCode Mandatory if ucMaxIdentityObject > 1

Vendor specific product code for this device

ulRevisionNumber Mandatory if ucMaxIdentityObject > 2

Vendor specific revision number for this device

ulSerialNumber Mandatory if ucMaxIdentityObject = 4

Vendor specific serial number for this device

ucMaxConsumerHB Mandatory if CONSUMER_HEARTBEAT is set

Number of subentries (1-127) of the Consumer Hearbeat object.

ucLifetime Mandatory if GUARDING is set

Default lifetime factor used by this device for life guarding.

usGuardTime Mandatory if GUARDING is set

Default guardtime used by this node for life guarding.

ulDeviceType Mandatory

Device type of this device

pszDeviceName Mandatory if MANUFACTURER_INFO is set

NULL terminated string for Manufacturer Info of this device

pszHwVersion Mandatory if MANUFACTURER_INFO is set

NULL terminated string for Manufacturer Hardware Version of this device.

pszSwVersion Mandatory if MANUFACTURER_INFO is set

NULL terminated string for Manufacturer Software Version of this device.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 23 of 65

ulSyncCobID Mandatory if SYNCHRON_PDOS or
SYNC_GENERATION is set

Defines the COB-ID of the SYNC object for this node as SYNC producer and/or SYNC
consumer. Initialize to DEFAULT_SYNC_COBID which becomes 0x80 to use the
standard /1/ default as SYNC consumer. To configure the node as SYNC generator you
have to set the bit SYNC_PRODUCE, too.

ulCyclePeriod Mandatory if SYNC_GENERATION is set

Defines the cycle time of the SYNC object in us as SYNC generator. SYNC generation is
only started if the SYNC_PRODUCE bit in ulSyncCobID is set and this value is not 0.
Note: SYNC generation has to be supported by the CAN driver. Only CAN driver > V
3.x.x support this feature.

ulSyncWindowLen -

Reserved for future use

ulTimestampCobId -

Reserved for future use

ulEmcyCobId Optional

Defines the COB-ID of the EMCY object. If this is set to 0 or DEFAULT_EMCY_COBID
the value becomes 0x80 + iModId is used.

usEmcyInhibit Optional

Defines the inhibit time for the EMCY object in ms. If this is set to 0 or
DEFAULT_EMCY_INHIBIT_TIME there is no inhibit time to produce EMCY
messages for the device.

usProducerHbTime Mandatory if PRODUCER_HERTBEAT is set

Defines the producer heartbeat time of this device in ms. If this is set to 0 or
DEFAULT_PRODUCER_HEARTBEAT_TIME heartbeat is disabled on startup.

*pulListCHBT Mandatory if EMCY_CONSUMER is set

Defines the list of default emergency consumer entries. The argument is a pointer to an
array of unsigned long values. Each entry has to be defined with the macro CHBT_ENTRY
which takes two arguments. The first argument is the node number that is to be monitored,
the second argument the heartbeat time in ms. The list has to be terminated with the entry
END_OF_CHBT_LIST. The number of entries should shouldn’t exceed the number of
entries given with the parameter ucMaxConsumerHB.
Example:

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 24 of 65

ucErrorBehaviour Mandatory if ERROR_BEHAVIOUR_OBJECT is set.

This parameter defines the default behaviour of the slave if an fatal error occurred.
Possible values are:
- ERROR_BEHAVIOUR_DEFAULT - Change to node state Pre-Operational
- ERROR_BEHAVIOUR_NO_CHANGE - No change in node state.
- ERROR_BEHAVIOUR_STOP - Change to node state STOPPED.

ucMaxMapped Conditional for multimap support.

This parameter defines in how many different PDOs the same object dictionary can be
mapped if the this object dictionary entry is created supporting this feature. If this
parameter is 0 the default value of 8 will be used.

usPdoRxQueusize Size of PDO daemon receive queue.

Defines the size of the Rx daemon receive queue in multiple of PDO messages. The
default value is 256.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 25 of 65

canOpenDeleteNode()

Name: canOpenDeleteNode() - deleting a CANopen node

Synopsis: int canOpenDeleteNode
(
HNODE HNode /* handle of the CANopen node */
)

Description: Deletes a node object including the object directory and all COB identifiers used
from this node from the internal database. Calling this function is only possible
in node state NodeOfline.

Return: 0 or an error code described in the appendix.

canOpenActivateNode()

Name: canOpenActivateNode() - activating CANopen node.

Synopsis: int canOpenActivateNode
(
HNODE HNode /* handle of the CANopen node */
)

Description: Prepares the slave node for establishing connections. New node state is
PreOperational. Node- and lifegurading are active and accessing the object
directory is possible.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 26 of 65

canOpenGetNodeInfo()

Name: canOpenGetNodeInfo() - Return current node state

Synopsis: int canOpenGetNodeInfo
(
HNODE HNode, /* Handle of the CANopen node */
int * State, /* Current node state */
int * LastErr /* Last error state */
)

Description: This call returns the current state of the node referenced by Hnode.

Valid values for State are:

NodeInit NodePreOperational
NodeStopped NodeOperational

In LastErr the error number of the last error is returned.

Return: 0 or an error code described in the appendix.

canOpenResetNode()

Name: canOpenResetNode() - resetting CANopen node.

Synopsis: int canOpenDeleteNode
(
HNODE HNode /* handle of the CANopen node */
)

Description: The slave is reset to state NodeOffline. Nodeguarding and SDO-server
processes are terminated. All used COB identifiers are freed and all entries in
the object directory are reset to default values.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 27 of 65

canOpenWaitForNodeState()

Name: canOpenWaitForNodeState() - Block until transistion in given node state

Synopsis: int canOpenWaitForNodeState
(
HNODE HNode, /* handle of the CANopen node */
unsigned short StateMask /* state mask */
)

Description: The application is blocked until the node is in a determined state. It is possible
to wait for one or more state.

StateMask is the logical OR combination of the following constants describing
the node states to wait for. Valid parameters are:

WFNS_INIT WFNS_STOPPED
WFNS_PRE_OPERATIONAL WFNS_OPERATIONAL

Return: Current node status or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 28 of 65

4.2 Local Object Directory Services

The services described in this section are used to extend the node’s object dictionary by custom
object entries as well as to provide read and write access to the local object dictionary.

Extending the object dictionary is only possible in the Manufacturer Specific Area (Index 0x2000 to
0x5FFF) and the Standardized Device Profile Area (Index 0x6000 - 0x9FFF). The application has
full control about the object type, data type, access rights, default values, etc. The objects may be
mapped into PDOs as described in the following chapter. The subindex 0xFF, which describes the
structure of the object dictionary entry, is created automatically. An event handler can be assigned
to every object.

External read access to the object dictionary entries by the CANopen manager or another slave on
the CAN bus with an SDO service is processed asynchronously to the running application by the
SDO server.

External write access to the object dictionary entries by the CANopen manager or another slave on
the CAN bus with an SDO service is indicated to the application with the object event handler. The
application can validate the data and prevent an update.

canOpenExtendDictionary()

Name: canOpenExtendDictionary() - Extending the local Object Dictionary

Synopsis: int canOpenExtendDictionary
(
HNODE HNode, /* Handle of the CANopen node */
unsigned short Index, /* Index in object directory */
unsigned short Subentries, /* Number of subentries */
unsigned short ObjectType, /* Object type of entry */
const char * DataType /* Data type description */
)

Description: Extends the local object dictionary of the CANopen node with the node handle
HNode in the Manufacturer Specific Area or the Standardized Device Profile
Area. This function fails if called in another node state but NodeOffline.

Index is the index in the object directory in the range from 0x2000 to 0x9FFF and
Subentries has to be set to the number of subentries of this entry in the range from
0-254.

ObjectType is either the simple data type OBJ_VAR or one of the complex data
types OBJ_ARRAY or OBJ_RECORD. Simple data types only support sub-index
0.

DataType is a zero terminated descriptor array with only one entry for the data
types OBJ_VAR and OBJ_ARRAY. For entries of the data type OBJ_RECORD the
descriptor array contains the data type of every sub-index .
Dictionary entries of the data type OBJ_ARRAY and OBJ_RECORD store the

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 29 of 65

number of sub-entries in the format UNSIGNED8 as an RO entry at subindex 0.
For arrays this entry is created automatically. For records this isn’t the case for
historical reasons, which means the application has to define the entry at subindex
0 as TYP_UINT8 in the descriptor string to be compatible with the current
revision of the specification /1/.

Example for a single value or array descriptor of data type INTEGER32:

const char DescrSimple[] = {TYP_INT32, 0};

Example for a record descriptor of a INTEGER32 at sub-index 1 and an
INTEGER16 at sub-index 2. The UNSIGNED8 entry at sub-index 0 is also
defined:

const char DescrComplex[] = {TYP_UINT8, TYP_INT32, TYP_INT16, 0}

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 30 of 65

canOpenInitDictionary()

Name: canOpenInitDictionary() - Initialize local dictionary and attach handler

Synopsis: int canOpenInitDictionary
(
HNODE Hnode, /* Node handle */
unsigned short Index, /* Index */
unsigned short Subindex, /* Subindex */
const char * EntryName, /* Textual description */
unsigned short Flags, /* Properties of entry */
pDictionaryData Data, /* Default data */
PFN_COS_DATA_HANDLER Handler /* Data event handler */

)

Description: Initialize a single dictionary entry of the CANopen nodes Hnode object
dictionary. The entry has to be created previously with a call to
canOpenExtendDictionary(). This initialization has to take place for every entry
in the object dictionary before the object can be used. If the function is called in
any other node state but NodeOffline it will return with an error.

Index has to be in range of the Manufacturer Specific Area or the Standardized
Device Profile Area (0x2000 to 0x9FFF) and Subindex in the range from 0x00 to
0xFE. The entry at sub-index 0xFF which describes the structure of this object
dictionary entry according to /1/ is initialized implicitely. For complex data types
of OBJ_ARRAY the sub-index 0 is initialized automatically to the number of sub-
entries. For complex data types of OBJ_RECORD the sub-index 0 has to be
initialized to the number of sub-entries by the application.

EntryName is an optional textual description of the entry. This description is only
important for configuration file generation. Usually set this parameter to NULL,
because this description extends the memory requirements for an individual
subentry.

The parameter flags defines the access rights and other properties of the object
dictionary entry. Supported values are READ_ACCESSand WRITE_ACCESS. To
allow the mapping into a PDO the entry has to be marked as MAPPABLE. If the
entry should be mappable more than once it has to be marked as MULTI_MAP.

Data is a pointer to a union of structures of type DictionaryData. The
application has to initialize the data type related part of the union and is
responsible. For numerical data types the structure has members for the current
value, the default value and the lower and upper limits. The memory to keep
these values is managed by the CANopen slave library.
For multibyte data types the structure has to be initialized with a pointer to an
application defined memory region, the length of this memory range and the
length of the current string.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 31 of 65

Handler is the object event handler of this entry which is called by the CANopen
slave library to indicate data changes to the application. Refer to chapter 4.6 for
a detailed description of the data event handler.

Return: 0 or an error code described in the appendix.

canOpenInitDictionaryTS()

Name: canOpenInitDictionary() - Initialize dictionary and attach timestamp handler

Synopsis: int canOpenInitDictionaryTs
(
HNODE Hnode, /* Node handle */
unsigned short Index, /* Index */
unsigned short Subindex, /* Subindex */
const char * EntryName, /* Textual description */
unsigned short Flags, /* Properties of entry */
pDictionaryData Data, /* Default data */
PFN_COS_DATA_HANDLER_TS Handler /* Data event handler */

)

Description: Initialize a single dictionary entry of the CANopen nodes Hnode object
dictionary. The entry has to be created previously with a call to
canOpenExtendDictionary(). This initialization has to take place for every entry
in the object dictionary before the object can be used. If the function is called in
any other node state but NodeOffline it will return with an error.

Index has to be in range of the Manufacturer Specific Area or the Standardized
Device Profile Area (0x2000 to 0x9FFF) and Subindex in the range from 0x00 to
0xFE. The entry at sub-index 0xFF which describes the structure of this object
dictionary entry according to /1/ is initialized implicitely. For complex data types
of OBJ_ARRAY the sub-index 0 is initialized automatically to the number of sub-
entries. For complex data types of OBJ_RECORD the sub-index 0 has to be
initialized to the number of sub-entries by the application.

EntryName is an optional textual description of the entry. This description is only
important for configuration file generation. Usually set this parameter to NULL,
because this description extends the memory requirements for an individual
subentry.

The parameter flags defines the access rights and other properties of the object
dictionary entry. Supported values are READ_ACCESSand WRITE_ACCESS. To
allow the mapping into a PDO the entry has to be marked as MAPPABLE. If the
entry should be mappable more than once it has to be marked as MULTI_MAP.

Data is a pointer to a union of structures of type DictionaryData. The
application has to initialize the data type related part of the union and is
responsible. For numerical data types the structure has members for the current
value, the default value and the lower and upper limits. The memory to keep

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 32 of 65

these values is managed by the CANopen slave library.
For multibyte data types the structure has to be initialized with a pointer to an
application defined memory region, the length of this memory range and the
length of the current string.

Handler is the object event handler of this entry which is called by the CANopen
slave library to indicate data changes to the application. In comparison to
canOpenInitDictionary() this handler indicates a timestamp in addition to the
values which are indicated with the standard handler. Refer to chapter 4.6 for a
detailed description of the data event handler.

Return: 0 or an error code described in the appendix.

canOpenReadDictionary()

Name: canOpenReadDictionary() - reading a local directory entry

Synopsis: int canOpenReadDictionary
(
HNODE HNode, /* handle of the CANopen node */
unsigned short Index, /* index in the object directory */
unsigned short Subindex, /* subindex of entry */
void * Data /* pointer to data sink */
)

Description: This function reads an entry in the local object directory. It can be called in
every node state.

Index is the index in the object directory and subindex is the subindex.

Data is a pointer to an application-memory area in which the data is stored. This
memory range must have a size of at least 4 bytes. In numerical data data is a
pointer to the data, in other data types it is a pointer to a pointer to the data.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 33 of 65

canOpenWriteDictionary()

Name: canOpenWriteDictionary() - modifying a local directory entry

Synopsis: int canOpenWriteDictionary
(
HNODE HNode, /* handle of the CANopen node */
unsigned short Index, /* index in the object directory */
unsigned short Subindex, /* subindex of entry */
void * Data /* pointer to data source */
)

Description: This function modifies an entry in the local object directory. If the entry is
mapped into a PDO, the PDO data are automatically updated. It can be called in
every node state.

Index shows the index in the object directory and subindex shows the subindex.

Data is a pointer to the new data in an application-memory area. Following table
shows in which way data has to be provided by the application and the column
Copy shows whether data is copied into the slave memory. If the values are not
coped into the slave memory, like strings for instance, the pointers in the
transferred structures have to refer to static memories, because they are being
referenced at a read or write access by the slave.

CANopen data type Reference type Copy

Bool Pointer to new data (1 byte) yes

Int8, Int16, Int32 Pointer to new data (1 byte, 2 bytes, 4 bytes) yes

Uint8, Uint16, Uint32 Pointer to new data (1 byte, 2 bytes, 4 bytes) yes

Float Pointer to new data (4 bytes) yes

Visible String Pointer to structure of RecVisString type no

Octet String Pointer to structure of RecOctString type no

Time Of Day Pointer to structure of CAN_TIME_OF_DAY type yes

Time Difference Pointer to structure of CAN_TIME_DIFFERENCE type yes

Domain Pointer to structure of RecDomain type no

If data is NULL for asynchronous auto-notify PDO the current data would be
transmitted.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 34 of 65

canOpenGetDictionaryHnd()

Name: canOpenGetDictionaryHnd() - Handle of a local directory entry

Synopsis: int canOpenGetDictionaryHnd
(
HNODE HNode, /* handle of the CANopen node */
unsigned short Index, /* index in the object directory */
unsigned short Subindex, /* subindex of the entry */
HDICT * HDict /* return of teh handle */
)

Description: This function returns a handle to an entry in the object directory. It can be
execu ted i n e v e r y n o d e c o n d i t i o n . B y means o f t he ca l l s
canOpenWriteDictionaryHnd() and canOpenReadDictionaryHnd(), described
below, you can gain both read and write access to this directory entry via this
handle. This causes an increased performance compared to an access via
index/subindex by canOpenWriteDictionary() or canOpenReadDictionary(),
because the accroding entry does not have to be searched for in the interlinked
directory entries. This is particularly of advantage in CANopen nodes with many
entries in the local object directory.

Index specifies the index in the object directory, and Subindex specifies the
subindex.

In Hdict the handle of the indexed directory entry is returned if the function
returned faultless, otherwise a NULL is returned.

Return: 0 or an error code as described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 35 of 65

canOpenReadDictionaryHnd()

Name: canOpenReadDictionaryHnd() - Reading a local directory entry

Synopsis: int canOpenReadDictionary
(
HDICT HDict, /* handle of object-directory entry */
void * Data /* pointer to the data sink */
)

Description: By means of this function an entry, indexed by Hdict, in the local object directory
is read. This function can be called in every node status.

Data is a pointer to an address range of the application in which data is stored.
This memory range must have a capacity of at least 4 bytes. For numerical data
Data is a pointer to the data, for other types of data it is a pointer to a pointer to
the data.

Return: 0 or an error code as described in the appendix.

canOpenWriteDictionaryHnd()

Name: canOpenWriteDictionaryHnd() - Changing a local directory entry

Synopsis: int canOpenWriteDictionaryHnd
(
HDICT HDict, /* handle of object-directory entry */
void * Data /* pointer to data source */
)

Description: By means of this function an entry, indexed by Hdict, in the local object
directory is changed. If the entry is mapped on a PDO, the PDO data is
automatically actualized The function can be executed in every node status.

The kind of data referred to by Data depends on the according CANopen-variable
type and is explained under canOpenWritePDO.

Return: 0 or an error code as described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 36 of 65

4.3 PDO Services

Following services serve the definition of a process data object (PDO), the determination of a default
mapping of entries of the object directory into the PDO and the asynchronous transmission and
reception of data.

For normal asynchronous transfer PDOs the transmission has to be explicitly arranged for by means
of the application. The same goes for the waiting for new data or the request in asynchronous
receive PDOs. In addition asynchronous PDOs can also be marked as auto notify, though, so that
transfer PDOs are immediately transmitted when updating their data and that the eventhandler(s) of
the mapped objects are executed when data for a Rx PDO is received.

The transmission of synchronous transfer PDOs is internally arranged for by means of the CANopen
slave after receiving the SYNC object in view of the configurated cycle period. The application only
has to care about updating the data. The application is informed about received data after the
reception of the SYNC object in view ofthe configurated cycle period by means of calling the object
eventhandlers of the mapped directory entries.

canOpenDefinePDO()

Name: canOpenDefinePDO() - initializing a PDO

Synopsis: int canOpenDefinePDO
(
HNODE HNode, /* handle of the CANopen node */
const char * Name, /* designator of this PDO */
UINT32 COBid, /* default-COB identifier of PDO */
UINT16 TransMode, /* transfer mode of PDO */
INT32 InhibitTime, /* inhibit time of this PDO */
UINT16 TxTout, /* transmit timeout of this PDO */
UINT16 RxTout, /* receive timeout of this PDO */
INT32 iEventTimer, /* Event timer in ms of this PDO */
UINT16 * Mapping, /* default mapping of this PDO */
HPDO hpdo /* PDO handle */
)

Description: This function creates and initializes an additional PDO for the CANopen node.
The total number of RPDOs/TPDOs, which is supported by this node instance,
is a defined with canOpenCreateNodeEx(). The attempt to create more
TPDOs/RPDOs results in an error. The PDO configuration after bootup or reset
is defined by these passed configuration parameters. The node’s object directory
entries in the PDO Communication Parameters and the PDO Mapping
Parameters area are generated implicitly. The position within the node’s object
directory is determined by the order of calls to this function in the application
code.

Name is legacy parameter which is no longer supported and is ignored by the
library. Always set this parameter to NULL.

CANopen-Slave

3 The number of Tx objects which automatically transmit the data at the reception of an RTR frame can
possibly be limited by the CAN-controller hardware. Because this feature is also used by the node/life
gurading mechanism, the number of Tx objects which support this is to be kept as small as possible.

4 The transmission of this PDO is triggered by means of a manufacturer-specific event.

5 The transmission of this PDO is triggered by means of a device-specific event.

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 37 of 65

The parameter COBid defines the PDO’s default COB-ID which according to /1/
consists of the CAN-ID and additional control bits. To apply these control bits
you have to combine them with the CAN-ID by a logical OR operation. To
define the node’s n-th default PDO you can use DEFAULT_PDO_N with N=1..4
for the CAN-ID instead using a numerical value. In this case the CAN-ID is
derived from the Node-ID according to the pre-defined connection set /xxx/.
The CAN-ID part of the COB-ID might be changed by a CANopen manager.
The valid control bit can be set to PDO_VALID or PDO_INVALID to determine,
which PDOs are used in the NMT node state Operational. The 4 default PDOs
can always be set to valid. All additional PDOs should be set to invalid in order
to prevent conflicts with other CANopen slave nodes. If a non-default PDO is
initially set to valid the application is responsible for the CANopen network
integrity. This COB-ID control bit might be changed by a CANopen manager.
The RTR control bit RTR_ALLOW or RTR_DISALLOW define whether a
transmit PDO might by RTR requestable or not3. The configured value of this
COB-ID control bit can not be changed by a CANopen manager.

The parameter TransMode defines the transmission type of the PDO. In addition
to /1/ this parameter consists also of several proprietary control bits which
describe the type and the behavior of the PDO. To apply these control bits you
have to combine them with the PDO transmission type by a logical OR
operation. The PDO type control bit can be either set to TRANSMIT_PDO or
RECEIVE_PDO with SYNCHRON_PDO/ASYNCHRON_PDO and a numerical
value between 0 and 255 which is given in /1/ according to following table. In
addition it is possible to mark an asynchron PDO by AUTO_NOTIFY. This PDO
has the properties described above. For an asynchron transmit PDO it is possible
to define via the flag TX_DONE_PDO, whether the CAN-driver function /2/
canCalWrite instead of canCalSend is used for the data transfer.

Value PDO-transmission mode
cyclical acyclical synchronous asynchronous only RTR

0 x x
1-240 x x

241-251 reserved
252 x x
253 x x
2544 x
2555 x

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 38 of 65

A value of 0 describes a transfer PDO which is transmitted once at the reception
of the SYNC object or a receive PDO whose data is taken over by the
application at the reception of the SYNC object.

 A value n between 1 and 240 describes a cyclical, synchronous transfer PDO
which is only transmitted at the reception of every nth SYNC object.

InhibitTime determines in ms how long after transmission of this PDO this isn’t
allowed to be transmitted again.

TxTout and RxTout are the timeout intervals at transmission or reception of data.

The parameter iEventTimer defines the time in ms after which an asynchron
TPDO is sent in either case even it’s data hasn’t changed.

The parameter Mapping describes the mapping of directory entries into the PDO
by specifying index and subindex. The list has to be terminated by a zero for
index and subindex. Dummy mapping according to /1/ is supported by
specifying a value between 0x01 and 0x07 as index and a 0 as subindex.

In Hpdo the handle for this PDO is stored.

Return: 0 or an error code described in the appendix.

canOpenWritePDO()

Name: canOpenWritePDO() - asynchronous transmission of a transmit PDO

Synopsis: int canOpenWritePDO
(
HPDO hpdo, /* handle of PDO */
void * buffer /* pointer to the data sink */
)

Description: Transmitting the asynchronous transfer PDO. This service is only possible in
node state Operational.

If buffer is NULL, the PDO is transmitted as is. Otherwise the specified data is
taken over and the updated PDO is transmitted. The corresponding mapping
entries of the Object Dictionary are also updated by doing this.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 39 of 65

canOpenReadPDO()

Name: canOpenReadPDO() - waiting for the reception of data

Synopsis: int canOpenReadPDO
(
HPDO hpdo, /* handle of PDO */
void * buffer /* pointer to the data sink */
)

Description: The application waits for the reception of data for a given PDO. The timeout
values assigned in the PDO definition are valid.

Buffer is a pointer to an application memory area (at least 8 bytes) in which the
received data can be stored. If NULL the callback handler of the mapped
directory entries are called, otherwise this is suppressed.

Return: 0 or an error code described in the appendix.

canOpenRequestPDO()

Name: canOpenRequestPDO() - asynchronous request of data

Synopsis: int canOpenRequestPDO
(
HPDO hpdo, /* handle of PDO */
void * buffer /* pointer to the data sink */
)

Description: By means of this function a client requests the transmission of a server PDO by
means of a RTR frame. The timeout values assigned in the PDO definition are
valid.

Buffer is a pointer to an application-memory range (at least 8 bytes) in which the
received data can be stored. If NULL the callback handlers of the mapped
directory entries are called, otherwise this is suppressed.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 40 of 65

NOP

NQP

NRP NSP

NTP

UVVWVXYVZZ [\]\^_

UVVWV [`\^]\`Wa

4.4 Error Situations and Emergency (EMCY) Objects

The CANopen slave implements an error state machine which can be either in the state Error-Free or
in the state Error. A state change can be caused by the application layer using the API described in this
chapter or is caused internally if a communication or configuration error situation is detected or
resolved. The picture below describes the possible transitions between the error-free and the error
state:

Fig. 3: Error State Transition Diagram

(0) After calling canOpenActivateNode() the CANopen node gets into error-free state.
(1) If canOpenSetError() is called by the application or an internal communication or

configuration error is detected, the error is indicated as described in the following abstract
and the CANopen node changes into the error state. The internal node error counter is
incremented .

(2) If canOpenSetError() is called again, the previous tasks are repeated and the CANopen
node remains in the error state.

(3) If canOpenResetError() is called by the application or an internal communication or
configuration error condition is solved, the error is incicated as described in the following
abstarct and the node’s internal error counter is decremented. As long as the counter doesn’t
reach 0 the CANopen node remains in the error state.

(4) If the internal error counter becomes 0 during the previous step the node changes back into
the error-free state.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 41 of 65

An error situation or an repaired error is indicated to the application layer and on the CAN bus in the
following ways:

- The error is indicated in the mandatory Error Register Object (0x1001)
according to /1/.

- An Emergency (EMCY) Object according to /1/ is transmitted on the CAN-Bus.
The details of the EMCY object is described below. The CAN identifier of this
object can be configured with the parameter ulEmcyCobId of the structure
S L A V E _ N O D E _ I N F O w h i c h i s d e s c r i b e d t o g e t h e r w i t h
canOpenCreateNodeEx().

- If the slave is initialized to support an error history via the Pre-defined error
field (0x1003), the latest error event is inserted at the top of this array.

- If the error is detected internally because of a communication or configuration
problem in addition to the previous operations the error is indicated to the
application via the node’s event handler.

The 8 byte EMCY object according to /1/ has the following structure:

2 Bytes 1 Byte 5 Byte

Emergency Error Code Error Register Manufacture-specific error code

A list of pre-defined Emergency Error Codes is described in /1/ and defined in the header
scanopen.h starting with the prefix EMCY. If an error event is caused by the application calling the
API functions canOpenSetError() or canOpenResetError() the 5 bytes of manufacturer-specific
error information can be used without any restrictions. If the EMCY object is transmitted because
of an internal communication or configuration error the 5 bytes are used in the following way:

Temporary Bits Sticky Bits Reason Info1 Info2

The Temporary Bits indicate temporary error conditions which are reset if the error is repaired:

Bit Description

0 NMT Error Control (Guarding/Heartbeat error).

1 CAN Controller Passive.

2 CAN Controller Bus Off

3-4 Reserved for future use by the CANopen stack.

5-7 Application specific temporary error.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 42 of 65

The Sticky Bits indicate error conditions which are indicated even if the error is already repaired.

Bit Description

0 CAN Controller Error.

1 Receive FIFO Overrun.

2 PDO Length Error.

3-4 Reserved for future use by the CANopen stack.

5-7 Application specific temporary error.

The parameter Reason, Info1 and Info2 contain additional information to an internal generated
EMCY object because of a communication or configuration error. The table below lists the
internally generated EMCY objects and the meaning of the related manufacturer-specific parameter.

Error Code Description Reason Info1 Info2

0x8100 Message Lost Error 1 = Rx Daemon FIFO # of Lost Messages 0

0x8110 CAN overrun (objects lost) 0 0 0

0x8120 CAN in error passive mode 0 0 0

0x8130 Life Guard or Heartbeat Error 0 0 0

0x8140 Recover from Bus-Off 0 0 0

0x8210 PDO not processed (length error) Internal PDO number CAN msg length PDO length

0x8220 PDO length exceeded Internal PDO number CAN msg length PDO length

The application can participate using this error schema by setting

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 43 of 65

canOpenSetError()

Name: canOpenSetError() - setting an error

Synopsis: int canOpenSetError
(
HNODE Hnode, /* handle of the CANopen node */
unsigned short ErrorCode, /* error code according to /1/ */
unsigned short ErrorInformation, /* error information */
unsigned short ErrorRegister, /* flags in error register */
unsigned char * ErrorField /* pointer to error field */
)

Description: The CANopen slave changes from error-free state into error state.

In ErrorCode the Emergency Error Code of the EMCY object is determined.
This EMCY object consists of an application specific error code in the range of
0x00 - 0xFF. This error code has to be connected to one of the following
CANopen-error codes:

EMCY_GENERIC_ERROR EMCY_CURRENT
EMCY_CURRENT_INPUT EMCY_CURRENT_INSIDE
EMCY_CURRENT_OUTPUT EMCY_VOLTAGE
EMCY_VOLTAGE_INPUT EMCY_VOLTAGE_INSIDE
EMCY_VOLTAGE_OUTPUT EMCY_TEMPERATURE
EMCY_TEMPERATURE_AMBIENT EMCY_TEMPERATURE_DEVICE
EMCY_DEVICE_HARDWARE EMCY_DEVICE_SOFTWARE
EMCY_DEVICE_SOFTWARE_INTERNAL EMCY_DEVICE_SOFTWARE_USER
EMCY_DEVICE_SOFTWARE_DATA_SET EMCY_ADDITIONAL_MODULES
EMCY_MONITORING EMCY_MONITORING_COMMUNICATION
EMCY_EXTERNAL_ERROR EMCY_ADDITIONAL_FUNCTIONS
EMCY_DEVICE_SPECIFIC

ErrorInformation determines the information to be stored in the two MS bytes of
the error history under directory entry 0x1003. If this optional entry has not been
made when initializing the CANopen node, ErrorInformation is ignored.

A mask with flags is given as ErrorRegister. These flags are to be set in the error
register (directory entry 0x1001). The mask is logically OR’ed to the current
value of the entry, before the value is entered into the EMCY object. Possible
values are:

ERROR_GENERIC ERROR_CURRENT
ERROR_VOLTAGE ERROR_TEMPERATURE
ERROR_COMMUNICATION ERROR_DEVICE_SPECIFIC
ERROR_MANUFACTURER_SPECIFIC

ErrorField is a pointer to a 5-byte string which contains an application-specific
description of the error and is transmitted by means of the EMCY object.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 44 of 65

canOpenResetError()

Name: canOpenResetError() - resetting an error

Synopsis: int canOpenWritePDO
(
HNODE Hnode, /* handle of the CANopen node */
unsigned short ErrorRegister, /* flags in error register */
unsigned char * ErrorField /* pointer to error field */
)

Description: An error of the CANopen slave is reseted. An EMCY object with ErrorReset
in the error-code field is transmitted. If this was the last error, the node changes
from error state into error-free state.

ErrorRegister is a mask of flags to reset in the error register (directory entry
0x1001). Possible values are:

ERROR_GENERIC ERROR_CURRENT
ERROR_VOLTAGE ERROR_TEMPERATURE
ERROR_COMMUNICATION ERROR_DEVICE_SPECIFIC
ERROR_MANUFACTURER_SPECIFIC

ErrorField is a pointer to a 5-byte-long character chain which contains an
application-specific state description and is transmitted by means of the EMCY
object.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 45 of 65

4.5 Assistant Functions

canOpenGetVersions()

Name: canOpenGetVersions() - Return version of slave components.

Synopsis: void canOpenGetVersions
(
CANOPEN_VERSIONS *versions /* pointer to version structure */
)

Description: This function returns the version numbers of the components described in the
introduction.

A pointer to the data structure below which is initialized by the CANopen slave
library.

typedef struct
{

unsigned short cos;
unsigned short sdm;
unsigned short pdm;
unsigned short nmt;
unsigned short dbt;
unsigned short cms;
unsigned short sys;
unsigned short can;

} CANOPEN_VERSIONS;

The revision number of each component is a 16-bit value with the following
format:

Bits 15...12 Bits 11...8 Bits 7...0

level revision change

Return: N/A.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 46 of 65

canOpenSetParameter()

Name: canOpenSetParameter() - Configure parameter of CANopen stack

Synopsis: int canOpenSetParameter
(
HNODE hNode, /* Node handle */
UINT32 uiCommand, /* Command */
VOID *pArg /* Argument */
)

Description: Configure the behavior of the CANopen stack or a single node at runtime. The
argument type depends on the command according to this table:

PARA_DISABLE_AUTO_TRANSMISSION:

Disable the automatic transmission of objects mapped into PDO which are
configured as asynchron PDOs and marked with the AUTO_NOTIFY bit. The
argument has to be set to NULL. This call allows the application to update all
objects of a PDO without forcing a transmission of after each update.

PARA_ENABLE_AUTO_TRANSMISSION:

Enable the automatic transmission of objects mapped into PDO which are
configured as asynchron PDOs and marked with the AUTO_NOTIFY bit. The
argument has to be set to NULL. All asynchron PDOs with mapped objects which
are updated since the call to canOpenSetParameter() with the command
PARA_DISABLE_AUTO_TRANSMISSION are send immediately.

Return: 0 or an error code described in the appendix.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 47 of 65

canOpenGetParameter()

Name: canOpenGetParameter() - Get a parameter from the CANopen stack

Synopsis: int canOpenGetParameter
(
HNODE hNode, /* Node handle */
UINT32 uiCommand, /* Command */
VOID *pArg /* Argument */
)

Description: Get a configuration parameter of the CANopen stack or a single node at runtime.
The argument type depends on the command according to this table:

PARA_GET_TIMESTAMP_FREQUENCY:

Returns the frequency of the timestamp counter (if supported by the CAN
hardware and/or CAN driver) of the physical CAN port the CANopen node is
using to send and receive messages. The data is returned as an UINT64 value.

PARA_GET_TIMESTAMP:

Returns the current value of the timestamp counter (if supported by the CAN
hardware and/or CAN driver) of the physical CAN port the CANopen node is
using to send and receive messages. The data is returned as an UINT64 value.

Return: 0 or an error code described in the appendix.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 48 of 65

Every event handler is called directly from within the threads/processes of the CANopen slave
library. For this reason the handler should be programmed thread-safe, should reduce the execution
time to a minimum and is never allowed to use blocking calls.

4.6 Event handler

The base for the event driven interaction between the CANopen slave library and the application are
event handler (direct callbacks because of performance). Each node has an event handler to indicate
node specific events or error situations to the application. To every entry in the object dictionary an
event handler can be attached which is called by the CANopen library if the data of the object is
changed or the application is requested to provide new data for this object.

Object Eventhandler without timestamps

If the data of an entry in the object directory is changed by an external PDO or SDO service or the
application is requested to update the data, the attached object event handler is called with the five
arguments below:

1. Net number (int)
2. Module number (int)
3. Index (int)
4. Subindex (int)
5. Pointer to received data (void *)

The pointer to the data gets invalid after return from the event handler. It is possible to define the
same event handler for all nets, nodes and dictionary entries and dispatch the first 4 parameter to relate
data to the object.

Object Eventhandler with timestamps

If the data of an entry in the object directory is changed by an external PDO or SDO service or the
application is requested to update the data, the attached object event handler is called with the five
arguments below:

1. Net number (int)
2. Module number (int)
3. Index (int)
4. Subindex (int)
5. Pointer to received data (void *)
6. Timestamp (UINT64)

The pointer to the data gets invalid after return from the event handler. It is possible to define the
same event handler for all nets, nodes and dictionary entries and dispatch the first 4 parameter to relate
data to the object.
The timestamp is captured with the reception of the PDO or at the end of an SDO service. It is either
a raw value which has to be normalized by the application or the CANopen stack can be configured
to normalize the timestamps to us with canOpenCreateNetworkEx().

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 49 of 65

int EventHandler(SLAVE_EVENT *pEvent);

typedef struct {
unsigned short usNetNo;
unsigned short usModId;
unsigned long ulEvent;
unsigned long ulArg1;
union {

unsigned long ulArg2;
void * pArg2;

} arg;
} SLAVE_EVENT;

Node Eventhandler
The node event handler that is defined in canOpenCreateNodeEx() is called every time the CANopen
slave has to indicate an event or error to the application. The application can define an event mask with
events that are to be indicated using the parameter ulEventMask of the structure SLAVE_NODE_INFO
which is a parameter of canOpenCreateNodeEx().
The event handler itself has to follow the syntax:

The handler should always return SCANOPEN_OK and shouldn’t block. The argument of the event
handler is a pointer to the following structure:

The member variable usNetNo and usModId describe the logical net number and the local slave Node-
ID of the event source, so a common event handler might be used for all local slaves on all configured
networks. The member variable ulEvent is the event type. The event types are the same that are used
to define the event mask in the structure SLAVE_NODE_INFO mentioned above. The argument ulArg1
is the first subargument of the event type. The second subargument is either another decimal or a
pointer to a data structure whose type depends on the main event type.

The following table summarizes the possible event types with their subarguments.

ulEvent ulArg1 ulArg2/pArg2 Event reason

EV_GUARDING EV_START --- Node/Lifeguarding is started

EV_TIMEOUT --- Lifeguarding timed out

EV_STOP --- Node/Lifeguarding is stopped

EV_STATE_CHANGE state --- node has changed into state

EV_RESET
EV_COMMUNICATION EV_BEGIN Enter Reset Communication state

EV_COMMUNICATION EV_END Leave Reset Communication state

EV_APPLICATION EV_BEGIN Enter Reset Application started state

EV_APPLICATION EV_BEGIN Leave Reset Application state

EV_CONFIGURATION EV_STORE - Store configuration request

EV_RESTORE - Restore configuration request

CANopen-Slave

ulEvent ulArg1 ulArg2/pArg2 Event reason

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 50 of 65

int EventHandler(int, int, int, int);

EV_CAN EV_CONTROLLER_OK - Recovery from CAN bus-off state

EV_CONTROLLER_WARN - CAN Controller enters error passive
state

EV_CONTROLLER_BUS_OFF - CAN Controller enters bus-off state

EV_FIFO_OVERRUN - CAN controller overrun error

EV_PDO_FIFO_OVERRUN Number of lost
PDOs

Receive FIFO of PDO daemon is
overrun

EV_PDO_RX_ERROR CAN driver
error code

The receive request of the PDO
daemon returned with an unexpected
error.

EV_PDO_NOT_PROCESSED PDO number A received PDO isn’t processed
because the length of the received
PDO is smaller than the length
according to the current mapping.

EV_PDO_LENGTH_EXCEEDED PDO number A received PDO isn’t processed
because the length of the received
PDO exceeds the length according to
the current mapping for this PDO.

EV_EMCY Node-ID of the EMCY producer Ptr to EMCY
object

EMCY object received

EV_CONSUMER_HEARTBEAT EV_START --- Heartbeat monitoring started

EV_STOP --- Heartbeat monitoring stopped

EV_BOOTUP --- Bootup message received

EV_WRITE_DICTIONARY Index Subindex Write access to object dictionary
entry

Deprecated event handler
If the CANopen node is created with the deprecated API canOpenCreateNode() an event handler of the
following syntax is called:

The handler should always return SCANOPEN_OK and shouldn’t block. The four parameter that are
indicated to the application are:

1. Net number and module number
2. Event cause (as ulEvent described above)
3. Subargument 1 (as ulArg1 described above)
4. Subargument 2 (as ulArg2 described above)

Only the event types EV_GUARDING, EV_STATE_CHANGE and EV_RESET are supported.With the help of
the macros CANOPEN_NET and CANOPEN_NODE the logical net number and node number can be
extracted from the first parameter which combines these two values.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 51 of 65

4.7 Macros

The CANopen slave library comes with a set of several useful macros which simplify common
programming tasks and make the code more readable.

The base concept of several macros is implementing a static table with entries in the local scope of
your source module to define the CANopen slave related objects (Object dictionary entries, PDO
mapping tables, PDOs). After creating the CANopen slave node with canOpenCreateNodeEx() and
before activating the node with canOpenActivateNode() you write a further macro directly in your
code which expands to the API calls which are usually create and/or initialize these objects, processing
the defined table. As these macros simply expand to the standard API calls, a mixed usage of macros
and API calls in the code to setup and initialize the CANopen slave node is possible.

Dictionary Entry Tables

The following macros are used in lieu of repetitive calls to canOpenExtendDictionary() and
canOpenInitDictionary() or canOpenInitDictionaryTs().

BEGIN_DICTIONARY_TABLE(DictionaryName)

Begins the definition of a dictionary table for object dictionary entries with attached handlers
without timestamps. You can define more than one dictionary table defining different values for
DictionaryName. You have to define the dictionary table either in the local scope of your source
module or in the local scope of code that is implementing DECLARE_DICTIONARY.

END_DICTIONARY_TABLE

Ends the definition of a dictionary table for object dictionary entries with attached handlers
without timestamps..

BEGIN_DICTIONARY_TABLE_TS(DictionaryName)

Begins the definition of a dictionary table for object dictionary entries with attached handlers
with timestamps. You can define more than one dictionary table defining different values for
DictionaryName. You have to define the dictionary table either in the local scope of your source
module or in the local scope of code that is implementing DECLARE_DICTIONARY.

END_DICTIONARY_TABLE_TS

Ends the definition of a dictionary table for object dictionary entries with attached handlers with
timestamps.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 52 of 65

DICTIONARY_ENTRY(Index, Subindex, ObjectType, DataType,
 Flags, Data, Handler, EntryName)

Defines a new dictionary entry. Please refer to the documentation of
canOpenExtendDictionary() for the data types and possible values of Index, Subindex,
ObjectType and DataType. Please refer to the documentation of canOpenInitDictionary() for the
data types and possible values of Flags, Data, Handler and EntryName.
The parameter EntryName isn’t supported at the moment and has to be set to NULL. If
dictionary entries of the object type OBJ_ARRAY or OBJ_RECORD are defined, the read only
dictionary entry for subindex 0 with data type Uint8 initialized to the number of subentries is
created implicitly.
One disadvantage of using macros extending and initializing the object dictionary is that for the
object type OBJ_ARRAY and OBJ_RECORD the individual subentries can not be initialized to
different default values, access attributes or handler as they all get initialized with the same
parameters. If you want to forece individual values, you can override the initialization performed
by the macro with required calls of canOpenInitDictionary() after DECLARE_DICTIONARY and
before canOpenActivateNode() is called.

DECLARE_DICTIONARY(hNode, DictionaryName)

Extends and initialize the slave node with a previously defined dictionary table. The parameter
hNode is the node handle which is returned by canOpenCreateNodeEx(). The parameter
DictionaryName defines the dictionary table which is started with BEGIN_DICTIONARY_TABLE..

Internally these macros define and use arrays of the type _COS_DICT_ENTRY with the variable name
DictionaryName prefixed by the string “_Dict_Entry_” which do not need accessed directly by the
application. At the end of the explanation of the PDO Table related macros you will find an example
using these macros.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 53 of 65

PDO Mapping Tables

The following macros are used to define a default mapping of entries in the object dictionary to the
PDO of the slave node. Their only purpose is to provide the possibility of a more clearly laid out code
for the mapping data structure which is referenced in canOpenDefinePDO().

BEGIN_MAPPING_TABLE(MappingName)

Begins the definition of a PDO mapping table. You can define more than one PDO mapping
defining different values for MappingName. You have to define the PDO mapping table either
in the local scope of your source module or in the local scope of code that is implementing
DECLARE_PDO.

END_MAPPING_TABLE

Ends the definition of a PDO mapping table.

MAPPING_ENTRY(Index, Subindex)

Defines a new mapping entry. Please refer to the documentation of the parameter Mapping for
canOpenDefinePDO() for more details about the macro parameter Index and Subindex.

Internally these macros define arrays of the type unsigned short with the variable name
MappingName prefixed by the string “_Mapping_” which do not need accessed directly by the
application. At the end of the explanation of the PDO Table related macros you will find an example
using these macros.

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 54 of 65

PDO Tables

The following macros are used in lieu of repetitive calls to canOpenDefinePDO()

BEGIN_PDO_TABLE(PDO_Name)

Begins the definition of a table with PDO descriptions. You can define more than one PDO table
defining different values for PDO_Name. You have to define the PDO table either in the local
scope of your source module or in the local scope of code that is implementing DECLARE_PDO.

END_PDO_TABLE

Ends the definition of a PDO table.

PDO_ENTRY(COBid, TransMode, InhibitTime, TxTout, RxTout, Reserved, Mapping)

Defines a new PDO entry with a default mapping. Please refer to the documentation of
canOpenDefinePDO() for the data types and possible values of COBid, TransMode, InhibitTime,
TxTout, and RxTout. Use the parameter MappingName of the macro BEGIN_MAPPING_TABLE
of the intended default mapping as argument for this macro parameter Mapping.

PDO_ENTRY_UNMAPPED(COBid, TransMode, InhibitTime, TxTout, RxTout, Reserved)

Defines a new PDO entry without a default mapping. Please refer to the documentation of
canOpenDefinePDO() for the data types and possible values of COBid, TransMode, InhibitTime,
TxTout, and RxTout.

DECLARE_PDO(hNode, PDO_Name)

Extends and initialize the slave node with a previously defined PDO table. The parameter hNode
is the node handle which is returned by canOpenCreateNodeEx(). The parameter PDO_Name
defines the dictionary table which is started with BEGIN_PDO_TABLE..

Internally these macros define and use arrays of the type _COS_PDO_ENTRY with the variable name
PDO_Name prefixed by the string “_PDO_Table_” which normally do not need accessed directly by
the application. If the application needs the PDO handle which is returned by canOpenDefinePDO()
to use direct PDO services for reading or writing PDOs this handle is stored in member handle of the
structure _COS_PDO_ENTRY.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 55 of 65

#include <scanopen.h>

/* Forward declarations */
static DictionaryData udtDefaultData;

int DataEventHandler(int NetNo, int NodeNo, int index, int subindex,
 void *data);

/* Defines */
#define WRITE_STATE_32_OUTPUT_LINES 0x6320
#define READ_INPUT_32_BIT 0x6120

/* Definition of local Object Dictionary */
BEGIN_DICTIONARY_TABLE(AsyncIo)
 DICTIONARY_ENTRY(WRITE_STATE_32_OUTPUT_LINES, 2, OBJ_ARRAY,
 MAP_UINT32, MAPPABLE | READ_ACCESS | WRITE_ACCESS,

 &udtDefaultData, DataEventHandler, NULL)
 DICTIONARY_ENTRY(READ_INPUT_32_BIT, 2, OBJ_ARRAY,
 MAP_UINT32, MAPPABLE | READ_ACCESS,

 &udtDefaultData, DataEventHandler, NULL)
END_DICTIONARY_TABLE()

/* Definition of Default Mapping Table of PDOs. */
BEGIN_MAPPING_TABLE(OutputMapping1)
 MAPPING_ENTRY(WRITE_STATE_32_OUTPUT_LINES, 1)
 MAPPING_ENTRY(WRITE_STATE_32_OUTPUT_LINES, 2)
END_MAPPING_TABLE()

BEGIN_MAPPING_TABLE(InputMapping1)
 MAPPING_ENTRY(READ_INPUT_32_BIT, 1)
 MAPPING_ENTRY(READ_INPUT_32_BIT, 2)
END_MAPPING_TABLE()

/* Definition of PDOs.*/
BEGIN_PDO_TABLE(AsyncIo)
 PDO_ENTRY(DEFAULT_PDO1,
 RECEIVE_PDO | ASYNCHRON_PDO | AUTO_NOTIFY_PDO | 255,
 0, 5000, 5000, 0, OutputMapping1)
 PDO_ENTRY(DEFAULT_PDO1,
 TIMER_DRIVEN_PDO | TRANSMIT_PDO | AUTO_NOTIFY_PDO | 255,
 0, 5000, 5000, 0, InputMapping1)
END_PDO_TABLE()

The following example shows how to create dictionary tables, mapping tables and PDO tables using
the macros described above. This code is usually located in the module that implements initialization
and setup of the CANopen slave node:

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 56 of 65

The following example shows some pseudo code how to setup the object dictionary and PDOs using
the definition in the previous example. Please refer to example1.c, which comes with your CANopen
library distribution, for a fully working example.

HNODE Node; /* Node handle */

/* Create slave node */
canOpenCreateNodeEx(...., &Node);

.

.

.

/* Initialize object default data and create application specific */
udtDefaultData.uint32.defval = 0;
udtDefaultData.uint32.val = 0;

/* Create the dictionary */
DECLARE_DICTIONARY(Node, AsyncIo);

/* Declare PDOs */
DECLARE_PDO(Node, AsyncIo);

.

.

.

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 57 of 65

5 Error Codes of Slave-Service Functions

The following tables list the possible error codes that can be returned by the slave library API calls.
Some error codes defined in the header of the slave library are only used internally. As they wwon’t
be returned by any API call they are not documented here.

When evaluating return values you should never use the numerical values but should always use the
constants defined for this error codes.

SCANOPEN_OK
Success (no warning or error).

Severity Success

Description The operation was executed without any errors.

Function All functions.

SCANOPEN_WRONG_INDEX
The parameter index is invalid.

Severity Error

Description The object entry that should be referenced by the parameter index
does not exist.

Solutions Create an entry in the object dictionary with this index before you
reference it.

Function canOpenInitDictionary()
canOpenReadDictionary()
canOpenWriteDictionary()

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 58 of 65

SCANOPEN_WRONG_SUBINDEX
The parameter subindex is invalid.

Severity Error

Description The object entry that should be referenced by the parameter index
exist but the subindex does not exist.

Solutions Create an entry in the object dictionary with this index and
subindex before you reference it.

Function canOpenInitDictionary()
canOpenReadDictionary()
canOpenWriteDictionary()

SCANOPEN_OUT_OF_MEMORY
Error allocating a resource.

Severity Error

Description Allocating a resource like memory or a synchronization object that
is necessary to complete the operation failed.

Solutions Increase the available memory for the CANopen slave process.

Function canOpenActivateNode()
canOpenCreateNetwork()
canOpenCreateNode()
canOpenDefinePDO()
canOpenExtendDictionary()

SCANOPEN_WRONG_BAUDRATE
An unsupported CAN baudrate was used.

Severity Error

Description The CANopen slave should be initialized with a CAN baudrate that
is unsupported by this implementation.

Solutions Use a supported baudrate.

Function canOpenCreateNetwork()

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 59 of 65

SCANOPEN_CANNOT_START_DAEMON
Error creating an internal thread.

Severity Error

Description During CANopen slave initialization a necessary internal
CANopen protocol thread could not be started.

Solutions • Increase the available memory for the CANopen slave
process..

• Make sure that the CAN driver is started properly

Function canOpenCreateNetwork()
canOpenCreateNode()
canOpenActivateNode()

SCANOPEN_WRONG_PARAMETER
Invalid parameter.

Severity Error

Description One or more parameter of a function call were invalid.

Solutions Compare parameter value with ranges given in manual

Function All functions

SCANOPEN_VALUE_TOO_HIGH
Parameter value exceeds maximum.

Severity Error

Description A dictionary object value exceeds the given maximum for this
entry.

Solutions Compare value with defined maximum of this entry

Function canOpenWriteDictionary()
canOpenWriteDictionaryHnd()

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 60 of 65

SCANOPEN_VALUE_TOO_LOW
Parameter value below minimum.

Severity Error

Description A dictionary object value is below the given minimum for this
entry.

Solutions Compare value with defined minimum of this entry

Function canOpenWriteDictionary()
canOpenWriteDictionaryHnd()

SCANOPEN_WRONG_TYPE
Wrong data type.

Severity Error

Description The data type is not supported by the CANopen slave or the given
data type does not match the referenced entry of the object
dictionary.

Solutions • Use supported data types listed in manual.
• Check defined data type for this object dictionary entry.

Function canOpenExtendDictionary()
canOpenReadDictionary()
canOpenReadDictionaryHnd()

SCANOPEN_WRONG_OBJECT_TYPE
Wrong object type.

Severity Error

Description The object type is not supported by the CANopen slave.

Solutions Use supported object types listed in manual.

Function canOpenExtendDictionary()

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 61 of 65

SCANOPEN_PDO_MAPPING_ERROR
An error occurred during PDO mapping .

Severity Error

Description An error occurred while the default mapping list for a PDO is
checked. Reasons for the failures are that an object dictionary entry
referenced by index/subindex does not exist, is not mappable, has
wrong access rights or is already mapped to another PDO.

Solutions • Check if an object with this index/subindex exist.
• Check if this object is marked as mappable
• Check is the access rights are correct for the PDO type.
• Check if this object is not already mapped to another PDO.

Function canOpenDefinePDO()

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 62 of 65

SCANOPEN_TOO_MANY_OBJECTS
A certain object type exceeds internal limits.

Severity Error

Description During initialization the built in maximum for a certain internal
object type like number of CANopen nodes is exceeded

Solutions If this is the return value of canOpenDefinePDO() check if one of
the following error conditions is met:
• The number of created RPDOs/TPDOs exceed the number of

supported PDOs defined by canOpenCreateNodeEx().
• Map an object into different PDOs without defining the

MULTI_MAP flag for this object.
• The same object is mapped into more different PDOs than the

maximum allowed number configured with
canOpenCreateNodeEx().

In other cases contact esd gmbh if it is possible to get a version of
the CANopen slave with a greater built in maximum for this object
type.

Function canOpenCreateNode()
canOpenCreateNodeEx()
canOpenDefinePDO()

SCANOPEN_WRONG_NODESTATE
Wrong nodestate for this operation.

Severity Warning / Error

Description A requested operation could not be performed because the
CANopen slave is not in the correct nodestate.

Solutions • If this happens during initialization make sure that the
CANopen slave is not already started.

• If this happens for an operation that should cause a data
transmission this is a warning that the transmission was not
performed because of the wrong node state.

Function All functions

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 63 of 65

SCANOPEN_SERVICE_NOT_ALLOWED
Requested operation aborted.

Severity Error

Description A requested operation was not completed because of internal
reasons

Solutions • If you want to delete a network make sure that all nodes that
belong to this network haven been deleted previously..

• If you want to write/read a PDO check that the PDO type that
belongs to this handle matches the operation.

Function canOpenRemoveNetwork()
canOpenWritePDO()
canOpenReadPDO()
canOpenRequestPDO

SCANOPEN_LENGTH_MISMATCH
PDO length error.

Severity Error

Description The length of a received PDO does not match the PDO definition.

Solutions Make sure that the configuration of the PDO transmitter matches
the receiver configuration. Use dummy mapping for PDO bytes
that your application is not interested in.

Function canOpenReadPDO()
canOpenRequestPDO()

SCANOPEN_INIT_ERRORS
Error during initialization.

Severity Error

Description An initialization operation could not be completed because of a
CAN driver error.

Solutions Make sure that the CAN driver for the network that is used from
the CANopen slave is installed and initialized correctly.

Function canOpenCreateNwtwork()
canOpenCreateNode()

SCANOPEN_INVALID_HANDLE

CANopen-Slave

 Software Manual • Doc. No.: C.2002.21 / Rev. 2.2 CANopen SlavePage 64 of 65

Function call with invalid handle

Severity Error

Description An operation could not be completed because the given handle is
invalid.

Solutions • Check if a variable to store a CANopen handle is used for
other things during operation.

• Check that after a canOpenDeleteNode() call the node handle
is no longer used for further calls.

Function All functions using a handle as parameter

SCANOPEN_ACCESS_ERROR
Operation failed because of access rights.

Severity Error

Description The operation could not be performed because the referenced
object in the object dictionary has the wrong access rights.

Solutions The referenced object exist but the access rights are incorrect for
this operation. If you want e.g. writing to an object dictionary entry
that is marked as “read only” you will get this error.

Function canOpenWriteDictionary()
canOpenReadDictionary()

SCANOPEN_PDO_PARAMETER_ERROR
Invalid communication parameter.

Severity Error

Description The operation could not be performed because at least one PDO
communication parameter is invalid.

Solutions Check communication parameter.

Function canDefinePDO()

CANopen-Slave

CANopen Slave Software Manual • Doc. No.: C.2002.21 / Rev. 2.3 Page 65 of 65

SCANOPEN_NOT_IMPLEMENTED
The functionality isn’t implemented.

Severity Error

Description The operation could not be performed because this feature isn’t
implemented in this version of the CANopen slave library.

Solutions Contact esd GmbH.

Function N/A

SCANOPEN_INHIBITED
PDO inhibit time not reached.

Severity Error

Description A PDO can not be send because the configured inhibit time isn’t
exceeded since the last transmission.

Solutions Try to repeat the failed operation later.

Function canOpenWriteDictionary()
canOpenWritePDO()

