
 esd electronics gmbh

 Vahrenwalder Str. 207 • 30165 Hannover • Germany
 http://www.esd.eu
Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 1 of 122

CAN-PN/2,
CAN-PN/2-FD

Fieldbus Gateway for connecting
PROFINET®-IO with CAN and CAN FD

CAN-PN/2 (C.2924.02)

CAN-PN/2-FD (C.2924.62)

Manual

to Product C.2924.02,
C.2924.62

Page 2 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

 This manual contains important information and instructions on safe and efficient
handling of the CAN-PN/2. Carefully read this manual before commencing any work
and follow the instructions.
The manual is a product component, please retain it for future use.

Links

esd electronics gmbh assumes no liability or guarantee for the content of Internet pages to which this document refers
directly or indirectly. Visitors follow links to websites at their own risk and use them in accordance with the applicable terms
of use of the respective websites.

Trademark Notices
CANopen® and CiA® are registered EU trademarks of CAN in Automation e.V.
PROFINET® is registered EU trademark of PROFIBUS Nutzerorganisation e.V.
All other trademarks, product names, company names or company logos used in this manual are reserved by their
respective owners.

Notes

The information in this document has been carefully checked and is believed to be entirely reliable.
esd electronics makes no warranty of any kind with regard to the material in this document and
assumes no responsibility for any errors that may appear in this document. In particular, the
descriptions and technical data specified in this document may not be constituted to be guaranteed
product features in any legal sense.

esd electronics reserves the right to make changes without notice to this, or any of its products, to
improve reliability, performance, or design.

All rights to this documentation are reserved by esd electronics. Distribution to third parties, and
reproduction of this document in any form, whole or in part, are subject to esd electronics' written
approval.

© 2023 esd electronics gmbh, Hannover

 esd electronics gmbh

Vahrenwalder Str. 207
30165 Hannover
Germany

 Tel.: +49-511-37298-0
 Fax: +49-511-37298-68
 E-Mail: info@esd.eu
 Internet: www.esd.eu

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 3 of 122

Document Information

Document file: I:\Texte\Doku\MANUALS\CAN\CAN-PN2(-FD)\CAN-PN2_Manual_en_11.docx

Date of print: 2023-10-19

Document-type
number:

DOC0800

Hardware version.: from Rev. 3.0

Software version: from Rev. 3.0

Document History

The changes in the document listed below affect changes in the hardware as well as changes in the
description of the facts, only.

Rev. Chapter Changes versus previous version Date

1.0 - First English manual of CAN-PN/2 and CAN-PN/2-FD 2023-06-23

1.1 15.2.3 New chapter: Open Source Software Copy 2023-10-19

Technical details are subject to change without further notice.

Page 4 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Classification of Warning Messages and Safety Instructions
This manual contains noticeable descriptions, warning messages and safety instructions, which you
must follow to avoid personal injuries or death and property damage.

 This is the safety alert symbol.

It is used to alert you to potential personal injury hazards. Obey all safety messages
and instructions that follow this symbol to avoid possible injury or death.

DANGER, WARNING, CAUTION
Depending on the hazard level the signal words DANGER, WARNING or CAUTION are used to
highlight safety instructions and warning messages. These messages may also include a warning
relating to property damage.

DANGER
Danger statements indicate a hazardous situation which, if not avoided, will result in
death or serious injury.

WARNING.
Warning statements indicate a hazardous situation that, if not avoided, could result in
death or serious injury.

CAUTION
Caution statements indicate a hazardous situation that, if not avoided, could result in
minor or moderate injury.

NOTICE
Notice statements are used to notify people on hazards that could result in things other than personal
injury, like property damage.

NOTICE
This NOTICE statement indicates that the device contains components sensitive to
electrostatic discharge.

NOTICE
This NOTICE statement contains the general mandatory sign and gives information that
must be heeded and complied with for a safe use.

INFORMATION

INFORMATION
Notes to point out something important or useful.

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 5 of 122

Safety Instructions

 ● When working with the CAN-PN/2 follow the instructions below and read the manual carefully to
protect yourself from injury and the CAN-PN/2 from damage.

 ● Do not use damaged or defective cables to connect the CAN-PN/2 and follow the CAN wiring
hints in chapter: "Correct Wiring of Electrically Isolated CAN Networks".

 ● In case of damages to the device, which might affect safety, appropriate and immediate
measures must be taken, that exclude an endangerment of persons and domestic animals and
property.

 ● The galvanic isolation of the CAN-PN/2 has only functional tasks and is not a protection against
hazardous electrical voltage.

 ● The CAN-PN/2 is a device of protection class III according to DIN EN IEC 61010-2-201 and may
only be operated on supply circuits that offer sufficient protection against dangerous voltages.

 ● External circuits connected to the interfaces of the CAN-PN/2 must be sufficiently protected
against dangerous voltage.

 ● Compliance with the applicable national safety regulations is the responsibility of the user.

 ● Do not open the housing of the CAN-PN/2 .
 ● The CAN-PN/2 must be securely installed before commissioning.
 ● The permitted operating position is specified as shown (Figure 4). Other operating positions are

not allowed.
 ● Never let liquids get inside CAN-PN/2. Otherwise, electric shocks or short circuits may result.
 ● Protect the CAN-PN/2 from dust, moisture, and steam.
 ● Protect the CAN-PN/2 from shocks and vibrations.
 ● The CAN-PN/2 may become warm during normal use. Always allow adequate ventilation around

the CAN-PN/2 and use care when handling
 ● Do not operate the CAN-PN/2 adjacent to heat sources and do not expose it to unnecessary

thermal radiation. Ensure an ambient temperature as specified in the technical data.

NOTICE
Electrostatic discharges may cause damage to electronic components.

→

Take the appropriate precautions for handling electrostatic discharge sensitive
devices.

Qualified Personnel
This documentation is directed exclusively towards personnel qualified in control and automation
engineering. The installation and commissioning of the product may only be carried out by qualified
personnel, which is authorized to put devices, systems, and electric circuits into operation according
to the applicable national standards of safety engineering.

Conformity
The CAN-PN/2 is an industrial product and meets the demands of the EU regulations and EMC
standards printed in the conformity declaration at the end of this manual.

 Warning: In a residential, commercial, or light industrial environment the CAN-PN/2 may cause

radio interferences in which case the user may be required to take adequate measures.

Page 6 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Data Safety
This device is equipped with an Ethernet or other interface which is suitable to establish a connection
to data networks. Depending on the software used on the device, these interfaces may allow
attackers to compromise normal function, get illegal access or cause damage.
esd does not take responsibility for any damage caused by the device if operated at any networks.
It is the responsibility of the device's user to take care that necessary safety precautions for the

device's network interface are in place.

Intended Use
The intended use of the CAN-PN/2 is the operation fieldbus gateway for connecting PROFINET®-IO with
CAN and CAN FD (CAN-PN/2-FD only).
The guarantee given by esd does not cover damages which result from improper use, usage not in
accordance with regulations or disregard of safety instructions and warnings.

● The CAN-PN/2 is a built-in unit for installation e.g. in control cabinets.
● The operation of the CAN-PN/2 in hazardous areas, or areas exposed to potentially explosive materials

is not permitted.
● The operation of the CAN-PN/2 for medical purposes is prohibited.

Service Note
The CAN-PN/2 does not contain any parts that require maintenance by the user. The CAN-PN/2 does
not require any manual configuration of the hardware. Unauthorized intervention in the device voids
warranty claims

Disposal

Products marked with a crossed-out dustbin must not be disposed of with household waste.
Devices which have become defective in the long run must be disposed in an appropriate
way or must be returned to the manufacturer for proper disposal. Please, contribute to
environmental protection.

Typographical Conventions

Throughout this manual the following typographical conventions are used to distinguish technical terms.

Convention Example

File and path names /dev/null or <stdio.h>

Function names open()

Programming constants NULL

Programming data types uint32_t

Variable names Count

Number Representation
All numbers in this document are base 10 unless designated otherwise. Hexadecimal numbers have a
prefix of 0x, and binary numbers have a prefix of 0b. For example, 42 is represented as 0x2A in
hexadecimal and 0b101010 in binary.

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 7 of 122

Table of Contents

Safety Instructions .. 5
1 Overview .. 12

1.1 About this Manual ... 12
1.2 Description of CAN-PN/2 .. 12
1.3 Glossary ... 14
1.4 View with Connectors ... 15
1.5 LEDs ... 16

1.5.1 Position of the LEDs .. 16
1.5.2 PRIOFINET IO LEDs ... 16
1.5.3 Status LEDs ... 17

1.6 Labels ... 18
2 Installing and Uninstalling Hardware .. 19
3 Start-Up ... 20
4 Software .. 21

4.1 Functionality ... 21
4.2 Installation .. 22

4.2.1 Manual Installation of the RNDIS Driver ... 23
4.2.2 GSDML File ... 24

4.3 Configuration .. 24
4.3.1 Quick Start Guide .. 24
4.3.2 Installation of the GSDML File ... 25
4.3.3 Insert the CAN-PN/2 .. 25
4.3.4 Configuration of the CAN Bus .. 26
4.3.5 Assign the PROFINET Network ... 26
4.3.6 Assign IP Address and PROFINET Device Name .. 27
4.3.7 Add Modules .. 29
4.3.8 Compile and Download Hardware and Software .. 30
4.3.9 Configuration Errors ... 32

4.4 Modules .. 33
4.4.1 CAN Interface .. 34
4.4.2 Input (11-bit and 29-bit CAN Identifier) ... 35
4.4.3 Output (11-bit and 29-bit CAN Identifier) .. 37
4.4.4 RX-/TX-FIFO ... 40

4.4.4.1 CAN Frame Structure ... 40
4.4.4.2 RX-FIFO ... 41
4.4.4.3 TX-FIFO ... 44

4.4.5 Bus Statistic ... 46
4.4.5.1 Bus Status .. 46
4.4.5.2 Busload .. 46
4.4.5.3 RX-/TX-Counter .. 46

4.4.6 Communication Window .. 47
4.4.7 Additional Information .. 51

4.4.7.1 In-Counter and Out-Counter ... 51
4.4.7.2 DLC and Flags .. 53
4.4.7.3 CAN ID Filter .. 54
4.4.7.4 Format .. 55

4.5 Diagnostics ... 56
4.6 Records .. 59

4.6.1 Read Records .. 61
4.6.1.1 Read CAN Statistic (0x30 / 0x31) ... 61
4.6.1.2 Read Number of Remaining Frames in the Record Handle (0x300).................. 61
4.6.1.3 Read CAN Frame from the Record Handle (0x301) .. 62
4.6.1.4 Read multiple CAN Frames from the Record Handle (0x302) 63
4.6.1.5 Read CAN FD Frame from the Record Handle (0x303) 64

Page 8 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.1.6 Read multiple CAN FD Frames from the Record Handle (0x304) 65
4.6.1.7 Read current timestamp of the gateway (0x300) ... 65

4.6.2 Write Records .. 66
4.6.2.1 Reset CAN Statistic (0x10) ... 66
4.6.2.2 Add CAN Identifier to RX-FIFO (0x20) .. 67
4.6.2.3 Delete CAN Identifier from RX-FIFO (0x21) .. 68
4.6.2.4 Send CAN Frame (0x101) .. 69
4.6.2.5 Send multiple CAN Frames (0x102).. 69
4.6.2.6 Send CAN FD Frame (0x103) ... 70
4.6.2.7 Send multiple CAN FD Frames (0x104) .. 71
4.6.2.8 Add CAN Identifier to Record Handle (0x107) ... 71
4.6.2.9 Delete CAN Identifier from Record Handle (0x108) ... 71
4.6.2.10 Reset Record Handle RX-FIFO (0x109) ... 71

4.6.3 PLC Function Blocks ... 72
4.6.3.1 Read Records ... 72
4.6.3.2 Write Records ... 73

5 Firmware Update ... 74
6 CAN Monitoring ... 75
7 Compatibility .. 77
8 Troubleshooting ... 78

8.1 Faulty PROFINET Connection .. 78
8.2 Faulty CAN Bus .. 79
8.3 Configuration Error ... 80
8.4 Support by esd.. 81

9 Example ... 82
9.1 Example for the RX-FIFO ... 82
9.2 Example for the TX-FIFO .. 83
9.3 Example for the Communication Window .. 84

9.3.1 Basic Program Flow ... 84
9.3.2 Transmit a CAN Frame .. 85
9.3.3 Receive a CAN Frame ... 86

9.3.3.1 Enable CAN identifier for Data Reception ... 86
9.3.3.2 Reception of an enabled CAN Identifier .. 87
9.3.3.3 Deactivate CAN Identifier for Data Reception ... 88

9.3.4 Example Program .. 89
9.3.4.1 Data Types ... 89
9.3.4.2 Data Blocks and Variables .. 90
9.3.4.3 Function for Interaction with the Communication Window 90
9.3.4.4 Function to add CAN Identifier .. 93
9.3.4.5 Function to transmit CAN Frame ... 94
9.3.4.6 Organization Block OB1 .. 95

10 Technical Data ... 96
10.1 General Technical Data .. 96
10.2 CPU and Memory ... 96
10.3 Connectors accessible from Outside ... 97
10.4 PROFINET IO Interface .. 97
10.5 DIAG Interface .. 97
10.6 CAN/ CAN FD Interfaces .. 98

11 Connector Pin Assignments ... 99
11.1 CAN .. 99
11.2 24 V Power Supply Voltage .. 100
11.3 PROFINET IO ... 101
11.4 DIAG ... 102
11.5 Conductor Connection/Conductor Cross Section .. 103

12 Correct Wiring of Electrically Isolated CAN Networks ... 104
12.1 CAN Wiring Standards .. 104
12.2 Light Industrial Environment (Single Twisted Pair Cable) .. 105

12.2.1 General Rules .. 105

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 9 of 122

12.2.2 Cabling .. 106
12.2.3 Branching .. 106
12.2.4 Termination Resistor .. 106

12.3 Heavy Industrial Environment (Double Twisted Pair Cable) .. 107
12.3.1 General Rules .. 107
12.3.2 Device Cabling .. 108
12.3.3 Branching .. 108
12.3.4 Termination Resistor .. 108

12.4 Electrical Grounding.. 109
12.5 Bus Length ... 109
12.6 Examples for CAN Cables .. 110

12.6.1 Cable for Light Industrial Environment Applications (Two-Wire) 110
12.6.2 Cable for Heavy Industrial Environment Applications (Four-Wire) 110

13 CAN Troubleshooting Guide .. 111
13.1 Electrical Grounding.. 112
13.2 Short Circuit in CAN Wiring ... 112
13.3 Correct Voltage Levels on CAN_H and CAN_L... 112
13.4 CAN Transceiver Resistance Test .. 113
13.5 Support by esd.. 113

14 References .. 114
15 Software Licenses.. 115

15.1 3rd Party Software License Terms ... 115
15.2 Licence Conditions of the Software Modules .. 115

15.2.1 Yocto-Linux License Modules .. 115
15.2.2 Others .. 118
15.2.3 Open Source Software Copy ... 118

16 Declaration of Conformity ... 119
17 PNO Certificates .. 120

17.1 CAN-PN/2 (C.2924.02) ... 120
17.2 CAN-PN/2-FD (C.2924.62) ... 121

18 Order Information ... 122
18.1 Hardware .. 122
18.2 Manuals .. 122

List of Tables

Table 1: Description of PROFINET IO LEDs .. 16
Table 2: Indicator states of the Status LEDs ... 17
Table 3: Description of Status LEDs ... 17
Table 4: Hardware installation .. 19
Table 5: Manual installation of the RNDIS driver .. 23
Table 6: Configuration Quick Start Guide ... 24
Table 7: Configuration errors .. 32
Table 8: CAN Interface Parameter ... 34
Table 9: CAN FD Interface Parameter .. 34
Table 10: Input Parameter .. 35
Table 11: CAN FD Input Parameter .. 36
Table 12: Output Parameter ... 37
Table 13: CAN FD Output Parameter ... 38
Table 14: Static Output Parameter ... 39
Table 15: CAN Frame Structure ... 40
Table 16: RX-FIFO General Parameter .. 41
Table 17: RX-FIFO CAN Identifier Parameter ... 41
Table 18: RX-FIFO Inputs .. 42

Page 10 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Table 19: RX-FIFO Outputs .. 42
Table 20: CAN FD RX-FIFO Inputs .. 43
Table 21: TX-FIFO Parameter .. 44
Table 22: TX-FIFO Inputs ... 44
Table 23: TX-FIFO Outputs .. 44
Table 24: CAN FD TX-FIFO Inputs ... 45
Table 25: CAN Bus States .. 46
Table 26: Busload Parameter ... 46
Table 27: Communication Window Inputs .. 47
Table 28: Communication Window Outputs .. 48
Table 29: Communication Window Commands .. 49
Table 30: In-Counter and Out-Counter Pseudo Code ... 52
Table 31: DLC and Flags .. 53
Table 32: DLC Classical CAN... 53
Table 33: DLC CAN FD .. 53
Table 34: CAN Frame Flags ... 53
Table 35: CAN ID Filter .. 54
Table 36: CAN ID Filter Example .. 54
Table 37: CAN Format Parameter 1 ... 55
Table 38: CAN Format Parameter 2 ... 55
Table 39: CAN-PN/2 Alarms ... 56
Table 40: CAN-PN/2 Read Records ... 59
Table 41: CAN-PN/2 Write Records ... 60
Table 42: Read Record Read CAN Statistic (0x30/0x31) .. 61
Table 43: Read Record Read Number of Remaining Frames in the Record Handle (0x300) 61
Table 44: Read Record Read CAN Frame from the Record Handle (0x301) 62
Table 45: Read multiple CAN Frames from the Record Handle (0x302) 63
Table 46: Read Record Read CAN FD Frame from the Record Handle (0x303) 64
Table 47: Read Record Read multiple CAN FD Frames from the Record Handle (0x304) 65
Table 48: Write Record Add CAN Identifier to RX-FIFO (0x20) .. 67
Table 49: Write Record Delete CAN Identifier to RX-FIFO (0x21) .. 68
Table 50: Write Record Send CAN Frame (0x101) ... 69
Table 51: Write Record Send multiple CAN Frame (0x101) .. 69
Table 52: Write Record Send CAN FD Frame (0x103) ... 70
Table 53: Write Record Send multiple CAN FD Frame (0x104) .. 71
Table 54: Read Record PLC Parameter ... 72
Table 55: Write Record PLC Parameter ... 73
Table 56: Firmware Update .. 74
Table 57: CAN Monitoring .. 75
Table 58: General Data of the module .. 96
Table 59: CPU and Memory ... 96
Table 60: Connectors, accessible from outside .. 97
Table 61: Data of the PROFINET IO interface .. 97
Table 62: Data of the USB device interface .. 97
Table 63: Data of the CAN interface ... 98
Table 64: Recommended cable lengths at typical bit rates (with esd-CAN interfaces) 109
Table 65: Order information hardware .. 122
Table 66: Available Manuals .. 122

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 11 of 122

List of Figures

Figure 1: PROFINET device to CAN ... 12
Figure 2: PROFINET device to CAN FD ... 12
Figure 3: Block circuit diagram .. 12
Figure 4: Connecting diagram of CAN-PN/2 (C.2924.02) .. 15
Figure 5: LEDs of CAN-PN/2 (C.2924.02) ... 16
Figure 6: CAN-PN/2-FD with name plate (example) .. 18
Figure 7: CAN-PN/2-FD with LED/Connector label (example) ... 18
Figure 8: Basic functionality of the firmware .. 21
Figure 9: Manage GSDML files ... 25
Figure 10: Inserting the CAN-PN/2 (example) ... 25
Figure 11: Not assigned CAN-PN/2 (example) .. 26
Figure 12: Assigned CAN-PN/2 (example) .. 26
Figure 13: Assign IP address and device name of the configuration ... 27
Figure 14: Assign IP address and device name of the gateway .. 28
Figure 15: Adding modules to the CAN-PN/2 ... 29
Figure 16: Compile Hardware and Software (detail) .. 30
Figure 17: Download hardware and software to device (detail) ... 30
Figure 18: Toolbar with Go online button .. 31
Figure 19: Toolbar Online device overview ... 31
Figure 20: Module Parameters .. 33
Figure 21: PLC Address Space of the Modules (detail) ... 33
Figure 22: CAN Interface Parameter ... 34
Figure 23: CAN FD Interface Parameter ... 34
Figure 24: Input Parameter ... 35
Figure 25: CAN FD Input Parameter ... 36
Figure 26: Output Parameter .. 37
Figure 27: CAN FD Output Parameter .. 38
Figure 28: Static Output Parameter ... 39
Figure 29: RX-FIFO General Parameter ... 41
Figure 30: RX-FIFO CAN Identifier Parameter .. 42
Figure 31: TX-FIFO Parameter ... 44
Figure 32: Busload Parameter .. 46
Figure 33: Example In-Counter and Out-Counter .. 51
Figure 34: CAN Control Panel ... 75
Figure 35: Monitoring the CAN Bus with CANreal ... 76
Figure 36: Invalid CAN Data-Phase Bitrate ... 78
Figure 37: Faulty CAN Bus ... 79
Figure 38: Duplicates unique Modules .. 80
Figure 39: Enable CAN FD ... 80
Figure 40: Default tag table ... 90
Figure 41: CAN wiring for light industrial environment ... 105
Figure 42: Example for proper wiring with single shielded single twisted pair wires 106
Figure 43: CAN wiring for heavy industrial environment .. 107
Figure 44: Example of proper wiring with single shielded double twisted pair cables 108
Figure 45: Simplified diagram of a CAN network ... 111
Figure 46: Simplified schematic diagram of ground test measurement .. 112
Figure 47: Measuring the internal resistance of CAN transceivers .. 113

Overview

Page 12 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

1 Overview

In this manual all versions of the fieldbus gateway, the CAN-PN/2 and the CAN-PN/2-FD are
described together as CAN-PN/2. The hardware of the two variants is largely identical. They only
differ in the design of the CAN interface. While the CAN-PN/2 variant only supports Classical CAN,
the CAN-PN/2-FD is capable of CAN FD support.
Differences of the gateway variants are noted accordingly.

CAN-PN/2 (C.2924.02) CAN-PN/2-FD (C.2924.62)

Figure 1: PROFINET device to CAN Figure 2: PROFINET device to CAN FD

The CAN-PN/2 gateway offers reliable data exchange between PROFINET IO and CAN. It operates
as a PROFINET IO device with a process image of 1440 bytes input data and 1440 bytes output
data on the PROFINET bus.
The CAN-PN/2 variant (C.2924.02) supports Classical CAN (2.0A/B) with a bit rate of up to 1 Mbit/s.
Furthermore, the CAN-PN/2-FD variant (C.2924.62) can connect PROFINET IO with CAN FD. It
supports CAN FD with up to 64 bytes in data field and 8 Mbit/s bit rate. Furthermore, it is fully
compatible with Classical CAN.

Figure 3: Block circuit diagram

The CAN-PN/2 comes in a compact housing for DIN rail mounting with easily accessible connectors.
It is equipped with two Ethernet ports via RJ-45 sockets for PROFINET IO, a CAN interface via a
connector with spring-cage connection and a Mini-USB-B interface for diagnose and firmware
update.

1.1 About this Manual

1.2 Description of CAN-PN/2

Overview

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 13 of 122

Physical Interfaces

The CAN interface and the CAN FD interface (CAN-PN/2-FD only) are ISO 11898-2:2016
compliant.
The 100BASE-TX PROFINET IO interface complies with IEEE802.3 (1) and allows a data
transfer rate of 100 Mbit/s.
Both the PROFINET IO and the CAN interface are galvanically isolated from the rest of the
circuit.

11bit and 29bit CAN Identifier
The CAN-PN/2 supports 11-bit and 29-bit CAN identifier according to ISO 11898-1:2015
(CAN2.0A/B).

High speed data exchange
The gateway supports the exchange of data between PROFINET IO and CAN interfaces with
PROFINET cycle times up to 1ms.

Scheduling data
The CAN-PN/2 supports high precise scheduling of CAN frames in predefined interval.

Alarm Management
The gateway supports an extended alarm management to check the CAN network including
the CAN bus status, bus load and the bus statistic.

Configurable for your needs

The CAN-PN/2 is configurable in a simple manner exactly to fit your needs. From simple
incoming and outgoing CAN frames to more advanced application, the gateway can be
configured to tailor your application.

Monitoring the CAN bus
The gateway supports the monitoring of the CAN bus with the included EtherCAN interface
via Mini-USB.

Overview

Page 14 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Abbreviations

Abbreviation Term
API Application Programming Interface

BSP Board Support Package

CAL CAN Application Layer

CAN Controller Area Network

CPU Central Processing Unit

CiA CAN in Automation

DB Data Block

DCF Device Configuration File
EDS Electronic Data Sheet
GSD General Station Description
GSDML General Station Description Markup Language
HW Hardware
I/O Input/Output
IO-CS PROFINET Consumer Status
IO-PS PROFINET Provider Status
LSB Least Significant Bit
MSB Most Significant Bit
n.a. not applicable
OB Organization Block
OS Operating System
PDO Process Data Object
PRU Processor Realtime Unit
RTR Remote Transmission Request

SDK Software Development Kit

SDO Service Data Object
USB Universal Serial Bus
XML Extensible Markup Language

1.3 Glossary

Overview

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 15 of 122

Figure 4: Connecting diagram of CAN-PN/2 (C.2924.02)

The connecting diagram also applies accordingly for the CAN-PN/2-FD.
See also from page 99 for connector assignments and for conductor connection and conductor
cross section.

NOTICE
Read chapter “ Installing and Uninstalling Hardware” on page 19, before you start with
the installation of the hardware!

1.4 View with Connectors

Overview

Page 16 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

1.5.1 Position of the LEDs

Figure 5: LEDs of CAN-PN/2 (C.2924.02)

The names and positions of the LEDs are identical for the CAN-PN/2-FD.

1.5.2 PRIOFINET IO LEDs

The PROFINET IO LEDs of PORT 1 and PORT 2 are integrated in the RJ-45 sockets. The LEDs
indicate the status of the corresponding port.

LED Colour
Indicator

State
Description

Activity Yellow

Off No Ethernet connection

Blinking Ethernet connection is established, data is transferred

On Ethernet connection is established on

Link Green
Off No Ethernet connection

On Ethernet connection is established

Table 1: Description of PROFINET IO LEDs

1.5 LEDs

Overview

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 17 of 122

1.5.3 Status LEDs

Indicator
State

Description

On LED on

Off LED off

Blinking LED blinks with 1 Hz (frequency is preset for PROFINET)

Single flash LED 200 ms on, 1000 ms off

Double flash LED 200 ms on, 200 ms off, 200 ms on, 1000 ms off

Table 2: Indicator states of the Status LEDs

LED Function Colour
Indicator

State
Description

R
CAN Bus
Status

Green

Off No power supply

Blinking BUS_OFF

Single
flash

BUS_ERROR_PASSIVE

Double
flash

BUS_WARN

On BUS OK

E
Configuration
Error

Red
Off No error

On Error in the configuration

CON
PROFINET IO
Connect

Green

Off No valid PROFINET IO link

Blinking
Request of the PROFINET IO Controller for the
identification of the device

On Valid PROFINET IO link is established

PWR Power Green

Off
There is no request of the PROFINET IO-controller
for the identification of the unit

Blinking
Request of the PROFINET IO controller for the
identification of the unit

Table 3: Description of Status LEDs

See also chapter 3 on page 20 for a description of the status LEDs during Start-Up.

Overview

Page 18 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Example

Figure 6: CAN-PN/2-FD with name plate
(example)

Figure 7: CAN-PN/2-FD with LED/Connector
label (example)

The name plate (Figure 5) shows among others the name, MAC-ID, esd order No. (PN) and the
serial number (SN).

Name plate Classical CAN variant CAN FD variant

- Name: CAN-PN/2 CAN-PN/2-FD

- MAC-ID: Individual MAC-ID of the module
e.g.: 00:02:27:70:08:15

Individual MAC-ID of the module
e.g.: 00:02:27:70:08:17

- PN (esd order No.): C.2924.02 C.2924.62

- SN (Serial number): Individual number of the module
e.g. GB000021

Individual number of the module
e.g. GB000023

The LED/Connector label (Figure 7) shows short descriptions of the LEDs and connectors and the
QR code of esd.

LED/Connector label Classical CAN variant CAN FD variant

- LEDs: Status LEDs
PROFINET LEDs

Status LEDs,
PROFINET LEDs

Connectors:
-

DIAG,
PROFINET (Port 1, Port 2),
Power,
CAN

DIAG,
PROFINET (Port 1, Port 2),
Power,
CAN FD

1.6 Labels

Installing and Uninstalling Hardware

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 19 of 122

2 Installing and Uninstalling Hardware
To put the CAN-PN/2 into operation, please follow the installation notes.

Step Procedure
See

Page

NOTICE
Read the safety instructions at the beginning of this document carefully
before you start with the hardware installation!

5

 DANGER
Hazardous Voltage - Risk of electric shock due to unintentional contact with
uninsulated live parts with high voltages inside of the system into which the
CAN-PN/2 is to be integrated.

→

→

→

→

The CAN-PN/2 is a device of protection class III according to DIN EN IEC
61010-2-201 and may only be operated on supply circuits that offer
sufficient protection against dangerous voltages.
External circuits connected to the interfaces of the CAN-PN/2 must be
sufficiently protected against dangerous voltages.
Compliance with the applicable national safety regulations is the
responsibility of the user.
Ensure the absence of voltage before starting any electrical work.

To install, continue as described from steps 1. to 4.
To uninstall, continue from step 5.

1. Mount the CAN-PN/2 module and connect the interfaces (power supply
voltage, CAN, PROFINET interface) as described in Figure 4: Connecting
diagram of CAN-PN/2

15

See also chapter 11 for ‘Connector Pin Assignments’. 99

NOTICE
Incorrect wiring of the 24V power supply voltage can cause damage to the
module!

100
→

→

Make absolutely sure to connect the cables correctly to the 24V line
connector!
Use only suitable cables for the line plug

2. Please note that the CAN bus must be terminated at both ends!
esd offers special T-connectors and termination connectors for external
termination. Additionally, the CAN_GND signal must be connected to earth at
exactly one point in the CAN network.
For details, please read chapter ‘Correct Wiring of Electrically Isolated CAN
Networks’.

104

3. Switch on the 24 V-power supply voltage of the CAN-PN/2

4. Continue with the installation of the software, as described in chapter
‘Software’.

21

To uninstall the CAN-PN/2 continue as described below.

5. Make sure that all connected interfaces are switched off.
Disconnect the CAN-PN/2 from the connected interfaces.
If applicable, loosen the fastening of the CAN-PN/2.
Carefully pull the CAN-PN/2 out.

Table 4: Hardware installation

Start-Up

Page 20 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

3 Start-Up
After switching on the supply voltage, the CAN-PN/2 starts automatically. During start up the ‘R’ LED
(CAN Status) turns on. When the device is started successfully ‘PWR’ LED (Power) turns on and ‘R’
LED (CAN Status) turns off again. This process takes about 10s.

The gateway is now ready to be configured by the PROFINET controller.

When the gateway has established a connection to the PROFINET network, the ‘CON’ LED
(PROFINET Connect) turns ON. When the CAN bus is not faulty, the ‘R’ LED (CAN Status) turns
on, too.

After the PROFINET controller changes to state RUN, the data exchange is started automatically.
When the PLC changes to the state STOP, no more CAN frames are sent.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 21 of 122

4 Software
This chapter describes the functionality and installation as well as the configuration of the gateway.

The firmware of the gateway is based on modules, which can be added during the configuration.
Each module can be configured based on its type. The gateway supports multiple module types,
which can be used for different purposes. For example, there is one module type for incoming and
another one for outgoing frames. Each module type comes with its own parameters. All module types
are declared in chapter 4.4. The gateway can be configured with up to 512 of these modules.

These modules contain Input or Output data which are directly mapped into the PLC Address Space.
For example, an input module would update the data with the reception of a CAN frame. The updated
data are transferred via PROFINET to the PLC and updated in the PLC Address Space.

The following figure represents the basic functionality of the firmware for incoming and outgoing
frames.

Figure 8: Basic functionality of the firmware

4.1 Functionality

Software

Page 22 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

The device comes with an installer called CAN-PN/2(-FD)_X_X_X.exe. The installation of the

installer is mandatory for firmware updates and CAN monitoring. However, to use the base
functionality of the device, it is also possible to just download the GSDML file from the esd website.

This installer provides the following packages:

GSDML File

This package includes the GSDML file, which is necessary to configure the
gateway.

RNDIS Driver This package contains the RNDIS driver. It is used to connect the Mini-USB
interface to a Windows® computer. The connection is used for firmware
updates and CAN monitoring. The driver is installed automatically.

CAN Driver This package provides the esd CAN-API (NTCAN). It is necessary for the esd
CAN-SDK.

esd CAN-SDK This package contains software for the CAN monitoring and diagnostics,
especially the monitoring tool CANreal, which can be used to detect and send
CAN frames on the bus.

Examples This package includes a TIA Portal project with some examples.

NOTICE
The CAN driver and the CAN-SDK is not automatically deleted if the CAN-PN software is
removed. Therefore use “Software” of the Windows system administration
and remove “EtherCAN [...] Host Driver” and “CAN SDK for Windows”.

4.2 Installation

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 23 of 122

4.2.1 Manual Installation of the RNDIS Driver

The RNDIS driver is installed automatically with the installer. To check whether the RNDIS driver is
installed correctly, connect the Mini-USB interface with the computer. When the installation has been
successful, a new network adapter called RNDIS based ESD Device should be displayed in the
Device Manager. If this is not the case, install the driver manually with the following steps:

Step Action

1. Connect the gateway with the computer using the Mini-USB interface.

2. Open the Device Manager and search for a new Serial USB-Device (COMX) under
Ports (COM & LPT).

3. Right click on the device and select update driver. In the following dialog select Update
driver.

4. Click Browse my computer for drivers.

4. Select the installation path of the CAN-PN/2 and check the checkbox Include
subfolders.

By default, this installation path is C:\Program Files (x86)\esd\CAN-PN.

5. Press Next.

6. Now there should be a network adapter called RNDIS based ESD Device.

Table 5: Manual installation of the RNDIS driver

Software

Page 24 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.2.2 GSDML File

The GSDML file is installed with the installer or can be downloaded from our website. There is a
GSDML file each for the Classical CAN and the CAN FD variant. The GSDML file of the predecessor,
the CAN-PN (C.2920.02) is still fully supported and compatible with both variants.

NOTICE
It is not possible to use the GSDML file of the CAN FD variant (CAN-PN/2-FD) for the
Classical CAN variant (CAN-PN/2, C.2924.02).
Although it is possible to configure both CAN-PN/2 variants with the GSDML file of the
predecessor CAN-PN, this does not apply vice versa.

This chapter describes the steps which are relevant to configure the CAN-PN/2. The steps are shown
with the Siemens TIA Portal as development environment. For further information about your
development environment or the TIA Portal, please read the respective documentation.

4.3.1 Quick Start Guide

Step Action
See from
Page

1
Disconnect the online connection in the TIA Portal, because the hardware
and software must be compiled in offline mode.

-

2 Change into the project view of the TIA Portal. -

3 Install the GSDML file as described in chapter 4.3.2. 25

4 Insert the CAN-PN/2 in your project as described in chapter 4.3.3. 25

5
Configure the CAN and PROFINET interfaces as described in chapter
4.3.4, 4.3.5 and 4.3.6.

26

5
Add modules based of the functionality that should be achieved.
For further information, see chapter 4.3.7.

29

6
Compile and load the hardware and software as described in chapter
4.3.8.

30

7 Go online as described in chapter 4.3.8. 30

Table 6: Configuration Quick Start Guide

4.3 Configuration

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 25 of 122

4.3.2 Installation of the GSDML File

To use the GSDML file, it has to be installed into the development environment. To achieve this,
switch to the project view in the program window of your TIA Portal. Click on Options in the taskbar
and select Manage general station description files (GSD).

Figure 9: Manage GSDML files

A new dialog appears, in which the path to the directory of the GSDML file must be entered. After
installing the installer, the GSDML file is usually located in: C:\Program Files(x86)\esd\CAN-

PN\GSDML. Select the GSDML file and press Install.

4.3.3 Insert the CAN-PN/2

After installing the GSDML file, the PROFINET network can be assembled. Therefore, click under
Project tree → Devices onto Devices & networks as shown in the following figure.
The so-called Network view opens. The CAN-PN/2 can now be added from the Hardware Catalog.
Select your device variant CAN-PN/2 or CAN-PN/2-FD under Other field devices → Gateway → esd
electronics gmbh → CAN/PROFINET-IO. To insert your device, drag it onto the Network view.

Figure 10: Inserting the CAN-PN/2 (example)

Software

Page 26 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.3.4 Configuration of the CAN Bus

The CAN bus can be configured with the CAN interface module (CAN-PN) in slot 0. To change the
module parameters, select the slot, open the Module parameters, and set the CAN bitrate to the
correct value.

NOTICE
All CAN nodes in the CAN network need to have the same bitrate to work properly.

4.3.5 Assign the PROFINET Network

First the CAN-PN/2 must be assigned to a PROFINET network. To accomplish this, go to the
Network view, press the button Not assigned and click on one of the available PROFINET networks.

Figure 11: Not assigned CAN-PN/2 (example)

Figure 12: Assigned CAN-PN/2 (example)

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 27 of 122

4.3.6 Assign IP Address and PROFINET Device Name

The IP address and the PROFINET device name of the configuration must match those persistently
stored in the CAN-PN/2 gateway to work correctly. Both can be configured separately.

NOTICE
Each IP Address and PROFINET device name can only be assigned once per
PROFINET network. The IP address normally does not have to be changed manually.

IP Address and Device Name of the Configuration

The IP address and device name of the configuration are generated automatically by default.
However, it can be changed manually.
To change it, click on the tab Device view of the gateway and select CAN-PN in Slot 0 of the section
Device overview. Now open the tabs Properties → General → Ethernet addresses and search for
the parameters IP address and PROFINET device name.

Figure 13: Assign IP address and device name of the configuration

Software

Page 28 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

IP Address and PROFINET Device Name of the Gateway

The current IP address and PROFINET device name of the gateway can be found in the Online
Access section. To display it, click Update accessible devices under Project tree → Devices →
Online Access → [Network adapter]. The name as well as the IP address should be displayed.

To change the IP address or the name, expand the device by clicking on the icon and open Online
& diagnostics. A new dialog will appear as shown in the figure below. Expand Functions and select
Assign IP address or Assign PROFINET device name. Insert the new parameter and press the
Assign IP address or Assign name button.

Figure 14: Assign IP address and device name of the gateway

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 29 of 122

4.3.7 Add Modules

By default, only the module CAN-PN in Slot 0 is configured. It is of module type CAN Interface (see
chapter 4.4.1). This module is necessary and cannot be deleted.

To add other modules, go to the Device view and open the Hardware Catalog. To use a module, just
drag and drop it on a slot on the Device overview. There are multiple module types which are
separated in different folders and are explained in chapter 4.4.

Figure 15: Adding modules to the CAN-PN/2

NOTICE
It is allowed to leave gaps between two modules. However, leaving large gaps is not
recommended as this may affect the clarity of the configuration.

Software

Page 30 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.3.8 Compile and Download Hardware and Software

Before the software can be download, it must be compiled.
During this process the TIA Portal must be in offline mode.
To compile the software, select the device (PLC_1 in this case) in the field Project tree → Devices
and click Compile → Hardware and Software (only changes) in the pull-down menu.

Figure 16: Compile Hardware and Software (detail)

The configuration is compiled. Now the hardware and software can be downloaded to the device.
Select your device (PLC_1 in this case) again and click Download → Hardware and Software in the
pull-down menu. A new dialog opens in which the PLC can be chosen.

Figure 17: Download hardware and software to device (detail)

The configuration is now successfully passed to the device.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 31 of 122

Click on the Go online button in the toolbar to go online.

Figure 18: Toolbar with Go online button

The online connection is now established.

To check whether the device is working properly, open the Device View and see if all check marks
are green (see Figure 19). If this is not the case, something is wrong.
Read chapters 4.3.9, 4.5 and 8 for further information.

Figure 19: Toolbar Online device overview

Software

Page 32 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.3.9 Configuration Errors

Although many possible configuration errors are intercepted by defining a valid value range for the
parameters, there are some configuration errors that can appear. Whenever an online connection is

enabled and this symbol is shown in the Device overview , there is a configuration error.

The following modules can cause a configuration error:

Module Error Solution

Bus Load,

Bus Status,

RX-FIFO,

TX-FIFO,

Communication
Window

This module is unique and cannot be
configured multiple times.

Delete all modules of this type except
one.

CAN Interface
(always Slot 0)

CAN-PN/2-FD only:

The CAN Data-Phase bitrate is invalid.

The CAN Data-Phase bitrate must be
the same or higher than the CAN
bitrate.

All FD modules

CAN-PN/2-FD only:

CAN FD interface is not enabled, but a
CAN FD module is used.

Enable the CAN FD interface.

Table 7: Configuration errors

NOTICE
It is not allowed to use multiple Input and Output modules with the same CAN identifier in
conjunction with cyclic operations. This does not lead to a configuration error, but only
the first module is configured correctly. This could lead to unexpected behaviour.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 33 of 122

The configuration is based on multiple modules, which can be parameterized separately. Each
module provides some kind of functionality. The gateway can be configured with up to 512 of these
modules. By default, the module CAN-PN is configured in Slot 0 and contains the CAN as well as
the PROFINET interface. This module is fixed and cannot be deleted. Each module has its own
parameters which can be edited by clicking on the module in Device overview and selecting
Properties → General → Module parameters (see Figure 20).

Figure 20: Module Parameters

Most of the modules provide some kind of input and output data, which are directly mapped into the
PLC address space. The exact position is shown in the Device overview and can be changed if
necessary (see Figure 21).

Figure 21: PLC Address Space of the Modules (detail)

4.4 Modules

Software

Page 34 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.4.1 CAN Interface

The CAN interface module is always in Slot 0. It does not provide any input or output data.

The following parameters can be configured:

Parameter Description

CAN Bitrate This parameter describes the CAN bitrate in kbits/s. It must be the same on
every CAN device on the CAN network.

Timestamp
Resolution

This parameter describes the resolution of the timestamps used for Input
Frames (see chapter 4.4.2).

Alarm Level This parameter defines at which state of the CAN bus an alarm is sent to the
PLC.

Table 8: CAN Interface Parameter

Figure 22: CAN Interface Parameter

Additional CAN FD Parameters (CAN-PN/2-FD only):

The CAN-PN/2-FD has some additional parameters, that can be configured as follows:

Parameter Description

CAN FD This parameter enables the CAN FD interface and is necessary to use a
CAN FD module.

CAN Data-Phase
Bitrate

This parameter describes the CAN bitrate during the data-phase. It must be
equal or higher than the CAN bitrate. The option Same as CAN Bitrate uses
the CAN bitrate also for the data-phase bitrate.

Table 9: CAN FD Interface Parameter

Figure 23: CAN FD Interface Parameter

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 35 of 122

4.4.2 Input (11-bit and 29-bit CAN Identifier)

This module category is intended for incoming CAN frames. The module type only has input data
depending on the length of the configured CAN frame and no output data. There are modules
available for 11-bit and 29-bit CAN identifiers with a length from 1 to 8 byte. Each time a CAN frame
with the specified CAN identifier is received, the data is updated.

Additionally, it is possible to select a module with a counter (2 byte) or a timestamp (4 byte).
The counter is incremented each time the configured CAN frame is received. The timestamp is
updated each time a new CAN frame is received. Both additional parameters are in big-endian format
and are located before the data bytes of the CAN frame. They can be mapped directly to the
representative datatype without byte swapping.

Each Input CAN frame is configured with the following parameters:

Parameter Description

CAN ID 11bit /
29bit

This parameter configures the CAN identifier in a range of 0 to 2047 for 11-bit
CAN identifiers and a range of 0 to 536870911 for 29-bit CAN identifiers.

Format This parameter configures an optional byte-swapping for the data (for details
see chapter 4.4.7.4). The parameter has a range of 0 to 255.

RTR at Startup This parameter defines whether an RTR frame is sent whenever the PLC
changes to RUN.

RTR Cycle Time
[ms]

This parameter configures a time interval in which a RTR frame is sent
(0: Disabled). The supported time interval is between 10ms and 65535ms.

CAN ID Filter This parameter defines whether a CAN identifier filter mask is applied (for
details see chapter 4.4.7.3).

CAN ID Filter
Mask

Configures the CAN identifier filter mask in range of 0 to 2047 for 11-bit CAN
identifiers and a range of 0 to 536870911 for 29-bit CAN identifiers.

Table 10: Input Parameter

Figure 24: Input Parameter

Software

Page 36 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

NOTICE
When the length of the incoming CAN frame differs from the configured length, the frame
is still processed. When the configured length exceeds the received length, the unused
bytes stay unchanged. When the received length exceeds the configured length, the data
is truncated.

NOTICE
It is not allowed to use multiple Input and Output modules with the same CAN identifier in
conjunction with cyclic operations.

Additional CAN FD Parameters (CAN-PN/2-FD only):

The CAN-PN/2-FD gateway with CAN FD capability also supports CAN frames with the lengths of
12, 16, 20, 24, 32, 48 and 64 bytes. For these modules the range of the parameter Format is
increased to full 64-bit value.

Parameter Description

CAN FD Frame This parameter defines weather the incoming CAN frame is a CAN FD frame.
When this function is not enabled, CAN FD frames with the specified CAN
identifier are ignored and vice versa.

Table 11: CAN FD Input Parameter

NOTICE
CAN FD frames do NOT support RTR frames. When the incoming CAN frame is
configured as CAN FD frame, all RTR parameters are ignored.

Figure 25: CAN FD Input Parameter

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 37 of 122

4.4.3 Output (11-bit and 29-bit CAN Identifier)

This module category is intended for outgoing CAN frames. There are modules available for 11-bit
and 29-bit CAN identifiers with a length from 1 byte to 8 byte. Each time the data changes, a CAN
frame with the specified CAN identifier is sent.

Additionally, there is a controlled version of each module. These modules are not sent when the data
changes. Instead, they have an In-Counter and an Out-Counter (1 byte). The Out-Counter is a PLC-
Output, and the In-Counter is a PLC-Input which is located before the data bytes of the CAN frame.
Whenever the PLC increases the Out-Counter, a CAN frame with the specified CAN identifier is sent
and the In-Counter is updated afterwards. This module is intended for CAN frames that are sent with
the same data multiple times. To get more information about the In-Counter and Out-Counter see
chapter 4.4.7.1.

NOTICE
The In-Counter and Out-Counter do only have a counting range from 0 to 254.
255 is reserved for future use and should not be used.

Each Output CAN frame is configured with the following parameters:

Parameter Description

CAN ID 11bit /
29bit

This parameter configures the CAN identifier in the range of 0 to 2047 for 11-
bit CAN identifiers and the range of 0 to 536870911 for 29-bit CAN identifiers.

Format This parameter configures an optional byte-swapping for the data (for details
see 4.4.7.4). The parameter has a range of 0 to 255.

Cycle Time [ms] This parameter configures a time interval in which the CAN frame is sent
(0: Disabled). The supported time interval is between 10ms and 65535ms.

Send CAN
Frame only in
Cyclic Interval

This parameter defines whether the CAN frame is only sent in the time
interval or also when the data is changed or respectively the Out-Counter is
increased.

Table 12: Output Parameter

Figure 26: Output Parameter

Software

Page 38 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Additional CAN FD Parameters (CAN-PN/2-FD only):

The CAN-PN/2-FD gateway with CAN FD capability also supports CAN frames with the lengths of
12, 16, 20, 24, 32, 48 and 64 bytes. For these modules the range of the parameter Format is
increased to full 64-bit value.

Parameter Description

CAN FD Frame This parameter defines weather the CAN frame is a CAN FD frame.

Disable Baudrate
Switch

By default, each CAN FD frame switches to the configured data-phase bitrate
during transmission. This parameter defines whether this function is disabled.

Table 13: CAN FD Output Parameter

Figure 27: CAN FD Output Parameter

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 39 of 122

Static Output CAN Frame
This module category contains static outgoing CAN frames which can be used to configure
predefined CAN frames and a sending scheduling. Because the CAN data is predefined, the module
does not have any IO-Data.

Each Static CAN frame is configured with the following parameters:

Parameter Description

CAN-ID 11bit /
29bit

This parameter configures the CAN identifier in range of 0 to 2047 for 11-bit
CAN identifiers and the range of 0 to 536870911 for 29-bit CAN identifiers.

DLC and Flags This parameter configures the length as well as additional flags like RTR for
the frame (for more detail see chapter 4.4.7.2).

Byte 0...7 These parameters define the CAN data.

Send when PLC
changes to RUN

Defines whether the CAN frame is sent when the PLC changes to RUN.

Send when PLC
changes to STOP

Defines whether the CAN frame is sent when the PLC changes to STOP.

Send when PLC
disconnects

Defines whether the CAN frame is sent when the PLC disconnects.

Cycle Time [ms] This parameter configures a time interval in which the CAN frame is send
(0: Disabled). The supported time interval is between 10 ms and 65535 ms.

Table 14: Static Output Parameter

Figure 28: Static Output Parameter

Additional CAN FD Parameters (CAN-PN/2-FD only):

The CAN-PN/2-FD gateway with CAN FD capability also supports static outgoing CAN FD frames.
For CAN FD frames with a length of up to 8 bytes, the module described above can be used with
the corresponding bit in the parameter DLC and Flags.
For longer CAN frames with lengths up to 64 bytes, the CAN-PN/2-FD module has to be used.
It defines additional parameters for Byte 8...Byte 63.

Software

Page 40 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.4.4 RX-/TX-FIFO

Both previously defined module categories map one CAN frame to a static PLC address. This
module category instead is intended for incoming and outgoing CAN frames with multiple different
CAN identifiers. This is ideal for non-time-critical accesses such as writing CANopen SDOs, where
a CAN identifier is only used once for the transfer and is ignored afterwards.

Only one RX-FIFO and TX-FIFO each is allowed per configuration. The FIFOs can be configured
with 1, 5 or 10 CAN frame exchanges per cycle. Depending on the number of CAN frames the input
and output data length may vary. Internally the FIFOs do have a size of 255 CAN frames.

Both FIFOs are controlled by an In-Counter and an Out-Counter (1 byte). The In-Counter is a PLC
input, and the Out-Counter is a PLC output. They are located at the first byte of the input and output
data. Whenever the PLC increments the Out-Counter the data of the FIFO is processed by the
gateway. After the data is processed, the In-Counter is incremented. Setting the Out-Counter to 0xFF
clears all FIFO data.

NOTICE
The In-Counter and Out-Counter do only have a counting range from 0 to 254.
255 is reserved for a FIFO reset.

4.4.4.1 CAN Frame Structure

Both FIFO types use the same structure for CAN frames. It consists of 4 bytes for the CAN identifier
(big-endian), 1 byte for the DLC and Flags field, 1 byte for the length and 8 bytes for the CAN frame
data. The DLC and Flags field also contains the length of the frame as well as some meta data,
however for easy access for incoming frames, the Length field can be used for more convenience.

The structure looks like this:

Byte Content

0

1

2

3

CAN Identifier (Bit 24 … 31 / only 29-bit CAN identifier)

CAN Identifier (Bit 16 ... 23 / only 29-bit CAN identifier)

CAN Identifier (Bit 8 ... 15)

CAN Identifier (Bit 0 ...7)

4 DLC and Flags (see chapter 4.4.7.2)

5 Length (Payload for incoming frames)

6

7

8

9

10

11

12

13

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

Table 15: CAN Frame Structure

Additional CAN FD Parameters (CAN-PN/2-FD only):

For CAN FD the CAN frame structure looks similar, but instead of 8 data bytes there are 64 data
bytes. To distinguish between Classical CAN and CAN FD frames, the DLC and Flags parameter
should be used.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 41 of 122

4.4.4.2 RX-FIFO

Whenever the RX-FIFO data is processed, the gateway reads as many frames as possible from the
RX FIFO with the configured frames per cycle.
Byte 1 contains the number of CAN frames that are received.
Byte 2 contains the number of CAN frames that are remaining in the RX-FIFO on the gateway.
Byte 3 contains the number of CAN frames missed between two RX-FIFO read cycles.

The following global parameters can be configured:

Parameter Description

Alarm On
Overflow

This parameter defines whether an alarm is sent when a frame is missed.

Enable all 11bit
CAN Identifer

This parameter enables all 11-bit CAN identifier.

Enable all 29bit
CAN Identifer

This parameter enables all 29-bit CAN identifier.

Table 16: RX-FIFO General Parameter

Figure 29: RX-FIFO General Parameter

The General Parameter only allow to enable all 11-bit and/or 29-bit CAN identifiers. If only specific
CAN identifier should be enabled, there is a total of 8 CAN identifiers with CAN ID filter that can be
added. Moreover, it is possible to add more CAN identifiers through record (4.6.2.2).

NOTICE
It is not possible to add more than 5000 CAN identifiers to the RX-FIFO. All CAN
identifiers that are added after 5000 are ignored. The only exception is when all
identifiers of one type are added.

Each of the 8 CAN identifier can be configured as followed:

Parameter Description

Enable CAN ID This parameter enables this specific CAN identifier.

CAN ID This parameter configures the CAN identifier. For 29-bit CAN identifier the
29th bit of the CAN identifier must be set.

CAN ID Filter Defines whether a CAN identifier filter mask is applied (for details see chapter
4.4.7.3).

CAN ID Filter
Mask

This parameter configures the CAN identifier filter mask in the range of 0 to
2047 for 11-bit CAN identifiers and a range of 0 to 536870911 for 29-bit CAN
identifiers.

Table 17: RX-FIFO CAN Identifier Parameter

Software

Page 42 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Figure 30: RX-FIFO CAN Identifier Parameter

The following tables describe the input and output data for Classical CAN:

Input Byte Content

0 In-Counter

1 Number of received frames

2 Number of remaining frames

3 Number of missed frames

4 ... 17 CAN Frame Structure 1 (see chapter 4.4.4.1)

18 ... 31 CAN Frame Structure 2

32 ... 45 CAN Frame Structure 3

46 ... 59 CAN Frame Structure 4

60 ... 73 CAN Frame Structure 5

74 ... 87 CAN Frame Structure 6

88 ... 101 CAN Frame Structure 7

102 ... 115 CAN Frame Structure 8

116 ... 129 CAN Frame Structure 9

130 ... 143 CAN Frame Structure 10

Table 18: RX-FIFO Inputs

Output Byte Content

0 Out-Counter (0xFF for Reset)

Table 19: RX-FIFO Outputs

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 43 of 122

Additional CAN FD Parameters (CAN-PN/2-FD only):

For CAN FD the input data are slightly different because CAN FD supports larger CAN frame lengths:

Input Byte Content

0 In-Counter

1 Number of received frames

2 Number of remaining frames

3 Number of missed frames

4 ... 73 CAN FD Frame Structure 1 (see chapter 4.4.4.1)

74 ... 143 CAN FD Frame Structure 2

144 ... 213 CAN FD Frame Structure 3

214 ... 283 CAN FD Frame Structure 4

284 ... 353 CAN FD Frame Structure 5

354 ... 423 CAN FD Frame Structure 6

424 ... 493 CAN FD Frame Structure 7

494 ... 563 CAN FD Frame Structure 8

564 ... 633 CAN FD Frame Structure 9

634 ... 703 CAN FD Frame Structure 10

Table 20: CAN FD RX-FIFO Inputs

Software

Page 44 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.4.4.3 TX-FIFO

Whenever the TX-FIFO data is processed, the gateway tries to send the number of frames, which is
set in byte 1. CAN frames with an invalid CAN identifier are discarded.
The following parameter can be configured:

Parameter Description

Alarm On
Overflow

This parameter defines whether an alarm is to be sent if the gateway is not
able to process the CAN frames within one cycle because the FIFO is full. As
long as the FIFO is busy, the In-Counter is not incremented. To unlock a
blocked FIFO, set the Out-Counter to 0xFF.

Table 21: TX-FIFO Parameter

Figure 31: TX-FIFO Parameter

The following tables describe the input and output data:

Input Byte Content

0 In-Counter

Table 22: TX-FIFO Inputs

Output Byte Content

0 Out-Counter (0xFF for Reset)

1 Number of frames to be send

2 ... 15 CAN Frame Structure 1 (see chapter 4.4.4.1)

16 ... 29 CAN Frame Structure 2

30 ... 43 CAN Frame Structure 3

44 ... 57 CAN Frame Structure 4

58 ... 71 CAN Frame Structure 5

72 ... 85 CAN Frame Structure 6

86 ... 99 CAN Frame Structure 7

100 ... 113 CAN Frame Structure 8

114 ... 127 CAN Frame Structure 9

128 ... 141 CAN Frame Structure 10

Table 23: TX-FIFO Outputs

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 45 of 122

Additional CAN FD Parameters (CAN-PN/2-FD only):

For CAN FD the output data are slightly different, because CAN FD supports larger CAN frame
lengths:

Output Byte Content

0 Out-Counter (0xFF for Reset)

1 Number of frames to be send

2 ... 71 CAN FD Frame Structure 1 (see chapter 4.4.4.1)

72 ... 141 CAN FD Frame Structure 2

142 ... 211 CAN FD Frame Structure 3

212 ... 281 CAN FD Frame Structure 4

282 ... 351 CAN FD Frame Structure 5

352 ... 421 CAN FD Frame Structure 6

422 ... 491 CAN FD Frame Structure 7

492 ... 561 CAN FD Frame Structure 8

562 ... 631 CAN FD Frame Structure 9

632 ... 701 CAN FD Frame Structure 10

Table 24: CAN FD TX-FIFO Inputs

Software

Page 46 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.4.5 Bus Statistic

This module category provides additional data of the CAN bus. Especially if the PLC application
does not work as expected, these modules can be used to observe the error.

4.4.5.1 Bus Status

This module provides the current state of the CAN bus in a 1-byte input. It does not need to be
configured. The module can have the following values:

Value
Description

Decimal Hexadecimal

0 0x00 CAN Bus OK

64 0x40 CAN Bus WARN

128 0x80 CAN Bus ERROR PASSIV

192 0xC0 CAN Bus OFF

Table 25: CAN Bus States

NOTICE
This is especially helpful when alarms are disabled. In the CAN interface the alarm
threshold can be set to ‘Alarm disabled’. By using this module, a simple error routine can
be implemented by checking if the bus state has changed.

4.4.5.2 Busload

This module provides the current CAN bus load in percentages as a 1-byte input.

The following global parameter can be configured:

Parameter Description

Update Interval
[ms]

This parameter defines in which interval the bus load is calculated.

Alarm Threshold This parameter defines at which bus load an alarm is sent to the PLC
(0: Disabled).

Table 26: Busload Parameter

Figure 32: Busload Parameter

4.4.5.3 RX-/TX-Counter

These modules provide a counter of the incoming and outgoing CAN frames (4 byte). The data is in
the big-endian format. The modules do not need to be configured and have 4-byte input data.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 47 of 122

4.4.6 Communication Window

The Communication Window offers a similar functionality as the FIFO modules, but with a lower
data exchange rate and a more complex implementation. It was introduced with the predecessor,
the CAN-PN (C.2920.02) and is also included in the CAN-PN/2(-FD) for compatibility reasons. It
does not have any CAN FD functionality. If possible, use the FIFO modules.

The Communication Window consists of two modules:

• Communication Window Output

• Communication Window Input

Both modules allocate 16 bytes of data. One module as input, the other as output.

NOTICE
The Communication Window does not work if only one of the modules is configured.
Both modules are only allowed once per configuration.

The following table describes the input and output data:

Input Byte Contents

0

1

As long as no receive data are available ‘0xEEEE’, otherwise:

CAN identifier (Bits 10 ... 8)

CAN identifier (Bits 7 ... 0)

2

3

For 11-bit CAN Identifier Byte 2 and 3 are always ‘0’

For 29-bit CAN Identifier Byte 2: Identifier bits 28 ... 24

 Byte 3: Identifer bits 23 ... 16

NOTICE

To use a 29-bit identifier, set the 29th bit.

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

12 Number of received data bytes

13 In-Counter (Return value of the Out-Counter which has been transmitted to the
gateway via the last PROFINET telegram) (see chapter 4.4.7.1)

14 Number of remaining frames

15 CAN frame received (0x04) or no CAN frame received (0x00)

Table 27: Communication Window Inputs

Software

Page 48 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Output Byte Content

0

1

CAN identifier (identifier bit 10 ... 8)

CAN identifier (identifier bit 7 ... 0)

2

3

For 11-bit CAN identifier Byte 2 and 3 are always ‘0’

For 29-bit CAN identifier Byte 2: Identifier bits 28 ... 24

 Byte 3: Identifer bits 23 ... 16

NOTICE

To use a 29bit identifier, set the 29th bit.

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

12 Data length for transmission jobs (Tx)

13 Out-Counter (has to be incremented in pulse with Organization Block OB1 in order
to synchronize the gateway with the OB1 cycle) (see chapter 4.4.7.1)

14 Sub command (always set to ‘0’)

15 Command (defined throughout this chapter)

Table 28: Communication Window Outputs

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 49 of 122

Commands

The following table shows commands which are currently supported. The sub command is not yet
evaluated and should always be set to ‘0’.

Command Function

0 No Action

1 Transmit a CAN frame

4 Enable CAN identifier for data reception

5 Deactivate CAN identifier for data reception

6 Transmit an RTR frame

7 Execute command 4 and command 6

11 Clear RX-FIFO

Table 29: Communication Window Commands

NOTICE
A command is only processed completely if byte 13 of the module provides the value of
the PLC-loop counter which was transferred during the command call.
Before calling the following command, it is therefore advisable to check byte 13 first!

In the following section the commands are described:

Command 0: No Action

No action

Command 1: Transmit a CAN frame

In order to send data via the Communication Window the CAN identifier has to be specified
in bytes 0 ... 3.
For 11-bit CAN identifier the bytes 2 and 3 as well as bit 4 to 7 in byte 0 needs to be ‘0’.
Byte 0 → Bits 815 of the CAN identifier
Byte 1 → Bits 0 ... 7 of the CAN identifier
Byte 2 → Bits 24 ... 31 of the CAN identifier
Byte 3 → Bits 16 … 23 of the CAN identifier

 If the 29th bit of the CAN identifier is set, the frame are sent with a 29-bit CAN identifier.
 The bits 30 and 31 of the identifier should be zero.

 The number of bytes to be sent should be specified in byte 12 of the Communication
 Window. A valid value range is 0 ... 8.

Software

Page 50 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Command 4 as Output: Enable Rx-identifiers for reception

 By means of this command the Rx-identifier whose data is to be received has to be
 enabled. More than one Rx-identifier can be enabled at the same time. For this purpose, the
 command has to be called a corresponding number of times. For the CAN identifier the same
 rules apply as for command 1

Command 5: Deactivate reception

 After this command has been called no data is received any longer on the specified Rx-
 identifiers. For the CAN identifier the same rules apply as for command 1.

Command 6: Transmit an RTR frame

By means of this command an RTR frame is transmitted. Prior to the transmission the
reception on the CAN identifier has to be enabled by command 4.

Command 7: Execute command 4 and command 6

 Combination of command 4 and 6.

Command 11: Clear RX-FIFO

 This command clears all CAN frames, stored in the FIFO of the Communication Window.
 This FIFO contains up to 255 CAN frames.

In-Counter and Out-Counter

The functionality of the counters is described in chapter 4.4.7.1.

NOTICE
To enable a 29-bit CAN identifier, the 29th bit must be set.
By enabling a 29-bit CAN identifier, all 29-bit CAN identifiers are enabled.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 51 of 122

4.4.7 Additional Information

4.4.7.1 In-Counter and Out-Counter

To synchronize the data exchange for the controlled outputs (see chapter 4.4.3), the FIFO modules
(see chapter 4.4.4) and the Communication Window (see chapter 4.4.6) the gateway uses a
mechanism with an In-Counter and an Out-Counter. Both counters have a length of 1 byte.
The In-Counter is a PLC input, and the Out-Counter is a PLC output. The counters are always located
in the first input and output byte, except for the Communication Window, where it is located in the
byte 13.
The basic concept is that the PLC updates the data of the module first. After this is done, the PLC
increments the Out-Counter. This signals the gateway that it should process the data of the module.
The PLC must now wait until the In-Counter and the Out-Counter are equal again. It must not change
the data as long as this is not the case. During this time the data is processed by the gateway. After
the data is processed, the gateway increments the In-Counter to signal the PLC that the current
module data have been processed. Now both counters are equal, and the PLC can update the data
again and repeat the process. The counting range of the counters is always 0 to 254. The value 255
of the counter is reserved for other functionalities and should not be used as counter.

Example

Figure 33: Example In-Counter and Out-Counter

Software

Page 52 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Pseudo Code

Step PLC Cycle (Pseudo Code)

 ..

1 Read In-Counter of the module.

2
Check if In-Counter and Out-Counter are equal. If so, continue with step 3,
otherwise with step 6.

3 Process the input data of the module (application based).

4 Change the output data of the module (application based).

5
Check if the Out-Counter is less than 254. If this is the case, increment the Out-
Counter of the module. Otherwise, set it to ‘0’.

6 Go on with the PLC cycle (next counter comparison in the next PLC cycle)

 ..

Table 30: In-Counter and Out-Counter Pseudo Code

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 53 of 122

4.4.7.2 DLC and Flags

Some of the function use a 1-byte parameter called DLC and Flags. This parameter consists of a 4-
bit Data Length Code (DLC) parameter as well as 4 bits of meta information.

Bit 7 6 5 4 3 2 1 0

Function Meta information (Flags) DLC

Table 31: DLC and Flags

The DLC code is used to decode the payload respectively data length of a CAN frame. This differs
for Classical CAN and CAN FD.

Classical CAN:

DLC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frame
Length

0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8

Table 32: DLC Classical CAN

CAN FD (CAN-PN/2-FD only):

DLC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frame
Length

0 1 2 3 4 5 6 7 8 12 16 20 24 32 48 64

Table 33: DLC CAN FD

NOTICE
CAN RTR frames are only defined for Classical CAN frames and always have a frame
length of 0 independent of the DLC value.

The 4-bit meta information are defined according to the following table.

Bit

Value

0 1

4 Classical CAN:
➔ Data frame

CAN FD:
➔ Data frame with baud rate switch

Classical CAN:
➔ RTR frame

CAN FD:
➔ Data frame without baud rate switch

5 Reserved Reserved

6 Reserved Reserved

7 Classical CAN Frame CAN FD Frame

Table 34: CAN Frame Flags

Software

Page 54 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.4.7.3 CAN ID Filter

CAN ID filter act as masks on the CAN identifier and can be used to ignore specific bits of the CAN
identifier. This is useful for CAN protocols like J1939, where certain bits of the CAN identifier can
change depending on the CAN network. With the ID filter, only the bits of the CAN identifier are
evaluated where the filter mask is ‘1’. All other bits are then ignored.

Example

The following example with a CAN identifier of 112 and a CAN ID Filter of 2032 should make this
more comprehensible:

Parameter Decimal Hexadecimal Binary

CAN Identifer 112 0x07F 0b000001110000

CAN ID Filter 2032 0x7F0 0b011111110000

Table 35: CAN ID Filter

Bit 10 9 8 7 6 5 4 3 2 1 0

CAN Identifer 0 0 0 0 1 1 1 0 0 0 0

CAN ID Filter 1 1 1 1 1 1 1 0 0 0 0

Result 0 0 0 0 1 1 1 X* X* X* X*

* X could be 0 or 1

Table 36: CAN ID Filter Example

The resulting CAN Identifier is 0x07X, where X stands for do not care. That means that for example
the CAN identifier 0x071 as well as 0x07F would be applied to this frame.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 55 of 122

4.4.7.4 Format

The module types of Input and Output both have the parameter Format.
It is used to convert the user data from big -endian (high byte first / Motorola format) into little endian
(low byte first / Intel format) to CAN data and vice versa. CAN frames which are longer than one
byte, are transmitted on a CAN network in little-endian, while the Siemens PLC operates in big-
endian.

Starting with bit 7 of the Format byte you can decide whether the following byte is swapped or not.
If a ‘1’ is specified for a byte, the following bytes are converted until the next ‘0’ is transmitted. The
functionality can be explained best by means of an example.

Example

A CAN telegram has got a date in little endian in the first two bytes, followed by two bytes which are
not to be swapped and a long word in the last four bytes which is in little endian again.
Binary the following description for the format byte:

Table 37: CAN Format Parameter 1

Table 38: CAN Format Parameter 2

From this the Format byte results in 0x8E → 142.
If all eight bytes are to be swapped, for instance, value 0xFE → 254 is specified for the Format byte.
The lowest bit is generally without significance because the telegram and therefore the formatting
have been completed. The bit should always be set to '0'.

NOTICE
The parameter Format must be set to ‘0’ if byte swapping is unwanted.

Additional CAN FD Parameters (CAN-PN/2-FD only):

Because CAN FD frames can have a maximum length of 64 byte, a single bit of Format is not big
enough. Therefore, the parameter is extended to 64bit for such frames. But the functionality is the
same.

Bit 7 6 5 4 3 2 1 0

Bit of

Format
1 0 0 0 1 1 1 0

Hexadecimal 0x8 0xE

Decimal 142

Action begin

swap

end

swap

un-
changed

un-
changed

begin

swap
swap swap

end

swap

Data Bytes 1 2 3 4 5 6 7 8

CAN Frame 2 bytes little-endian byte 3 byte 4 4 bytes little-endian

PLC Data 2 bytes big-endian byte 3 byte 4 4 bytes big-endian

Software

Page 56 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

The gateway uses alarms to inform the PROFINET controller about errors on the gateway. The
alarms are mostly optional, and the time of appearance can be configured. Whenever this symbol

 is displayed in the Device overview, an alarm is pending on the specific module.
Further information about the alarm is described in the diagnostics of the module (Context Menu of
Module -> Online & diagnostics -> Diagnostics status.

The following modules can cause alarms:

Module Error Type Reason

CAN Interface
(always slot 0)

Line Break The CAN bus is faulty. The CAN bus state changes to a state
worse than configured in the parameter Alarm Level. This alarm
disappears when the CAN bus state is not faulty anymore.
Because the way CAN works, there need to be frames received
and send in order to achieve this.

Bus Load General Error This alarm appears when the CAN bus load exceeds the %
configured in the parameter Alarm Threshold.
This alarm disappears when the CAN bus load is lower than the
configured threshold.

RX-FIFO General Error There is an overflow in the RX-FIFO. This alarm occurs when the
RX-FIFO lost CAN frames because the internal buffer is full.

TX-FIFO General Error Not all data passed by the PLC could be processed in one cycle,
because the internal TX buffer is full. This is normally not a
problem, because the application tries to send the data with the
next cycle.

Table 39: CAN-PN/2 Alarms

4.5 Diagnostics

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 57 of 122

The content of the alarm telegram is structured as shown in the table below. However, the PLC will
parse the telegram and only show the error type and the address information.

Octet number Name Content

0 reserved 0x00

1 btype 0x01 (Blocktype:Alarm Notification High)

2 blen0 0x00 (Blocklength: 30 Byte)

3 blen1 0x1e

4 verh(1) 0x01 (VersionHigh: 1)

5 verl(0) 0x00 (VersionLow: 0)

6 atyp0 0x00 (AlarmType: Diagnosis)

7 atyp1 0x01

8 ap0 0x00 (API:0)

9 ap1 0x00

10 ap2 0x00

11 ap3 0x00

12 sl0 0x00 SlotNumber

13 sl1 0x00

14 ssl0 0x00 SubslotNumber

15 ssl1 0x01

16 mid0 0x10 ModuleID

17 mid1 0x00

18 mid2 0x00

19 mid3 0x00

20 smid0 0x10 SubModuleID

21 smid1 0x00

22 smid2 0x00

23 smid3 0x00

24 a0dmcsss 0xA8

(AR Problem Indicator:1
 Diagnosis Exist:1
 Manufacturer Specific:0
 Channel specific: 1
 Sequence number: 0...2047

25 ssssssss 0x00

26 usi0 0x80 (Use Structure ID: 0x8000 =
 Channel related diagnosis)

27 usi1 0x00

28 chn0 0x80 (Channel number: 0x8000)

29 chn1 0x00

30 dddssmra 0x68 (Direction: 3 = I/O
 Specifier: 1 = Appears
 MaintenanceDemanded:0
 MaintenanceRequired:0
 Accumulative:0)

31 type 0x00 Type: 0=unspecified

32 cet0 0x00 (ChannelErrorType: 0x06 = Line Break
 0x09 = General Error)

33 cet1 0x06

After an alarm has been resolved the gateway sends the following alarm telegram. Only the different
entries are displayed.

Software

Page 58 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Octet number Name Content

: : :

6 atyp0 0x00 (AlarmType: Diagnosis disappears)

7 atyp1 0x0C

: : :

24 a0dmcsss 0x00

(AR Problem Indicator:0

Diagnosis Exist:0

Manufacturer Specific:0

Channel specific: 0

Sequence number: 0..2047 (here 1,

incremented by one)

25 ssssssss 0x01

: : :

30 dddssmra 0x10 (Direction: 0 = unspecified

Specifier: 2 = Disappears

MaintenanceDemanded:0

MaintenanceRequired:0

Accumulative:0

: : :

32 cet0 0x00 (ChannelErrorType = 0x00 = no error)

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 59 of 122

PROFINET records are asynchronous operations that can be used to exchange noncyclic data
between the PLC and the gateway. Read records receive data from the gateway while write records
send data to the gateway. Therefore, read records need an input buffer in the PLC, in which the
gateway can store the data.

The TIA Portal already has preconfigured function blocks called RDREC for read records and WRREC

for write records. The function blocks can be configured and implemented easily. For further
information, see chapter 4.6.3 and read the respective documentation of the TIA Portal.

Records are differentiated by their record index. Moreover, the application must clarify how many
bytes can be read maximum for read records and how many bytes should be sent for write records.
Throughout this chapter the data from a read record is referred to as input data (Gateway → PLC).
The data of a write record is referred to as output data (PLC → Gateway). All records are documented
in detail throughout this chapter.

To perform some of the CAN operations, the records use an independent CAN handle, which is
referred to as Record Handle. This means, that for example enabling all CAN identifiers for the RX-
FIFO modules does not mean, that all CAN identifiers are enabled for the ‘Read CAN Frame’ record
(0x300).

The following overview shows all supported read records.

Index Record Length
[Bytes]

Description Page

0x30 32 Read CAN statistic 61

0x31 32 Read and clear CAN statistic 61

0x300 1 Read number of remaining frames in the record handle 61

0x301 17 Read CAN frame from the record handle 62

0x302 17 ... 524* Read multiple CAN frames from the record handle 63

0x303 73 Read CAN FD frame (only supported on the CAN FD
variant of the gateway)

64

0x304 73 ... 2764* Read multiple CAN FD frame (only supported on the CAN
FD variant of the gateway)

65

0x305 4 Read current timestamp of the gateway 65

* Record length depends on the number of CAN frames

Table 40: CAN-PN/2 Read Records

4.6 Records

Software

Page 60 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

The following overview shows all supported write records.

Index Record Length
[Bytes]

Description Page

0x10 - Reset CAN Statistic 66

0x20 1 ... 9** Enable CAN identifier for the RX-FIFO module 67

0x21 1 ... 9** Disable CAN identifier for the RX-FIFO module 68

0x101 13 Transmit CAN frame 69

0x102 14 ... 521* Transmit multiple CAN frames 69

0x103 69 Transmit CAN FD frame (only supported on the CAN FD
variant of the gateway)

70

0x104 70 ... 2761* Transmit multiple CAN FD frame (only supported on the
CAN FD variant of the gateway)

71

0x107 1 ... 9** Enable CAN identifier for the record handle 71

0x108 1 ... 9** Disable CAN identifier for the record handle 71

0x109 - Clear all CAN frames received with the record handle 71

* Record length depends on the number of CAN frames
** Record length depends on the record mode

Table 41: CAN-PN/2 Write Records

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 61 of 122

4.6.1 Read Records

4.6.1.1 Read CAN Statistic (0x30 / 0x31)

This read record can be used to get additional information about the CAN bus. All return values are
in big endian. The record index 0x30 only reads the statistic while 0x31 reads the statistic and resets
the statistic afterwards.

The following data will be returned:

Read Record Read CAN Statistic

(Index 0x30/0x31 | Record Length 32 Bytes)

Parameter Byte Description Value Range Data Type

1 0 ... 3
Number of CAN frames that have been
received

- unsigned32

2 4 ... 7
Number of CAN RTR frames that have been
received -

unsigned32

3 8 ... 11
Number of CAN FD frames that have been
received -

unsigned32

4 12 ... 15 Number of CAN frames that have been send - unsigned32

5 16 ... 19
Number of CAN RTR frames that have been
send

- unsigned32

6 20 ... 23
Number of CAN FD frames that have been
send -

unsigned32

7 24 ... 27 Number of CAN controller overruns - unsigned32

8 28 ... 31 Number of CAN error frames - unsigned32

Table 42: Read Record Read CAN Statistic (0x30/0x31)

NOTICE
These values are not reset when the connection to the PROFINET controller is lost.
Only a restart or a reset will clear them.

4.6.1.2 Read Number of Remaining Frames in the Record Handle (0x300)

This read record returns the number of CAN frames that are stored in the record handle RX-FIFO.

Read Record Read Number of Remaining Frames in the Record Handle

(Index 0x300 | Record Length 1 Byte)

Parameter Byte Description Value Range Data Type

1 0
Number of remaining frames in the record
handle

0x00 ... 0xFF unsigned8

Table 43: Read Record Read Number of Remaining Frames in the Record Handle (0x300)

Software

Page 62 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.1.3 Read CAN Frame from the Record Handle (0x301)

This read record reads one CAN frame from the record handle.

The required buffer must be at least 17 bytes in size. It uses the same CAN frame structure as
described in chapter 4.4.4.1.

Read Record Read CAN Frame from the Record Handle

(Index 0x301 | Record Length 17 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Reserved for future use - -

2 1
Number of received CAN frames in this
record. When this is ‘0’, no CAN frame was
received

0x00 ... 0xFF Unsigned8

3 2
Number of remaining CAN frames which
are stored in the RX-FIFO of the record
handle

0x00 ... 0xFF Unsigned8

4 3 Number of missed CAN frames 0x00 ... 0xFF Unsigned8

5 4 ... 16
CAN Frame Structure 1 (see chapter
4.4.4.1)

-
CAN Frame

Structure

Table 44: Read Record Read CAN Frame from the Record Handle (0x301)

NOTICE
All required CAN Identifiers need be enabled with the record 0x107 (see chapter 4.6.2.8).

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 63 of 122

4.6.1.4 Read multiple CAN Frames from the Record Handle (0x302)

This read record reads up to 40 CAN frames from the record handle. The number of CAN frames
that can be read per records depends on buffer size.

The minimum required buffer size is 17 bytes, which can return one CAN frame, and the maximum
buffer size is 524 bytes, which can return up to 40 CAN frames. Like the record 0x302 it uses the
same CAN frame structure as described in chapter 4.4.4.1..

Read Record Read multiple CAN Frames from the Record Handle

(Index 0x302 | Record Length 17 - 524 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Reserved for future use - -

2 1
Number of received CAN frames in this
record. When this is ‘0’, no CAN frame was
received

0x00 ... 0xFF Unsigned8

3 2
Number of remaining CAN frames which are
stored in the RX-FIFO of the record handle

0x00 ... 0xFF Unsigned8

4 3 Number of missed CAN frames 0x00 ... 0xFF Unsigned8

5 4 ... 16 CAN Frame Structure 1 (see chapter 4.4.4.1) -
CAN Frame

Structure

5 17 ... 510 CAN Frame Structure 2 - 39 -
CAN Frame

Structure

6 511 ... 523 CAN Frame Structure 40 -
CAN Frame

Structure

Table 45: Read multiple CAN Frames from the Record Handle (0x302)

NOTICE
All required CAN identifiers need to be enabled with the record 0x107 (see chapter
4.6.2.8).

Software

Page 64 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.1.5 Read CAN FD Frame from the Record Handle (0x303)

NOTICE
This record is only supported by CAN-PN/2-FD.

This read record reads one CAN frame from the record handle. The record is similar to 0x301 but
has an increased buffer for CAN FD frames. It can also read non-FD CAN frames. To distinguish
between Classical CAN and CAN FD frames, check the DLC and Flags field (see chapter 4.4.7.2).

The required buffer must be at least 73 bytes in size. It uses the same CAN FD frame structure as
described in chapter 4.4.4.1.

Read Record Read CAN FD Frame from the Record Handle

(Index 0x303 | Record Length 73 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Reserved for future use - -

2 1
Number of received CAN frames in this
record. When this is ‘0’, no CAN frame was
received

0x00 ... 0xFF Unsigned8

3 2
Number of remaining CAN frames which
are stored in the RX-FIFO of the record
handle

0x00 ... 0xFF Unsigned8

4 3 Number of missed CAN frames 0x00 ... 0xFF Unsigned8

5 4 ... 72
CAN FD Frame Structure 1 (see chapter
4.4.4.1)

-
CAN FD
Frame

Structure

Table 46: Read Record Read CAN FD Frame from the Record Handle (0x303)

NOTICE
All required CAN identifiers need to be enabled with the record 0x107 (see chapter
4.6.2.8).

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 65 of 122

4.6.1.6 Read multiple CAN FD Frames from the Record Handle (0x304)

NOTICE
This record is only supported by CAN-PN/2-FD.

This read record reads up to 40 CAN FD frames from the record handle. The record is similar to
0x302 but has an increased buffer for CAN FD frames. The number of CAN frames that can be read
per records depends on the buffer size.

The minimum required buffer size is 73 bytes, which can return one CAN FD frame, and the
maximum buffer size is 2764 bytes, which can return up to 40 CAN FD frames.
Like the record 0x303 it uses the same CAN FD frame structure as described in chapter 4.4.4.1.

Read Record Read multiple CAN FD Frames from the Record Handle

(Index 0x304 | Record Length 17 - 524 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Reserved for future use - -

2 1
Number of received CAN frames in this
record. When this is ‘0’, no CAN frame was
received

0x00 … 0xFF Unsigned8

3 2
Number of remaining CAN frames which are
stored in the RX-FIFO of the record handle

0x00 ... 0xFF Unsigned8

4 3 Number of missed CAN frames 0x00 ... 0xFF Unsigned8

5 4..72
CAN FD Frame Structure 1 (see chapter
4.4.4.1)

-
CAN FD
Frame

Structure

5 73 … 2694 CAN FD Frame Structure 2 - 39 -
CAN FD
Frame

Structure

6 2695 ... 2763 CAN FD Frame Structure 40 -
CAN FD
Frame

Structure

Table 47: Read Record Read multiple CAN FD Frames from the Record Handle (0x304)

4.6.1.7 Read current timestamp of the gateway (0x300)

This read record returns the number of CAN frames that are stored in the record handle RX-FIFO.

Read Record Read Number of Remaining Frames in the Record Handle

(Index 0x300 | Record Length 4 Byte)

Parameter Byte Description Value Range Data Type

1 0-3
Timestamp of the gateway. Resolution is
defined in the CAN interface (see 4.4.1)

0x00 ...
0xFFFFFFFF

Unsigned32

Software

Page 66 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.2 Write Records

4.6.2.1 Reset CAN Statistic (0x10)

This write record resets the CAN statistic. It does not need any input data.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 67 of 122

4.6.2.2 Add CAN Identifier to RX-FIFO (0x20)

This record can be used to add additional CAN identifier to the RX-FIFO module. Depended on the
data it needs output data of up to 9 bytes.

Write Record Add CAN Identifier to RX-FIFO

(Index 0x20 | Record Length 1-9 Bytes)

Para
meter

Byte Description Value Range Data Type

1 0

Mode

 Function

0: Add one CAN Identifier

(Minimum Input data 5 byte)

1: Add all 11-bit CAN Identifier

(Minimum Input data 1 byte)

2: Add all 29-bit CAN Identifier

(Minimum Input data 1 byte)

3: Add CAN identifier with Mask
(Minimum Input data 9 byte)

4: Add CAN Identifier Region
(Minimum Input data 9 byte)

0x00 … 0x04 Unsigned8

2 1 ... 4

 Function

0: CAN Identifier
(for 29-bit Identifier, set the 29th bit)

1: -

2: -

3: CAN Identifier
(for 29-bit Identifier, set the 29th bit)

4: First CAN Identifier
(for 29bit Identifier, set the 29th bit)

- Unsigned32

3 5 ... 9

 Function

0: -

1: -

2: -

3: CAN ID Filter (see chapter 4.4.7.3)

4: Number of CAN Identifiers that should be
added, started from the first CAN Identifer
(Byte 1-4).

- Unsigned32

Table 48: Write Record Add CAN Identifier to RX-FIFO (0x20)

NOTICE
It is not possible to add more than 5000 CAN identifiers to the RX-FIFO module. All CAN
identifiers that have been added after 5000 will be ignored. The only exception is when
all identifiers of one type are added or when a range of CAN identifiers is added.

Software

Page 68 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.2.3 Delete CAN Identifier from RX-FIFO (0x21)

This record can be used to delete CAN identifier from the RX-FIFO module. Depended on the data
it needs output data of up to 9 bytes.

Write Record Delete CAN Identifier to RX-FIFO

(Index 0x21 | Record Length 1-9 Bytes)

Para
meter

Byte Description Value Range Data Type

1 0

Mode

 Function

0: Delete one CAN Identifier
(Minimum Input data 5 byte)

1: Delete all 11-bit CAN Identifier
(Minimum Input data 1 byte)

2: Delete all 29-bit CAN Identifier
(Minimum Input data 1 byte)

3: Delete CAN Identifier with Mask
(Minimum Input data 9 byte)

4: Delete CAN Identifier Region
(Minimum Input data 9 byte)

0x00 …0x04 Unsigned8

2 1 ... 4

 Function

0: CAN Identifier
(for 29-bit Identifier, set the 29th bit)

1: -

2: -

3: CAN Identifier
(for 29-bit Identifier, set the 29th bit)

4: First CAN Identifier
(for 29-bit Identifier, set the 29th bit)

- Unsigned32

3 5 ... 9

 Function

0: -

1: -

2: -

3: CAN ID Filter (see chapter 4.4.7.3)

4: Number of CAN Identifiers that should be
added, started from the first CAN Identifer
(Byte 1-4).

- Unsigned32

Table 49: Write Record Delete CAN Identifier to RX-FIFO (0x21)

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 69 of 122

4.6.2.4 Send CAN Frame (0x101)

This write record can be used to send one CAN frame.

The required output data must be at least 14 bytes. It uses the same CAN frame structure as
described in chapter 4.4.4.1.

Write Record Send CAN Frame
(Index 0x101 | Record Length 14 Bytes)

Parameter Byte Description Value Range Data Type

1 0 ... 13
CAN Frame Structure 1
(see chapter 4.4.4.1)

-
CAN Frame

Structure

Table 50: Write Record Send CAN Frame (0x101)

4.6.2.5 Send multiple CAN Frames (0x102)

This write record can be used to send up to 40 CAN frames. The number of CAN frames that can
be send depends on the number of output bytes as well as the number of frames defined in byte 0
of the output data.

The minimum output data size is 15 bytes, which can send one CAN frame, and the maximum buffer
size is 560 bytes, which can send up to 40 CAN frames. Like the record 0x101 it uses the same CAN
frame structure as described in chapter 4.4.4.1. The length of the outgoing CAN frames is
determined by the DLC and Flags field in the CAN frame structure and not by the Length field,
because this allows additional functionality like RTR frames.

Write Record Send multiple CAN Frames
(Index 0x102 | Record Length 15 – 561 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Number of CAN frames to be send 0x00 … 0xFF Unsigned8

2 1..14
CAN Frame Structure 1
(see chapter 4.4.4.1)

-
CAN Frame

Structure

3 15 ... 546 CAN Frame Structure 2-39 -
CAN Frame

Structure

4 547..560 CAN Frame Structure 40 -
CAN Frame

Structure

Table 51: Write Record Send multiple CAN Frame (0x101)

Software

Page 70 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.2.6 Send CAN FD Frame (0x103)

NOTICE
This record is only supported by CAN-PN/2-FD.

This write record can be used to send one CAN FD frame. The record is similar to 0x101 but has an
increased buffer for CAN FD frames. It can also write non-FD CAN frames. To distinguish between
Classical CAN and CAN FD frames, set the respective bit in the DLC and Flags field (see chapter
4.4.7.2).

The required output data must be at least 70 bytes. It uses the same CAN FD frame structure as
described in chapter 4.4.4.1.

Write Record Send CAN FD Frame
(Index 0x103 | Record Length 70 Bytes)

Parameter Byte Description Value Range Data Type

1 0 ... 69
CAN Frame Structure 1

(see chapter 4.4.4.1)
-

CAN FD
Frame

Structure

Table 52: Write Record Send CAN FD Frame (0x103)

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 71 of 122

4.6.2.7 Send multiple CAN FD Frames (0x104)

NOTICE
This record is only supported by CAN-PN/2-FD.

This write record can be used to send up to 40 CAN FD frames. The number of CAN FD frames that
can be send depends on the number of output bytes as well as the number of frames defined in byte
0 of the output data. The record is similar to 0x102 but has an increased buffer for CAN FD frames.
It can also write non-FD CAN frames. To distinguish between Classical CAN and CAN FD frames,
set the according bit in the DLC and Flags field (see chapter 4.4.7.2).

The minimum output data size is 71 bytes, which can send one CAN FD frame, and the maximum
buffer size is 2761 bytes, which can send up to 40 CAN FD frames. Like the record 0x103 it uses
the same CAN FD frame structure as described in chapter 4.4.4.1.

Write Record Send multiple CAN FD Frames
(Index 0x104 | Record Length 70 – 2801 Bytes)

Parameter Byte Description Value Range Data Type

1 0 Number of CAN FD frames to be send 0x00 … 0xFF Unsigned8

2 1 ... 70
CAN FD Frame Structure 1

(see chapter 4.4.4.1)
-

CAN FD
Frame

Structure

3
71 ...
2730

CAN FD Frame Structure 2-39 -
CAN FD
Frame

Structure

4
2731 ...
2800

CAN FD Frame Structure 40 -
CAN FD
Frame

Structure

Table 53: Write Record Send multiple CAN FD Frame (0x104)

4.6.2.8 Add CAN Identifier to Record Handle (0x107)

This record can be used to add CAN identifier to the record handle. Depending on the data it needs
output data of up to 9 bytes. It uses the same data structure as defined in record 0x20 (see chapter
4.6.2.2).

NOTICE
It is not possible to add more than 5000 CAN identifiers to the record handle. All CAN
identifiers that have been added after 5000 will be ignored. The only exception is when
all identifiers of one type are added or when a range of CAN identifiers is added.

4.6.2.9 Delete CAN Identifier from Record Handle (0x108)

This record can be used to delete CAN identifiers from the record handle. Depended on the data it
needs output data of up to 9 bytes. It uses the same data structure as defined in record 0x21 (see
chapter 4.6.2.3).

4.6.2.10 Reset Record Handle RX-FIFO (0x109)

This write record will discard all CAN frames, that are pending in the RX-FIFO of the record handle.

Software

Page 72 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

4.6.3 PLC Function Blocks

4.6.3.1 Read Records

The function block RDREC is used for reading read records asynchronously.

The following parameter needs to be provided:
 REQ := BOOL (Input)

 ID := HW_IO (Input)

 INDEX := DINT (Input)

 MLEN := UINT (Input)

 VALID := BOOL (Output)

 BUSY := BOOL (Output)

 ERROR := BOOL (Output)

 STATUS:= DWORD (Output)

 LEN := UINT (Output)

 RECORD:= VARIANT (I/O)

A data block instance of the function block needs to be added. The data block is automatically
generated when the function block is called.

Parameter Description

REQ Start read operation (always 1)

ID HW identifier of a module

Index Record index

MLEN Minimum length of the bytes to be read. The actually received
length of the data is returned in LEN.

VALID Read operation was successful

BUSY Read operation is in progress

ERROR Error occurred during read operation, see parameter STATUS for a
further information

STATUS Error description

LEN Number of received bytes

RECORD Received data from the gateway. The received length is specified
with the parameter LEN.

Table 54: Read Record PLC Parameter

NOTICE

The parameter REQ is not edge-triggered. If the input is not reset accordingly, the

operation will be repeated permanently.

Software

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 73 of 122

4.6.3.2 Write Records

The function block WRREC is used for writing write records asynchronously.

The following parameter needs to be provided:
 REQ := BOOL (Input)

 ID := HW_IO (Input)

 INDEX := DINT (Input)

 LEN := UINT (Input)

 DONE := BOOL (Output)

 BUSY := BOOL (Output)

 ERROR := BOOL (Output)

 STATUS:= DWORD (Output)

 RECORD:= VARIANT (I/O)

A data block instance of the function block needs to be added. The data block is automatically
generated when the function block is called.

Parameter Description

REQ Start write operation (always 1)

ID HW identifier of a module

Index Record index

LEN Length of the bytes to be transferred

DONE Write operation done successfully

BUSY Write operation is in progress

ERROR Error occurred during write operation, see parameter STATUS for a

further information

STATUS Error description

RECORD Data to be transmitted

Table 55: Write Record PLC Parameter

NOTICE

The parameter REQ is not edge-triggered. If the input is not reset accordingly, the

operation will be repeated permanently.

Firmware Update

Page 74 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

5 Firmware Update
The CAN-PN/2 gateway offers the possibility of firmware updates.

To install a firmware update, the following steps need to be done:

Step Action

1
Install the installer provided with the CAN-PN/2 (see chapter 4.2) with all
packages.

1 Connect the CAN-PN/2 via Mini-USB with a Windows computer.

3
Make sure that CAN-PN/2 is detected correctly, and a network adapter called
‘RNDIS based ESD Device’ shows up in the Device Manager (see chapter 4.2).

3
Execute the batch file update_X_X_X.bat in the package provided from the

esd support.

4 Wait till the gateway restarts (see chapter 3).

5 The update is done.

Table 56: Firmware Update

CAN Monitoring

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 75 of 122

6 CAN Monitoring
The CAN-PN/2 can be used to monitor the CAN interface.
To configure the CAN monitoring, the following steps need to be done:

Step Action

1
An installer is provided with the CAN-PN/2

Install it with all packages (see chapter 4.2).

2 Connect the CAN-PN/2 via Mini-USB with a Windows computer.

3
Make sure that CAN-PN/2 is detected correctly, and a network adapter called
‘RNDIS based ESD Device’ shows up in the Device Manager (see chapter 4.2).

4

Start the program CAN Control Panel which is installed with the installer.

By default, the net number is already set to 100.

Set the parameter Hostname / IP address to: 192.168.7.1

Make sure that the checkbox Enabled is checked.

Do not change any other settings (see Figure 34).

Press Apply.

5

Open the esd tool CANreal.

Select the net number 100 in the dropdown menu of the input field Net on the top.

It is not needed to set the baud rate manually because the PROFINET controller
already configured it. However, when the gateway is not connected to a PROFINET
network, this parameter can also be set manually.

Let all other values unchanged.

Press Start.

6
Now CANreal can interact with the CAN interface on the gateway.
Some basic functionalities are described in Figure 35. For further information see
the CANreal manual (CANreal main menu -> Help -> CANreal help).

Table 57: CAN Monitoring

Figure 34: CAN Control Panel

CAN Monitoring

Page 76 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Figure 35: Monitoring the CAN Bus with CANreal

NOTICE

CANreal also offers the possibility to save the current CAN frames by clicking
 File→Save frames…. In support cases this is useful to track the issue.
The log file has the extension .csplog.

NOTICE
CAN-PN/2-FD only: Currently it is not possible to monitor CAN FD frames.

Incoming and outgoing CAN Frames

Toolbar to send CAN Frames

CAN Bus Status

CAN Bus Load
Status

Compatibility

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 77 of 122

7 Compatibility
The CAN-PN/2 (C.2924.02) and the CAN-PN/2-FD (C.2924.62) are successors of the CAN-PN
(C.2920.02). As such the new gateways are still compatible with the predecessor. That means, it is
possible to use both new gateways as replacement for a CAN-PN (C.2920.02) without any changes
to the configuration.
The GSDML file and the features of the predecessor are still fully supported. However, because the
new gateways use a different soft- and hardware, minor timing difference may occur.

NOTICE
It is not possible to configure the old CAN-PN (C.2920.02) with the GSDML files of the
CAN-PN/2 (C.2924.02) or CAN-PN/2-FD (C.2924.62).

Troubleshooting

Page 78 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

8 Troubleshooting
This chapter shows some common error cases and how to solve them. It is explained on the Siemens
TIA Portal as development environment.

8.1 Faulty PROFINET Connection

How does the error present itself?

• The ‘CON’ LED is not lit.

• The Device overview displays multiple missing modules ().

How can the error be solved?

• Check if the PROFINET device name of the gateway and the configuration match.

• Check if the PROFINET wiring is correct.

• Check if the correct GSDML file is used. It is not possible to configure the CAN-PN/2
(C.2924.02) with the GSDML file of the CAN-PN/2-FD.

• CAN-PN/2-FD only: Check if the CAN Data-Phase Bitrate is equal or higher than the CAN
Bitrate (see Figure 36).

Figure 36: Invalid CAN Data-Phase Bitrate

Troubleshooting

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 79 of 122

How does the error present itself?

• The ‘E’ LED is lit continuously or lit up in single flashes (see chapter 1.5.3).

• The Device overview shows an alarm () on the CAN-PN module (see Figure 37).

Figure 37: Faulty CAN Bus

How can the error be solved?

• Check if all CAN devices have the same baud rate.

• Check whether the CAN bus is terminated.

• Check that the CAN bus wiring is correct (see chapter 12).

• Check the error code of the CANopen Manager module.

8.2 Faulty CAN Bus

Troubleshooting

Page 80 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

How does the error present itself?

• The ‘E’ LED flashes (see chapter 1.5.3).

• One or more modules show the symbol in the Device overview.

How does the error can be solved?

• Check if a unique module is configured twice (see Figure 38).
o RX-/TX-FIFO Modules
o Bus Statistic Modules

Figure 38: Duplicates unique Modules

• CAN-PN/2-FD only:
Check if a FIFO module is configured although CAN FD is not enabled on the module CAN-
PN/2-FD (see Figure 39: Enable CAN FD).

Figure 39: Enable CAN FD

8.3 Configuration Error

Troubleshooting

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 81 of 122

When you have a problem with the CAN-PN/2 please make sure to check the troubleshooting
chapter 8 and chapter Fehler! Verweisquelle konnte nicht gefunden werden. first.
If you still cannot find the solution to the problem, don’t hesitate to contact our support team for help.
Please contact our support by email to support@esd.eu or by phone +49-511-37298-130.

In order to provide the fastest and best service, please provide the following information if possible:

• Detailed error description
o How does the error present itself?
o Are alarms received on the PROFINET controller?

• Serial Number (printed on the device)

• GSDML File (.xml)

• Siemens TIA Portal Project or at least a screenshot of the Device view

• CAN Monitoring Log (.csplog) (see chapter 6)

8.4 Support by esd

mailto:support@esd.eu

Example

Page 82 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9 Example
This chapter provides some basic examples of the FIFO and Communication Window. On top of
that, it is possible, to install an example project for the CAN-PN/2 with the installer.
There are two projects, one for the CAN-PN/2 and one for the CAN-PN/2-FD. The example shows
some more detailed information about the FIFO modules as well as the record functionality of the
gateway.

The basic program flow can be implemented based on the pseudo code defined in chapter 4.4.7.1.
In this example, an RX-FIFO module with one CAN frame exchange per cycle is used. This module
has 17 bytes of input data and 1 byte of output data.

During configuration of the module, all 11-bit CAN identifier were enabled via the corresponding
checkbox. Before you check whether new CAN frames have been received, check if the In-Counter
(Byte 0 of the input data) and Out-Counter (Byte 0 of the input data) are equal. When this is the case,
increment the Out-Counter to get new data from the gateway. Wait till the In-Counter is equal again.
When this is the case, check if byte 1 of the input data is equal to ‘0’. If that is the case, no new data
have been received, and the input data does not need to get evaluated further. If byte 1 is unequal
to ‘0’, new data is received and needs to get processed as follows:

Input Byte Content Data

0 In-Counter Out-Counter

1 Number of received frames 0x01

2 Number of remaining frames 0x03

3 Number of missed frames 0x00

4

5

6

7

CAN Identifier (Bit 24 ... 31 / only 29-bit CAN identifier)

CAN Identifier (Bit 16 ... 23 / only 29-bit CAN identifier)

CAN Identifier (Bit 8 ... 15)

CAN Identifier (Bit 0 ... 7)

0x00

0x00

0x00

0x14

8 DLC and Flags (see chapter 4.4.7.2) 0x08

9 Length 0x08

10

11

12

13

14

15

16

17

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

This input data means, that a CAN frame with the identifier 0x14 and the length of 8 bytes with the
data bytes 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 and 0x08 has been received. On top of that,
there are 3 remaining frames in the FIFO that are send with the next cycle.

9.1 Example for the RX-FIFO

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 83 of 122

The basic program flow can be implemented based on the pseudo code defined in chapter 4.4.7.1.
In this example a TX-FIFO module with one CAN frame exchange per cycle is used. This module
has 1 byte of input data and 14 bytes of output data.

Before changing the data of the module, check if the In-Counter (Byte 0 of the input data) and Out-
Counter (Byte 0 of the input data) are equal.
If this is the case, the output data of the module can be changed as follows:

Output Byte Content Data

0 Out-Counter Out-Counter + 1

1 Number of frames to be send 0x01

0

1

2

3

CAN Identifier (Bit 24 ... 31 / only 29bit CAN identifier)

CAN Identifier (Bit 16 ... 23 / only 29bit CAN identifier)

CAN Identifier (Bit 8 ... 15)

CAN Identifier (Bit 0 ... 7)

0x20

0x00

0x01

0x23

4 DLC and Flags (see chapter 4.4.7.2) 0x05

5 Length 0x05

6

7

8

9

10

11

12

13

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0x11

0x22

0x33

0x44

0x55

0x00

0x00

0x00

This change will send a CAN frame on the 29-bit identifier 0x123 and a length of 5 bytes with the
data bytes 0x11, 0x22, 0x33, 0x44 and 0x55. When the In-Counter and the Out-Counter are equal
again, the CAN frame is processed.

9.2 Example for the TX-FIFO

Example

Page 84 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9.3.1 Basic Program Flow

The following basic configurations are necessary for all following examples.

In-Counter and Out-Counter

An 8-bit In-Counter and Out-Counter for the data synchronization needs to be established.

The following pseudo code will describe the basic program flow:

Step PLC Cycle (Pseudo Code)

 ..

1 Read Byte 13 (In-Counter) of the Communication Window Input.

2
Check whether Byte 13 of the Communication Window Input and Byte 13 of the
Communication Window Output are equal. If they are equal, continue with step 3,
otherwise with step 6.

3
Check the data of the Communication Window Input, if for example a CAN frame
has been received (application based).

4
Change the data in the Communication Window Output to for example send a
CAN frame (application based).

5 Increment the Byte 13 of the Communication Window Output.

6 Go on with the PLC cycle (next counter comparison in the next PLC cycle)

 ..

9.3 Example for the Communication Window

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 85 of 122

9.3.2 Transmit a CAN Frame

Make sure that the byte 13 of the Communication Window Input and Output are equal. If so, change
the data of the Communication Window Output as follows:

Output Byte Content Data

0

1

CAN identifier (identifier bit 10 ... 8)

CAN identifier (identifier bit 7... 0)

0x00

0x12

2

3

For 11-bit CAN identifier Byte 2 and 3 are always ‘0’

For 29-bit CAN identifier Byte 2: identifier bits 28 ... 24

 Byte 3: Identifer bits 23 ...16

0x00

0x00

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

12 Data length for transmission jobs (Tx) 0x08

13 Out-Counter Out-Counter + 1

14 Sub command (always set to ‘0’) 0x00

15 Command (Transmit a CAN frame) 0x01

This change will send a CAN frame on the identifier 0x12 with a length of 8 bytes with the data bytes
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07. When the In-Counter and the Out-Counter are
equal again, the transmission job is processed.

Example

Page 86 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9.3.3 Receive a CAN Frame

9.3.3.1 Enable CAN identifier for Data Reception

Make sure that the byte 13 of the Communication Window Input and Output are equal. If so, change
the data of the Communication Window Output as follows.

Output Byte Content Data

0

1

CAN identifier (identifier bit 10 ... 8)

CAN identifier (identifier bit 7 ... 0)

0x01

0x23

2

3

For 11bit CAN identifier Byte 2 and 3 are always ‘0’

For 29bit CAN identifier Byte 2: identifier bits 28 ... 24

 Byte 3: Identifer bits 23 ... 16

0x00

0x00

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

12 Data length for transmission jobs (Tx) 0x00

13 Out-Counter Out-Counter + 1

14 Sub command (always set to ‘0’) 0x00

15 Command (Enable CAN identifier for data reception) 0x04

This change will enable the CAN identifier 0x123 for reception. When the In-Counter and the Out-
Counter are equal again, the job is processed.

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 87 of 122

9.3.3.2 Reception of an enabled CAN Identifier

The CAN identifier 0x123 is enabled for reception. To receive a CAN frame, the In-Counter and Out-
Counter should be checked for equality. Whenever this is the case, the application needs to check
if byte 15 is equal to 0x04. If this is not the case, no new data was received. The data of the
Communication Window Input does not need to be evaluated further and the Out-Counter can be
incremented. When byte 15 is 0x04, a new CAN frame is received, and the input data needs to be
processed:

Input Byte Content Data

0

1

CAN identifier (identifier bit 10...8)

CAN identifier (identifier bit 7...0)

0x01

0x23

2

3

For 11bit CAN identifier Byte 2 and 3 are always ‘0’

For 29bit CAN identifier Byte 2: identifier bits 28...24

 Byte 3: Identifer bits 23...16

0x00

0x00

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0xAA

0xBB

0xCC

0xDD

0xEE

0xFF

0x00

0x00

12 Number of received Data Bytes 0x06

13 In-Counter Out-Counter

14 Number of remaining frames 0x02

15 CAN frame received 0x04

This input data means, that a CAN frame with identifier 0x123 and a length of 6 bytes with the data
bytes 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF was received. On top of that, the 0x02 in byte 14
means, that there are two more frames pending in the FIFO of the Communication Window that can
be processed in the next cycle.

Example

Page 88 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9.3.3.3 Deactivate CAN Identifier for Data Reception

Make sure that the byte 13 of the Communication Window Input and Output are equal. If so, change
the data of the Communication Window Output as follows.

Output Byte Content Data

0

1

CAN identifier (identifier bit 10 ... 8)

CAN identifier (identifier bit 7 ... 0)

0x01

0x23

2

3

For 11-bit CAN identifier Byte 2 and 3 are always ‘0’

For 29-bit CAN identifier Byte 2: identifier bits 28 ... 24

 Byte 3: Identifer bits 23 ... 16

0x00

0x00

4

5

6

7

8

9

10

11

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

12 Data length for transmission jobs (Tx) 0x00

13 Out-Counter Out-Counter + 1

14 Sub command (always set to ‘0’) 0x00

15 Command (Deactivate CAN identifier for data reception) 0x05

This change disables the CAN identifier 0x123 for reception. When the In-Counter and the Out-
Counter are equal again, the job is processed. All remaining CAN frames with this identifier, that are
already in the RX-FIFO of the Communication Window will still be sent to the PLC.

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 89 of 122

9.3.4 Example Program

This example uses SCL-Code to show an example implementation.

9.3.4.1 Data Types

The following data types need to be defined:

 CAN frames

TYPE "CAN_DATA"

VERSION : 0.1

 STRUCT

 id : UDInt;

 len : UInt;

 rtr : Bool;

 ext : Bool;

 cmd : Byte;

 dat : Array[0..7] of Byte;

 END_STRUCT;

END_TYPE

 Structure to interact with the Communication Window with a FIFO

TYPE "COMM_DATA"

VERSION : 0.1

 STRUCT

 cmd_inptr : UInt;

 cmd_outptr : UInt;

 rx_inptr : UInt;

 rx_outptr : UInt;

 rx_lost : UDInt;

 current_command : Byte;

 cmd_data : Array[0..32] of "CAN_DATA";

 rx_data : Array[0..32] of "CAN_DATA";

 END_STRUCT;

END_TYPE

 Communication Windows

TYPE "COMM_WINDOW"

VERSION : 0.1

 STRUCT

 id : Array[0..3] of Byte;

 data : Array[0..7] of Byte;

 len : Byte;

 "counter" : Byte;

 sub : Byte;

 cmd : Byte;

 END_STRUCT;

END_TYPE

 IEC Timer

DATA_BLOCK "timer0"

{InstructionName := 'IEC_TIMER';

 LibVersion := '1.0';

 S7_Optimized_Access := 'TRUE' }

AUTHOR : Simatic

FAMILY : IEC

NAME : IEC_TMR

VERSION : 1.0

NON_RETAIN

IEC_TIMER

BEGIN

END_DATA_BLOCK

Example

Page 90 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9.3.4.2 Data Blocks and Variables

A data block (DB) of type COMM_DATA needs to be defined.

 DATA_BLOCK "my_comm_data"

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

NON_RETAIN

"COMM_DATA"

BEGIN

END_DATA_BLOCK

Externally two global variables of the type ‘COMM_WINDOW’ are needed, which are mapped to the
PLC address of the Communication Window Input (comm_in) and Communication Window Output
(comm_out). Moreover, one variable of type integer called State is needed. The variables are
declared in the Default tag table (see Figure 40).

Figure 40: Default tag table

9.3.4.3 Function for Interaction with the Communication Window

The function to interact with the Communication Window is described in this chapter. It handles the
commands that should be sent to the gateway and incoming data from the gateway with two
separate FIFOs. Received frames are automatically stored in the FIFO while commands can be
sent to the gateway without dealing with the In-Counter and Out-Counter.

Parameter

Name Data type Description

init Bool Displays the first cycle of the PLC

in_window "COMM_WINDOW" The input window in the input memory of the PLC

out_window "COMM_WINDOW" The output window in the output memory of the PLC

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 91 of 122

The function must be called best in organization block OB1 with every cycle.

FUNCTION "com_window_handler" : Void

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

 VAR_INPUT

 init : Bool;

 END_VAR

 VAR_IN_OUT

 in_window : "COMM_WINDOW";

 out_window : "COMM_WINDOW";

 comm_data : "COMM_DATA";

 END_VAR

 VAR_TEMP

 l : Int;

 id_local : UDInt;

 ptr : UInt;

 END_VAR

BEGIN

 IF (#init = true) THEN

 #comm_data.cmd_inptr := 0;

 #comm_data.cmd_outptr := 0;

 #comm_data.rx_inptr := 0;

 #comm_data.rx_outptr := 0;

 #comm_data.rx_lost := 0;;

 #comm_data.current_command := 16#ff;

 #out_window.id[0] := 0;

 #out_window.id[1] := 0;

 #out_window.id[2] := 0;

 #out_window.id[3] := 0;

 FOR #l := 0 TO 7 DO

 #out_window.data[#l] := 0;

 END_FOR;

 #out_window.len := 0;

 #out_window.sub := 0;

 #out_window.cmd := 0;

 #out_window.counter := #in_window.counter;

 END_IF;

 IF (#comm_data.cmd_inptr <> #comm_data.cmd_outptr) THEN

 IF (#out_window.counter = #in_window.counter) THEN

 #id_local := #comm_data.cmd_data[#comm_data.cmd_outptr].id;

 CASE BYTE_TO_INT(#comm_data.cmd_data[#comm_data.cmd_outptr].cmd) OF

 1: // canWrite

 #out_window.cmd := 1;

 #out_window.sub := 0;

 #out_window.len := UINT_TO_BYTE(#comm_data.cmd_data[#comm_data.cmd_outptr].len);

 IF (#comm_data.cmd_data[#comm_data.cmd_outptr].ext) THEN

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 24) AND 16#0ff) OR 16#20;

 #out_window.id[3] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 16) AND 16#0ff);

 ;

 ELSE

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := 0;

 #out_window.id[3] := 0;

 END_IF;

 FOR #l := 0 TO 7 BY 1 DO

 #out_window.data[#l] := #comm_data.cmd_data[#comm_data.cmd_outptr].dat[#l];

 END_FOR;

 #comm_data.current_command := "comm_out".cmd;

 #out_window.counter := #out_window.counter + 1;

 4: // canIidAdd

 #out_window.cmd := 4;

 #out_window.sub := 0;

 #out_window.len := 0;

 IF (#comm_data.cmd_data[#comm_data.cmd_outptr].ext) THEN

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 24) AND 16#0ff) OR 16#20;

 #out_window.id[3] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 16) AND 16#0ff);

 ELSE

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := 0;

 #out_window.id[3] := 0;

 END_IF;

Example

Page 92 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

 #comm_data.current_command := "comm_out".cmd;

 #out_window.counter := #out_window.counter + 1;

 ;

 5: // canIdDelete

 #out_window.cmd := 5;

 #out_window.sub := 0;

 #out_window.len := 0;

 IF (#comm_data.cmd_data[#comm_data.cmd_outptr].ext) THEN

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 24) AND 16#0ff) OR 16#20;

 #out_window.id[3] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 16) AND 16#0ff);

 ELSE

 #out_window.id[0] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 8) AND 16#0ff);

 #out_window.id[1] := ULINT_TO_BYTE(SHR(IN := #id_local, N := 0) AND 16#0ff);

 #out_window.id[2] := 0;

 #out_window.id[3] := 0;

 END_IF;

 #comm_data.current_command := "comm_out".cmd;

 #out_window.counter := #out_window.counter + 1;

 ;

 ELSE // Statement section ELSE

 ;

 END_CASE;

 #comm_data.cmd_outptr := (#comm_data.cmd_outptr + 1) AND 31;

 END_IF;

 ELSE

 IF ("comm_in".counter = "comm_out".counter) THEN

 #out_window.cmd := 0;

 #comm_data.current_command := "comm_out".cmd;

 #out_window.counter := #out_window.counter + 1;

 IF ("comm_in".cmd = 4) THEN

 #ptr := #comm_data.rx_inptr;

 IF (((#ptr + 1) AND 31) <> #comm_data.rx_outptr) THEN

 #id_local := #in_window.id[2];

 #id_local := SHL_UDINT(IN := #id_local, N := 8);

 #id_local := #id_local OR #in_window.id[3];

 #id_local := SHL_UDINT(IN := #id_local, N := 8);

 #id_local := #id_local OR #in_window.id[0];

 #id_local := SHL_UDINT(IN := #id_local, N := 8);

 #id_local := #id_local OR #in_window.id[1];

 IF ((#id_local AND 16#20000000) <> 0) THEN

 #comm_data.rx_data[#ptr].id := #id_local AND 16#1fffffff;

 #comm_data.rx_data[#ptr].ext := true;

 ELSE

 #comm_data.rx_data[#ptr].id := #id_local AND 16#000007ff;

 #comm_data.rx_data[#ptr].ext := FALSE;

 END_IF;

 #comm_data.rx_data[#ptr].len := BYTE_TO_UINT(#in_window.len);

 FOR #l := 0 TO 7 DO

 IF (#l < #comm_data.rx_data[#ptr].len) THEN

 #comm_data.rx_data[#ptr].dat[#l] := #in_window.data[#l];

 ELSE

 #comm_data.rx_data[#ptr].dat[#l] := 0;

 END_IF;

 END_FOR;

 #comm_data.rx_data[#ptr].rtr := false;

 #comm_data.rx_inptr := (#comm_data.rx_inptr + 1) AND 31;

 ELSE

 #comm_data.rx_lost := #comm_data.rx_lost + 1;

 END_IF;

 END_IF;

 END_IF;

 END_IF;

END_FUNCTION

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 93 of 122

9.3.4.4 Function to add CAN Identifier

The following function can be used to enable a CAN identifier for reception.

FUNCTION "canIdAdd" : Bool

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

 VAR_INPUT

 id : UDInt;

 ext : Bool;

 END_VAR

 VAR_IN_OUT

 comm_data : "COMM_DATA";

 END_VAR

 VAR_TEMP

 ptr : UInt;

 id_local : UDInt;

 END_VAR

BEGIN

 #ptr := #comm_data.cmd_inptr;

 IF (((#ptr + 1) AND 31) = #comm_data.cmd_outptr) THEN

 #canIdAdd := false;

 RETURN;

 END_IF;

 IF (#ext = false) THEN

 #id_local := #id AND 16#000007ff;

 ELSE

 #id_local := #id AND 16#1fffffff;

 END_IF;

 #comm_data.cmd_data[#ptr].ext := #ext;

 #comm_data.cmd_data[#ptr].id := #id_local;

 #comm_data.cmd_data[#ptr].len := 0;

 #comm_data.cmd_data[#ptr].rtr := false;

 #comm_data.cmd_data[#ptr].dat[0] := 0;

 #comm_data.cmd_data[#ptr].dat[1] := 0;

 #comm_data.cmd_data[#ptr].dat[2] := 0;

 #comm_data.cmd_data[#ptr].dat[3] := 0;

 #comm_data.cmd_data[#ptr].dat[4] := 0;

 #comm_data.cmd_data[#ptr].dat[5] := 0;

 #comm_data.cmd_data[#ptr].dat[6] := 0;

 #comm_data.cmd_data[#ptr].dat[7] := 0;

 #comm_data.cmd_data[#ptr].cmd := 4;

 #comm_data.cmd_inptr := ((#ptr + 1) AND 31);

 #canIdAdd := true;

 RETURN ;

END_FUNCTION

Example

Page 94 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

9.3.4.5 Function to transmit CAN Frame

The following function can be used to transmit a CAN frame:

FUNCTION "canTx" : Bool

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

 VAR_INPUT

 id : UDInt;

 len : UInt;

 ext : Bool;

 rtr : Bool;

 data : Array[0..7] of Byte;

 END_VAR

 VAR_IN_OUT

 comm_data : "COMM_DATA";

 END_VAR

 VAR_TEMP

 ptr : UInt;

 id_local : UDInt;

 l : Int;

 END_VAR

BEGIN

 #ptr := #comm_data.cmd_inptr;

 IF (((#ptr + 1) AND 31) = #comm_data.cmd_outptr) THEN

 #canTx := false;

 RETURN;

 END_IF;

 IF (#ext = false) THEN

 #id_local := #id AND 16#000007ff;

 ELSE

 #id_local := #id AND 16#1fffffff;

 END_IF;

 #comm_data.cmd_data[#ptr].ext := #ext;

 #comm_data.cmd_data[#ptr].id := #id_local;

 #comm_data.cmd_data[#ptr].len := #len;

 #comm_data.cmd_data[#ptr].rtr := #rtr;

 FOR #l := 0 TO 7 DO

 IF ((#l < #len) AND (#rtr = false)) THEN

 #comm_data.cmd_data[#ptr].dat[#l] := #data[#l];

 ELSE

 #comm_data.cmd_data[#ptr].dat[#l] := 0;

 END_IF;

 END_FOR;

 #comm_data.cmd_data[#ptr].cmd := 1;

 #comm_data.cmd_inptr := ((#ptr + 1) AND 31);

 #canTx := true;

 RETURN;

END_FUNCTION

Example

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 95 of 122

9.3.4.6 Organization Block OB1

The following Organization Block OB1 uses a simple state machine to enable the CAN identifier 0x0,
0x80, 0x100, 0x102, 0x701 and 0x702 for reception.
After that CAN frames are sent. One CAN frame has the 11-bit identifier 0x00 and a length of 2 with
the data bytes 0x01 and 0xFF. The other one has the 29-bit identifier 0x11223344 and a length of 8
with the data bytes 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0.

The source code of the program is provided on request.

ORGANIZATION_BLOCK "Main"

TITLE = "Main Program Sweep (Cycle)"

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

 VAR_TEMP

 status : Bool;

 can_tx_data : Array[0..7] of Byte;

 END_VAR

BEGIN

 "com_window_handler"(init := #Initial_Call,

 in_window := "comm_in",

 out_window := "comm_out",

 comm_data := "my_comm_data");

 CASE "State" OF

 0: #status := true;

 "timer0".TON(IN := true, PT := T#1s, Q => #status);

 1: #status := "canIdAdd"(id := 16#0, ext := false, comm_data := "my_comm_data");

 2: #status := "canIdAdd"(id := 16#80, ext := false, comm_data := "my_comm_data");

 3: #status := "canIdAdd"(id := 16#101, ext := false, comm_data := "my_comm_data");

 4: #status := "canIdAdd"(id := 16#102, ext := false, comm_data := "my_comm_data");

 5: #status := "canIdAdd"(id := 16#701, ext := false, comm_data := "my_comm_data");

 6: #status := "canIdAdd"(id := 16#702, ext := false, comm_data := "my_comm_data");

 7: #status := "canIdAdd"(id := 16#0 , ext := true, comm_data := "my_comm_data");

 8:

 #can_tx_data[0] := 16#01;

 #can_tx_data[1] := 16#ff;

 #status := "canTx"(id := 16#702, len := 2, rtr := false, data:=#can_tx_data, ext := false,

comm_data := "my_comm_data");

 9:

 #can_tx_data[0] := 16#12;

 #can_tx_data[1] := 16#34;

 #can_tx_data[2] := 16#56;

 #can_tx_data[3] := 16#78;

 #can_tx_data[4] := 16#9a;

 #can_tx_data[5] := 16#bc;

 #can_tx_data[6] := 16#de;

 #can_tx_data[7] := 16#f0;

 #status := "canTx"(id := 16#11223344, len := 7, rtr := false, data := #can_tx_data, ext :=

true, comm_data := "my_comm_data");

 ELSE

 #status := false;

 END_CASE;

 IF (#status = true) THEN

 "State" := "State" + 1;

 END_IF;

END_ORGANIZATION_BLOCK

Technical Data

Page 96 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

10 Technical Data

Power supply voltage Nominal voltage 18 V/DC … 32 V/DC)
Current consumption (24 V, 20 °C): typical: 120 mA

Power consumption Typical: 4.5 W (FW 50% CPU Load and 24 V power supply)
Maximum: 5 W

Protective circuits Reverse voltage protection
Protection against transient overvoltages (triggering from 26 V)

Temperature range 0 °C... +50 °C ambient temperature

Humidity Max. 90%, non-condensing

Protection class IP20

Pollution degree Maximum permissible according to DIN EN 61131-2:
Pollution Degree 2

Housing Plastic housing for carrier rail mounting NS35/7,5 DIN EN 60715

Form factor /
Dimensions

Width: 22.5 mm, height: 99 mm, depth: 114.5 mm
(Without connectors)

Weight 130 g

Table 58: General Data of the module

CPU ARM Cortex A9, 1 GHz, AM4377, 32-bit

SDRAM 1 Gbyte

EEPROM 256 kBit

NOR Flash 512 Mbit

Table 59: CPU and Memory

10.1 General Technical Data

10.2 CPU and Memory

Technical Data

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 97 of 122

Name
Function,
Interfaces

Type

CAN CAN
5-pos. Phoenix Contact PCB header
MC 1,5/5-GF-3,81
with PCB connector FK-MCP 1,5/5-STF-3,81

PORT1
PROFINET Port 1
(EtherCAT IN)

Dual port RJ45 socket with integrated transformer and LEDs

PORT2
PROFINET Port 2
(EtherCAT OUT)

DIAG USB-Device Mini-USB socket, type B

24V 24V-power supply
4-pos. Phoenix Contact PCB header
MSTBO 2,5/ 4-G1L KMGY
with PCB connector FKCT 2,5/4-ST

Table 60: Connectors, accessible from outside

Number of PROFINET
interfaces

2 ports

Standard IEEE 802.3, 100BASE-TX,

Bit rate 10/100 Mbit/s

Connection Twisted Pair (compatible with IEEE 802.3), 100BASE-TX

Controller Integrated in CPU

Electrical isolation Via transformer, integrated in RJ-45 socket

Connector Dual port RJ-45 socket in the front panel with integrated LEDs
(Link- and Activity)

Table 61: Data of the PROFINET IO interface

Number 1

Standard USB Specification Rev. 2.0

Bit rate Max. 480 Mbit/s (Hi-speed)

Controller Integrated in CPU

Connector Mini-USB socket type B

Table 62: Data of the USB device interface

10.3 Connectors accessible from Outside

10.4 PROFINET IO Interface

10.5 DIAG Interface

Technical Data

Page 98 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Number of CAN interfaces CAN-PN/2 (C.2924.02): 1x CAN interface
CAN-PN/2-FD (C.2924.62): 1x CAN FD interface

CAN controller According to ISO 11898-1 (CAN 2.0 A/B)
CAN-PN/2 (C.2924.02): integrated in CPU
CAN-PN/2-FD (C.2924.62): esdACC in Intel® MAX® 10 FPGA

CAN protocol According to ISO 11898-1:2015:

Physical CAN Layer High-speed CAN interface according to ISO 11898-2:2016,
CAN-PN/2 (C.2924.02): Bit rate up to 1 Mbit/s
CAN-PN/2-FD (C.2924.62): Bit rate up to 8 Mbit/s

Electrical isolation Separation by means of optocouplers and DC/DC-converters

voltage over CAN isolation

(CAN to slot bracket/EARTH;
 CAN to Host/System Ground;
 CAN to CAN): 1kV DC @ 1s (I < 1 mA)

Bus termination Terminating resistor must be set externally, if required

Connector 5-pin PCB connector

Table 63: Data of the CAN interface

10.6 CAN/ CAN FD Interfaces

Connector Pin Assignments

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 99 of 122

11 Connector Pin Assignments

Device connector: Phoenix Contact PCB header MC 1,5/5-GF-3,81
Cable plug: Phoenix Contact PCB connector FK-MCP 1,5/5-STF-3,81,

Push-in spring connection, 3,81 mm pitch
 Phoenix Contact Order No.: 1851261, included in delivery
 For conductor connection and conductor cross section 1) see page 103.

Pin Position: Pin Assignment:

(Cable plug) Imprint Signal Pin

G CAN_GND 1

L CAN_L 2

Sh Shield 3

H CAN_H 4

● - 5

Signal Description:

CAN_L, CAN_H … CAN signal lines

CAN_GND … Reference potential of the local CAN physical layer

Shield … Pin for line shield connection (using hat rail mounting direct contact to the
mounting rail potential, if it is connected)

- … Reserved, do not connect!

Recommendation of an adapter cable from 5-pin cable plug (here Phoenix Contact
FK-MCP1,5/5-STF_3,81 with spring-cage-connection) to 9-pin DSUB:

The assignment of
the 9-pin DSUB-
connector and the
cable plug is
designed
according to
CiA 303 part 1.

1) For further technical data see Phoenix Contact website, PCB Connectors, Product list PCB connectors

11.1 CAN

Connector Pin Assignments

Page 100 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

DANGER
The CAN-PN/2 is a device of protection class III according to DIN EN IEC 61010-2-201
and may only be operated on supply circuits that offer sufficient protection against
dangerous voltages.

Device socket: Phoenix Contact PCB header MSTBO 2,5/4-G1L-KMGY
Cable plug: Phoenix Contact PCB connector FKCT 2,5/4-ST, 5.0 mm pitch,
 Push-in spring connection, included in the scope of delivery
 (Phoenix Contact order No.: 19 21 90 0)
 For conductor connection and conductor cross section 2) see page 103.

Pin Position on cable plug:

Pin Assignment:

Device housing label
 24V

. . M P

Connector label (none) (none) - +

Pin 1 2 3 4

Signal Do not
connect !

Do not
connect !

M24
(GND)

P24
(+ 24 V)

Please refer to the connecting diagram page 15.

NOTICE
Feeding through the +24V power supply voltage can cause damage on the modules.
It is not permitted to feed through the power supply voltage through this connector and to
supply the power supply voltage to another CAN module station!

Make absolutely sure to connect the cables correctly to the cable plug!
Use only suitable cables for the line plug.

Signal Description:

P24... Power supply voltage (18 V … 32 V)
M24... Reference potential

2) For further technical data see Phoenix Contact website, PCB Connectors, Product list PCB connectors

11.2 24 V Power Supply Voltage

Connector Pin Assignments

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 101 of 122

Device Connector: RJ45 socket, 8-pin

According to IEEE 802.3-2015,
“Table 25–2—Twisted-pair MDI contact assignments”

Pin Position:

Pin Assignment:

Pin Signal Meaning

1 Tx0+ (TxD+) Transmit Data +

2 Tx0- (TxD-) Transmit Data -

3 Rx0+ (RxD+) Receive Data +

4 - -

5 - -

6 Rx0- (RxD-) Receive Data -

7 - -

8 - -

S Shield

Signal Description:

Tx0+/-, Rx0+/- ... Ethernet data lines

- ... reserved for future applications, do not connect!

Shield... case shield, connected with the front panel of the CAN-PN/2

NOTICE
Cables of category CAT5 or higher must be used to grant the function in networks with
100 Mbit/s. esd grants the EU conformity of the product if the wiring is carried out with
shielded twisted pair cables.

11.3 PROFINET IO

Connector Pin Assignments

Page 102 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

Device connector: USB 2.0 Mini-B receptacle, standard pinning

Pin Position:

 1
2
3
4
5

Pin Assignment:

Pin Signal

1 V
BUS

2 D-

3 D+

4 -

5 GND

Signal Description:

VBUS ... +5 V power supply voltage

D+, D-... Data USB 2.0, differential pair +/-

- Reserved (ID for USB-type). Do not connect!

GND... Reference potential

11.4 DIAG

Connector Pin Assignments

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 103 of 122

The following table contains an extract of the technical data of the cable plugs.

Characteristics

Connector Type3

Power Supply
Voltage 24 V

CAN-Connector

Connector type plug component FKCT 2,5/..-ST KMGY FK-MCP 1,5/5-STF-3,81

Connection method Push-in spring
connection

Push-in spring
connection

Stripping length 10 mm 9 mm

Conductor cross section rigid. 0.2 mm² … 2.5 mm² 0.14 mm² … 1.5 mm²

Conductor cross section flexible 0.2 mm² … 2.5 mm² 0.14 mm² … 1.5 mm²

Conductor cross section AWG 24 … 12 26 … 16

Conductor cross section flexible, with ferrule without
plastic sleeve

0.25 mm² … 2.5 mm² 0.25 mm² … 1.5 mm²

Conductor cross section flexible, with ferrule with
plastic sleeve

0.25 mm² … 2.5 mm² 0.25 mm² … 0.75 mm²

2 conductors with same cross section, stranded,
TWIN ferrules with plastic sleeve, min./max.

0.5 mm² … 1.5 mm² not allowed

3 Technical Data from Phoenix Contact website, printed circuit board connector, plug component

11.5 Conductor Connection/Conductor Cross Section

Correct Wiring of Electrically Isolated CAN Networks

Page 104 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

12 Correct Wiring of Electrically Isolated
CAN Networks

NOTICE
This chapter applies to CAN networks with bit rates up to 1 Mbit/s.
If you work with higher bit rates, as for example used for CAN FD, the information given in
this chapter must be examined for applicability in each individual case.
For further information refer to the CiA® CAN FD guidelines and recommendations
(https://www.can-cia.org/).

For the CAN wiring all applicable rules and regulations (EU, DIN), such as regarding electromagnetic
compatibility, security distances, cable cross-section or material, must be observed.

The flexibility in CAN network design is a major strength of the various extensions based on the
original CAN standard ISO 11898-2, such as CANopen®, ARINC825, DeviceNet® and NMEA2000.
However, taking advantage of this flexibility absolutely requires a network design that considers the
interactions of all network parameters.

In some cases, the CAN organizations have adapted the scope of CAN in their specifications to
enable applications outside the ISO 11898 standard. They have imposed system-level restrictions
on data rate, line length and parasitic bus loads.

However, when designing CAN networks, a margin must always be planned for signal losses over
the entire system and cabling, parasitic loads, network imbalances, potential differences against
earth potential, and signal integrities. Therefore, the maximum achievable number of nodes, bus
lengths and stub lengths may differ from the theoretically possible number!

esd has limited its recommendations for CAN wiring to the specifications of ISO 11898-2.
A description of the special features of the derived specifications CANopen, ARINC825, DeviceNet,
and NMEA2000 is omitted here

The consistent compliance with the ISO 11898-2 standard offers significant advantages:

● Reliable operation due to proven design specifications
● Minimization of error sources due to sufficient distance to the physical limits.
● Easy maintenance because there are no "special cases" to consider for future network

modifications and troubleshooting.

Of course, reliable networks can be designed according to the specifications of CANopen,
ARINC825, DeviceNet and NMEA2000, however it must be observed that it is strictly not
recommended to mix the wiring guidelines of the various specifications!

12.1 CAN Wiring Standards

https://www.can-cia.org/

Correct Wiring of Electrically Isolated CAN Networks

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 105 of 122

12.2.1 General Rules

NOTICE
esd grants the EU Conformity of the product if the CAN wiring is carried out with at least
single shielded single twisted pair cables that match the requirements of ISO 11898-2.
Single shielded double twisted pair cable wiring as described in chapter 12.3 ensures the
EU Conformity as well.

The following general rules for CAN wiring with single shielded single twisted pair cable should be
followed:

1 A suitable cable type with a wave impedance of about 120 Ω ±10% with an adequate conductor
cross-section (≥ 0.22 mm²) must be used. The voltage drop over the wire must be considered.

2 For light industrial environment use at least a two-wire CAN cable, the wires of which must be
assigned as follows:

•
•

Two twisted wires must be assigned to the data signals (CAN_H, CAN_L).
The cable shield must be connected to the reference potential (CAN_GND).

3 The reference potential CAN_GND must be connected to the functional earth (FE) at exactly
one point.

4 A CAN bus line must not branch (exception: short cable stubs) and must be terminated with the
characteristic impedance of the line (generally 120 Ω ±10%) at both ends (between the signals
CAN_L and CAN_H and not at CAN_GND).

5 Keep cable stubs as short as possible (l < 0.3 m).

6 Select a working combination of bit rate and cable length.

7 Keep away cables from disturbing sources. If this cannot be avoided, double shielded wires are
recommended.

Figure 41: CAN wiring for light industrial environment

12.2 Light Industrial Environment (Single Twisted Pair
Cable)

Correct Wiring of Electrically Isolated CAN Networks

Page 106 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

12.2.2 Cabling

• To connect CAN devices with just one CAN connector per net use a short stub (< 0.3 m)
and a T-connector (available as accessory). If these devices are located at the end of the
CAN network, the CAN terminator “CAN-Termination-DSUB9” can be used.

Figure 42: Example for proper wiring with single shielded single twisted pair wires

12.2.3 Branching

• In principle the CAN bus must be realized in a line. The nodes are connected to the main
CAN bus line via short cable stubs. This is normally realised by so called T-connectors. esd
offers the CAN-T-Connector (Order No.: C.1311.03)

• If a mixed application of single twisted and double twisted cables cannot be avoided,
ensure that the CAN_GND line is not interrupted!

• Deviations from the bus structure can be realized by using repeaters.

12.2.4 Termination Resistor

● A termination resistor must be connected at both ends of the CAN bus.
If an integrated CAN termination resistor is connected to the CAN interface at the end of the
CAN bus, this integrated termination must be used instead of an external CAN termination
resistor.

● 9-pole DSUB-termination connectors with integrated termination resistor and pin contacts
and socket contacts are available from esd (order no. C.1303.01).

● For termination of the CAN bus and grounding of the CAN_GND, DSUB terminators with
pin contacts (order no. C.1302.01) or socket contacts (order no. C.1301.01) and with
additional functional earth contact are available.

Correct Wiring of Electrically Isolated CAN Networks

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 107 of 122

12.3.1 General Rules

The following general rules for the CAN wiring with single shielded double twisted pair cable should
be followed:

1 A suitable cable type with a wave impedance of about 120 Ω ±10% with an adequate conductor
cross-section (≥ 0.22 mm²) must be used. The voltage drop over the wire must be considered.

2 For heavy industrial environment use a four-wire CAN cable, the wires of which must be
assigned as follows:

•
•
•

Two twisted wires must be assigned to the data signals (CAN_H, CAN_L) and
The other two twisted wires must be assigned to the reference potential (CAN_GND).
The cable shield must be connected to functional earth (FE) at least at one point.

3 The reference potential CAN_GND must be connected to the functional earth (FE) at exactly
one point.

4 A CAN bus line must not branch (exception: short cable stubs) and must be terminated with the
characteristic impedance of the line (generally 120 Ω ±10%) at both ends (between the signals
CAN_L and CAN_H and not to CAN_GND).

5 Keep cable stubs as short as possible (l < 0.3 m).

6 Select a working combination of bit rate and cable length.

7 Keep away CAN cables from disturbing sources. If this cannot be avoided, double shielded
cables are recommended.

Figure 43: CAN wiring for heavy industrial environment

12.3 Heavy Industrial Environment (Double Twisted Pair
Cable)

Correct Wiring of Electrically Isolated CAN Networks

Page 108 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

12.3.2 Device Cabling

Figure 44: Example of proper wiring with single shielded double twisted pair cables

12.3.3 Branching

● In principle, the CAN bus must be realized in a line. The nodes are connected to the main
CAN bus line via short cable stubs. This is usually realised via so called T-connectors.
When using esd's CAN-T-Connector (order no.: C.1311.03) in heavy industrial environment
and with four-wire twisted cables, it must be noted that the shield potential of the conductive
DSUB housing is not looped through this type of T-connector. This interrupts the shielding.
Therefore, you must take appropriate measures to connect the shield potentials, as
described in the manual of the CAN-T-Connector. For further information on this, please
refer to the CAN-T-Connector Manual (order no.: C.1311.21).
Alternatively, a T-connector can be used, in which the shield potential is looped through, for
example the DSUB9 connector from ERNI (ERBIC CAN BUS MAX, order no.:154039).

● If a mixed application of single twisted and double twisted cables cannot be avoided,
ensure that the CAN_GND line is not interrupted!

● Deviations from the bus structure can be realized by using repeaters.

12.3.4 Termination Resistor

● A termination resistor must be connected at both ends of the CAN bus.
If an integrated CAN termination resistor is connected to the CAN interface at the end of the
CAN bus, this integrated termination must be used instead of an external CAN termination
resistor.

● 9-pole DSUB-termination connectors with integrated termination resistor and pin contacts
and socket contacts are available from esd (order no. C.1303.01).

● 9-pole DSUB-connectors with integrated switchable termination resistor can be ordered for
example from ERNI (ERBIC CAN BUS MAX, socket contacts, order no.:154039).

Correct Wiring of Electrically Isolated CAN Networks

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 109 of 122

● For CAN devices with electrical isolation the CAN_GND must be connected between the
CAN devices.

● CAN_GND should be connected to the earth potential (FE) at exactly one point of the
network.

● Each CAN interface with electrical connection to earth potential acts as a grounding point.
For this reason, it is recommended not to connect more than one CAN device with electrical
connection to earth potential.

● Grounding can be done for example at a termination connector (e.g. order no. C.1302.01 or
C.1301.01).

The bus length of a CAN network must be adapted to the set bit rate. The maximum values result
from the fact that the time required for a bit to be transmitted in the bus system is shorter the higher
the transmission rate is. However, as the line length increases, so does the time it takes for a bit to
reach the other end of the bus. It should be noted that the signal is not only transmitted, but the
receiver must also respond to the transmitter within a certain time. The transmitter, in turn, must
detect any change in bus level from the receiver(s). Delay times on the line, the transceiver, the
controller, oscillator tolerances and the set sampling time must be considered.
In the following table you will find guide values for the achievable bus lengths at certain bit rates.

Bit Rate
[kbit/s]

Theoretical values of
reachable wire length

with esd interface lmax

[m]

CiA recommendations
(07/95) for reachable

wire lengths lmin

[m]

Standard values of
the cross-section

according to
CiA 303-1

 [mm²]

1000 37 25 0.25 to 0.34

800

666. 6
500

333.3
250

 59
80

130
180
270

 50
-

100
-

250

0.34 to 0.6

166
125

 420
570

 -
500

 0.5 to 0.6

100

83.3

66.6
50

 710
850

1000
1400

 650
-
-

1000

0.75 to 0.8

33.3
20

12.5
10

 2000
3600
5400
7300

 -
2500

-
5000

not defined in

CiA 303-1

Table 64: Recommended cable lengths at typical bit rates (with esd-CAN interfaces)

Optical couplers are delaying the CAN signals. esd modules typically achieve a wire length of 37 m
at 1 Mbit/s within a proper terminated CAN network without impedance disturbances, such as those
caused by cable stubs > 0.3 m.

12.4 Electrical Grounding

12.5 Bus Length

Correct Wiring of Electrically Isolated CAN Networks

Page 110 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

NOTICE
Please note that the cables, connectors, and termination resistors used in CANopen
networks shall meet the requirements defined in ISO 11898-2.
In addition, further recommendations of the CiA, like standard values of the cross
section, depending on the cable length, are described in the CiA recommendation
CiA 303-1 (see CiA 303 CANopen Recommendation - Part 1: “Cabling and connector pin
assignment,” Version 1.9.0, Table 2). Recommendations for pin-assignment of the
connectors are described in CiA 106: “Connector pin-assignment recommendations ”.

esd recommends the following two-wire and four-wire cable types for CAN network design. These
cable types are used by esd for ready-made CAN cables, too.

12.6.1 Cable for Light Industrial Environment Applications (Two-Wire)

Manufacturer Cable Type

U.I. LAPP GmbH
Schulze-Delitzsch-Straße 25
70565 Stuttgart
Germany
www.lappkabel.com

e.g.
UNITRONIC ®-BUS CAN UL/CSA (1x 2x 0.22)
(UL/CSA approved) Part No.: 2170260

UNITRONIC ®-BUS-FD P CAN UL/CSA (1x 2x 0.25)
(UL/CSA approved) Part No.: 2170272

ConCab GmbH
Äußerer Eichwald
74535 Mainhardt
Germany
www.concab.de

e. g.
BUS-PVC-C (1x 2x 0.22 mm²) Order No.: 93 022 016 (UL appr.)

BUS-Schleppflex-PUR-C (1x 2x 0.25 mm²) Order No.: 94 025 016 (UL appr.)

12.6.2 Cable for Heavy Industrial Environment Applications (Four-Wire)

Manufacturer Cable Type

U.I. LAPP GmbH
Schulze-Delitzsch-Straße 25
70565 Stuttgart
Germany
www.lappkabel.com

e.g.
UNITRONIC ®-BUS CAN UL/CSA (2x 2x 0.22)
(UL/CSA approved) Part No.: 2170261

UNITRONIC ®-BUS-FD P CAN UL/CSA (2x 2x 0.25)
(UL/CSA approved) Part No.: 2170273

ConCab GmbH
Äußerer Eichwald
74535 Mainhardt
Germany
www.concab.de

e. g.
BUS-PVC-C (2x 2x 0.22 mm²) Order No.: 93 022 026 (UL appr.)

BUS-Schleppflex-PUR-C (2x 2x 0.25 mm²) Order No.: 94 025 026 (UL appr.)

INFORMATION
Ready-made CAN cables with standard or custom length can be ordered from esd.

12.6 Examples for CAN Cables

CAN Troubleshooting Guide

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 111 of 122

13 CAN Troubleshooting Guide

The CAN Troubleshooting Guide is a guide to finding and eliminating the most common problems
and errors when setting up CAN bus networks and CAN-based systems.

Figure 45: Simplified diagram of a CAN network

Termination
The bus termination is used to match impedance of a node to the impedance of the bus line used. If
the impedance is mismatched, the transmitted signal is not completely absorbed by the load and will
be partially reflected back into the transmission line.
If the impedances of the sources, transmission lines and loads are equal, the reflections are avoided.
This test measures the total resistance of the two CAN data lines and the connected terminating
resistors.

To test this, please proceed as follows:

1. Switch off the supply voltages of all connected CAN nodes.

2. Measure the DC resistance between CAN_H and CAN_L at one end of
the network, measuring point (see figure above).

Expected result:
The measured value should be between 50 Ω and 70 Ω.

Possible causes of error:

▪ If the determined value is below 50 Ω, please make sure that:

• There is no short circuit between CAN_H and CAN_L wiring.

• No more than two terminating resistors are connected.

• The transceivers of the individual nodes are not defective.

▪ If the determined value is higher than 70 Ω, please make sure that:

• All CAN_H and CAN_L lines are correctly connected.

• Two terminating resistors of 120 Ω each are connected to your CAN network (one at each
end).

CAN Troubleshooting Guide

Page 112 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

The CAN_GND of the CAN network should be connected to the functional earth potential (FE) at
only one point. This test indicates whether the CAN_GND is grounded at one or more points.

Please note that this test can only be performed with electrically isolated CAN nodes.

To test this, please proceed as follows:

1.

2.

Disconnect the CAN_GND from the earth
potential (FE).

Measure the DC resistance between
CAN_GND and earth potential (see figure
on the right).

Do not forget to reconnect CAN_GND to earth
potential after the test!

Figure 46: Simplified schematic diagram

of ground test measurement

Expected result:
The measured resistance should be greater than 1 MΩ. If it is smaller, please search for additional
grounding of the CAN_GND wires.

A CAN bus might possibly still be able to transmit data even if CAN_GND and CAN_L are short-
circuited. However, this will usually cause the error rate to rise sharply.
Ensure that there is no short circuit between CAN_GND and CAN_L!

Each node contains a CAN transceiver that outputs differential signals. When the network
communication is idle the CAN_H and CAN_L voltages are approximately 2.5 V measured to
CAN_GND. Defective transceivers can cause the idle voltages to vary and disrupt network
communication.

To test for defective transceivers, please proceed as follows:

1. Switch on all supply voltages.

2. Terminate all network communication.

3. Measure the DC voltage between CAN_H and CAN_GND, measuring point .
(See “Simplified diagram of a CAN network” on previous page).

4. Measure the DC voltage between CAN_L and CAN_GND, measuring point .
(See “Simplified diagram of a CAN network” on previous page).

Expected result:
The measured voltage should be between 2.0 V and 3.0 V.

>1M

CAN_H

CAN_GND

CAN_L

functional earth

(FE)

13.1 Electrical Grounding

13.2 Short Circuit in CAN Wiring

13.3 Correct Voltage Levels on CAN_H and CAN_L

CAN Troubleshooting Guide

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 113 of 122

Possible causes of error:

▪ If the voltage is lower than 2.0 V or higher than 3.0 V, it is possible that one or more nodes
have defective transceivers.

• If the voltage is lower than 2.0 V, please check the connections of the CAN_H and
CAN_L lines.

▪ To find a node with a defective transceiver within a network, please check individually the
resistances of the CAN transceivers of the nodes (see next section).

CAN transceivers have circuits that control CAN_H and CAN_L. Experience shows that electrical
damage can increase the leakage current in these circuits.

To measure the current leakage through the CAN circuits, please use an ohmmeter and
proceed as follows:

1. Switch off the node and disconnect it from the CAN network.
(See figure below.)

2. Measure the DC resistance between CAN_H and CAN_GND, measuring point
(See figure below.)

3. Measure the DC resistance between CAN_L and CAN_GND, measuring point
(See figure below.)

Figure 47: Measuring the internal resistance of CAN transceivers

Expected result:
The measured resistance should be greater than 10 kΩ for each measurement.

Possible causes of error:

▪ If the resistance is significantly lower, the CAN transceiver may be defective.

▪ Another indication of a defective CAN transceiver is a very high deviation of the two measured
input resistances (>> 200 %).

If you have followed the troubleshooting steps in this troubleshooting guide and still cannot find a
solution to your problem, our support team can help.
Please contact our support by email to support@esd.eu or by phone +49-511-37298-130.

13.4 CAN Transceiver Resistance Test

13.5 Support by esd

mailto:support@esd.eu

References

Page 114 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

14 References

(1) IEEE Standard for Ethernet, IEEE Std 802.3™-2015, IEEE Standards Association,
New York, USA,

Software Licenses

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 115 of 122

15 Software Licenses

NOTICE
The software used for the CAN-PN/2 from esd and from third parties is subject to licenses.
You must read and accept these license conditions before the installation!

The license terms of esd (esd electronics License Conditions) and of 3rd parties (3rd Party Licenses)
are displayed and installed on your system during installation via the installation program (CAN-
PN/2(-FD)_X_X_X.exe (see chapter 4.2).
You can also download the licenses from our website, see the following chapters.

Lizenz-Name

License Conditions for Siemens Profinet Stack

Apache-2.0

BSD-2-Clause

BSD-3-Clause

BSD-4-Clause

bzip2-1.0.4

GPL-2.0

GPL-3.0

GPL-3.0-with-GCC-exception

ISC

LGPL-2.0

LGPL-2.1

LGPL-3.0

MIT

Spencer-94

TI-TFL

TI-TSPA

Unicode-DFS-2016

15.2.1 Yocto-Linux License Modules

PACKAGE NAME: amx3-cm3
PACKAGE VERSION: 1.9.2
RECIPE NAME: amx3-cm3
LICENSE: TI-TSPA

PACKAGE NAME: base-files
PACKAGE VERSION: 3.0.14
RECIPE NAME: base-files
LICENSE: GPL-2.0-only

PACKAGE NAME: base-passwd
PACKAGE VERSION: 3.5.29
RECIPE NAME: base-passwd
LICENSE: GPL-2.0-only

PACKAGE NAME: bash
PACKAGE VERSION: 5.1.16
RECIPE NAME: bash
LICENSE: GPL-3.0-or-later

PACKAGE NAME: busybox
PACKAGE VERSION: 1.35.0
RECIPE NAME: busybox
LICENSE: GPL-2.0-only & bzip2-
1.0.4

PACKAGE NAME: busybox-
syslog
PACKAGE VERSION: 1.35.0
RECIPE NAME: busybox
LICENSE: GPL-2.0-only & bzip2-
1.0.4

PACKAGE NAME: busybox-
udhcpc
PACKAGE VERSION: 1.35.0
RECIPE NAME: busybox
LICENSE: GPL-2.0-only & bzip2-
1.0.4

PACKAGE NAME: busybox-
udhcpd
PACKAGE VERSION: 1.35.0
RECIPE NAME: busybox
LICENSE: GPL-2.0-only & bzip2-
1.0.4

PACKAGE NAME: coreutils
PACKAGE VERSION: 9.0
RECIPE NAME: coreutils
LICENSE: GPL-3.0-or-later

PACKAGE NAME: coreutils-stdbuf
PACKAGE VERSION: 9.0
RECIPE NAME: coreutils
LICENSE: GPL-3.0-or-later
PACKAGE NAME: eudev
PACKAGE VERSION: 3.2.10
RECIPE NAME: eudev

LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: glibc
PACKAGE VERSION: 2.35
RECIPE NAME: glibc
LICENSE: GPL-2.0-only & LGPL-
2.1-only

PACKAGE NAME: gmp
PACKAGE VERSION: 6.2.1
RECIPE NAME: gmp
LICENSE: GPL-2.0-or-later |
LGPL-3.0-or-later

PACKAGE NAME: gnupg
PACKAGE VERSION: 2.3.4
RECIPE NAME: gnupg
LICENSE: GPL-3.0-only & LGPL-

3.0-only

PACKAGE NAME: gnupg-gpg
PACKAGE VERSION: 2.3.4
RECIPE NAME: gnupg
LICENSE: GPL-3.0-only & LGPL-
3.0-only

PACKAGE NAME: gnutls
PACKAGE VERSION: 3.7.4
RECIPE NAME: gnutls
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: init-ifupdown
PACKAGE VERSION: 1.0
RECIPE NAME: init-ifupdown
LICENSE: GPL-2.0-only

PACKAGE NAME: init-system-

helpers-service
PACKAGE VERSION: 1.62
RECIPE NAME: init-system-
helpers
LICENSE: BSD-3-Clause & GPL-
2.0-only

PACKAGE NAME: initscripts
PACKAGE VERSION: 1.0
RECIPE NAME: initscripts
LICENSE: GPL-2.0-only

PACKAGE NAME: initscripts-
functions
PACKAGE VERSION: 1.0
RECIPE NAME: initscripts
LICENSE: GPL-2.0-only

PACKAGE NAME: inotify-tools

15.1 3rd Party Software License Terms

15.2 Licence Conditions of the Software Modules

https://esd.eu/fileadmin/esd/software/licenses/proprietary/README_OSS-TEMPLATE_2011-09_English.htm
https://esd.eu/fileadmin/esd/software/licenses/osl/Apache-2.0.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/BSD-2-Clause.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/BSD-3-Clause.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/BSD-4-Clause.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/bzip2-1.0.4.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/GPL-2.0.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/GPL-3.0.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/GPL-3.0-with-GCC-exception.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/ISC.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/LGPL-2.0.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/LGPL-2.1.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/LGPL-3.0.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/MIT.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/Spencer-94.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/TI-TFL.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/TI-TSPA.txt
https://esd.eu/fileadmin/esd/software/licenses/osl/Unicode-DFS-2016.txt

Software Licenses

Page 116 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

PACKAGE VERSION: 3.22.1.0
RECIPE NAME: inotify-tools
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-base
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-
devicetree
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-image
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-image-
fitimage
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
auth-rpcgss-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
cdc-acm-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
dwc3-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
dwc3-omap-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
ehci-hcd-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
ehci-omap-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
ehci-platform-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
g-ether-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
g-mass-storage-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
irq-pruss-intc-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
libcomposite-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt

LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
mq-deadline-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
nfsv2-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
nfsv3-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
nfsv4-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
ohci-hcd-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
oid-registry-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
phy-generic-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
pru-rproc-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
prueth-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
pruss-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
roles-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
scsi-mod-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
sd-mod-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
tun-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
u-ether-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt

LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
uas-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
udc-core-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
uio-module-drv-5.4.28-rt19+
PACKAGE VERSION:
2.3.1.0+gitAUTOINC+78c535afe8
RECIPE NAME: uio-module-drv
LICENSE: BSD-3-Clause

PACKAGE NAME: kernel-module-
uio-pruss-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-common-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-f-ecm-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-f-ecm-subset-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-f-eem-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-f-mass-storage-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-f-rndis-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-otg-fsm-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usb-storage-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
usbcore-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
xhci-hcd-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-module-
xhci-plat-hcd-5.4.28-rt19+
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt

LICENSE: GPL-2.0-only

PACKAGE NAME: kernel-
modules
PACKAGE VERSION:
5.4.28+gitAUTOINC+c3dd64420d
RECIPE NAME: linux-ti-staging-rt
LICENSE: GPL-2.0-only

PACKAGE NAME: kmod
PACKAGE VERSION: 29
RECIPE NAME: kmod
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: ldconfig
PACKAGE VERSION: 2.35
RECIPE NAME: glibc
LICENSE: GPL-2.0-only & LGPL-
2.1-only

PACKAGE NAME: ldd
PACKAGE VERSION: 2.35
RECIPE NAME: glibc
LICENSE: GPL-2.0-only & LGPL-
2.1-only

PACKAGE NAME: libarchive
PACKAGE VERSION: 3.6.1
RECIPE NAME: libarchive
LICENSE: BSD-2-Clause

PACKAGE NAME: libassuan
PACKAGE VERSION: 2.5.5
RECIPE NAME: libassuan
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: libattr
PACKAGE VERSION: 2.5.1
RECIPE NAME: attr
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: libcap
PACKAGE VERSION: 2.63
RECIPE NAME: libcap
LICENSE: BSD-3-Clause | GPL-
2.0-only

PACKAGE NAME: libcap-ng
PACKAGE VERSION: 0.8.2
RECIPE NAME: libcap-ng
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: libcrypto
PACKAGE VERSION: 3.0.3
RECIPE NAME: openssl
LICENSE: Apache-2.0

PACKAGE NAME: libgcc
PACKAGE VERSION: 11.2.0
RECIPE NAME: libgcc
LICENSE: GPL-3.0-with-GCC-
exception

PACKAGE NAME: libgcrypt
PACKAGE VERSION: 1.9.4
RECIPE NAME: libgcrypt
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: libgpg-error
PACKAGE VERSION: 1.44
RECIPE NAME: libgpg-error
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: libidn2
PACKAGE VERSION: 2.3.2
RECIPE NAME: libidn2
LICENSE: (GPL-2.0-or-later |
LGPL-3.0-only) & Unicode-DFS-
2016

PACKAGE NAME: libinotifytools
PACKAGE VERSION: 3.22.1.0
RECIPE NAME: inotify-tools
LICENSE: GPL-2.0-only

PACKAGE NAME: libkmod
PACKAGE VERSION: 29
RECIPE NAME: kmod
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: libksba
PACKAGE VERSION: 1.6.0
RECIPE NAME: libksba
LICENSE: GPL-2.0-or-later |
LGPL-3.0-or-later

PACKAGE NAME: libopkg
PACKAGE VERSION: 0.5.0
RECIPE NAME: opkg
LICENSE: GPL-2.0-or-later

PACKAGE NAME: libsolv

PACKAGE VERSION: 0.7.22
RECIPE NAME: libsolv
LICENSE: BSD-3-Clause

PACKAGE NAME: libstdc++
PACKAGE VERSION: 11.2.0
RECIPE NAME: gcc-runtime
LICENSE: GPL-3.0-with-GCC-
exception

PACKAGE NAME: libubootenv
PACKAGE VERSION: 0.3.2
RECIPE NAME: libubootenv
LICENSE: LGPL-2.1-only

PACKAGE NAME: libubootenv-bin
PACKAGE VERSION: 0.3.2
RECIPE NAME: libubootenv
LICENSE: LGPL-2.1-only

PACKAGE NAME: libunistring
PACKAGE VERSION: 1.0
RECIPE NAME: libunistring
LICENSE: LGPL-3.0-or-later |
GPL-2.0-or-later

PACKAGE NAME: libxcrypt
PACKAGE VERSION: 4.4.28
RECIPE NAME: libxcrypt
LICENSE: LGPL-2.1-only

PACKAGE NAME: libzstd
PACKAGE VERSION: 1.5.2
RECIPE NAME: zstd
LICENSE: BSD-3-Clause & GPL-
2.0-only

PACKAGE NAME: lmsensors-
config-libsensors
PACKAGE VERSION: 1.0
RECIPE NAME: lmsensors-config
LICENSE: MIT

PACKAGE NAME: lmsensors-
libsensors
PACKAGE VERSION: 3.6.0
RECIPE NAME: lmsensors
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: lmsensors-
sensors
PACKAGE VERSION: 3.6.0
RECIPE NAME: lmsensors
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later

PACKAGE NAME: lsof
PACKAGE VERSION: 4.94.0
RECIPE NAME: lsof
LICENSE: Spencer-94

PACKAGE NAME: lzo
PACKAGE VERSION: 2.10
RECIPE NAME: lzo
LICENSE: GPL-2.0-or-later

PACKAGE NAME: memtool
PACKAGE VERSION: 2018.03.0
RECIPE NAME: memtool
LICENSE: GPLv2

PACKAGE NAME: modutils-
initscripts
PACKAGE VERSION: 1.0
RECIPE NAME: modutils-
initscripts
LICENSE: MIT

PACKAGE NAME: mtd-utils
PACKAGE VERSION: 2.1.4
RECIPE NAME: mtd-utils
LICENSE: GPL-2.0-or-later

PACKAGE NAME: mtd-utils-ubifs
PACKAGE VERSION: 2.1.4
RECIPE NAME: mtd-utils
LICENSE: GPL-2.0-or-later

PACKAGE NAME: ncurses-
libncurses
PACKAGE VERSION: 6.3
RECIPE NAME: ncurses
LICENSE: MIT

PACKAGE NAME: ncurses-
libncursesw
PACKAGE VERSION: 6.3
RECIPE NAME: ncurses
LICENSE: MIT

PACKAGE NAME: ncurses-libtinfo
PACKAGE VERSION: 6.3
RECIPE NAME: ncurses
LICENSE: MIT

PACKAGE NAME: ncurses-
terminfo-base
PACKAGE VERSION: 6.3
RECIPE NAME: ncurses
LICENSE: MIT

PACKAGE NAME: netbase
PACKAGE VERSION: 6.3
RECIPE NAME: netbase
LICENSE: GPL-2.0-only

PACKAGE NAME: nettle
PACKAGE VERSION: 3.7.3
RECIPE NAME: nettle
LICENSE: LGPL-3.0-or-later |
GPL-2.0-or-later

PACKAGE NAME: npth
PACKAGE VERSION: 1.6
RECIPE NAME: npth
LICENSE: LGPL-2.0-or-later

PACKAGE NAME: openssh
PACKAGE VERSION: 8.9p1
RECIPE NAME: openssh
LICENSE: BSD-2-Clause & BSD-
3-Clause & ISC & MIT

PACKAGE NAME: openssh-
keygen
PACKAGE VERSION: 8.9p1
RECIPE NAME: openssh
LICENSE: BSD-2-Clause & BSD-
3-Clause & ISC & MIT

PACKAGE NAME: openssh-scp
PACKAGE VERSION: 8.9p1
RECIPE NAME: openssh
LICENSE: BSD-2-Clause & BSD-
3-Clause & ISC & MIT

PACKAGE NAME: openssh-ssh
PACKAGE VERSION: 8.9p1
RECIPE NAME: openssh
LICENSE: BSD-2-Clause & BSD-
3-Clause & ISC & MIT

PACKAGE NAME: openssh-sshd
PACKAGE VERSION: 8.9p1
RECIPE NAME: openssh
LICENSE: BSD-2-Clause & BSD-
3-Clause & ISC & MIT

PACKAGE NAME: openssl-conf
PACKAGE VERSION: 3.0.3
RECIPE NAME: openssl
LICENSE: Apache-2.0

PACKAGE NAME: openssl-ossl-
module-legacy
PACKAGE VERSION: 3.0.3
RECIPE NAME: openssl
LICENSE: Apache-2.0

PACKAGE NAME: opkg
PACKAGE VERSION: 0.5.0
RECIPE NAME: opkg
LICENSE: GPL-2.0-or-later

PACKAGE NAME: opkg-arch-
config
PACKAGE VERSION: 1.0
RECIPE NAME: opkg-arch-config
LICENSE: MIT

PACKAGE NAME: os-release
PACKAGE VERSION: 1.0
RECIPE NAME: os-release
LICENSE: MIT

PACKAGE NAME: packagegroup-
core-boot
PACKAGE VERSION: 1.0
RECIPE NAME: packagegroup-
core-boot
LICENSE: MIT

PACKAGE NAME: packagegroup-
core-ssh-openssh
PACKAGE VERSION: 1.0
RECIPE NAME: packagegroup-
core-ssh-openssh
LICENSE: MIT

PACKAGE NAME: pinentry
PACKAGE VERSION: 1.2.0
RECIPE NAME: pinentry
LICENSE: GPL-2.0-only

PACKAGE NAME: procps
PACKAGE VERSION: 3.3.17
RECIPE NAME: procps
LICENSE: GPL-2.0-or-later &
LGPL-2.0-or-later

Software Licenses

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 117 of 122

PACKAGE NAME: procps-lib
PACKAGE VERSION: 3.3.17
RECIPE NAME: procps
LICENSE: GPL-2.0-or-later &
LGPL-2.0-or-later

PACKAGE NAME: procps-ps
PACKAGE VERSION: 3.3.17
RECIPE NAME: procps
LICENSE: GPL-2.0-or-later &
LGPL-2.0-or-later

PACKAGE NAME: procps-sysctl
PACKAGE VERSION: 3.3.17
RECIPE NAME: procps
LICENSE: GPL-2.0-or-later &
LGPL-2.0-or-later

PACKAGE NAME: prueth-fw
PACKAGE VERSION: 2022.01
RECIPE NAME: prueth-fw
LICENSE: TI-TFL

PACKAGE NAME: pruhsr-fw
PACKAGE VERSION: 2022.01
RECIPE NAME: pruhsr-fw
LICENSE: TI-TFL

PACKAGE NAME: pruprp-fw
PACKAGE VERSION: 2022.01
RECIPE NAME: pruprp-fw
LICENSE: TI-TFL

PACKAGE NAME: readline
PACKAGE VERSION: 8.1.2
RECIPE NAME: readline
LICENSE: GPL-3.0-or-later

PACKAGE NAME: run-postinsts
PACKAGE VERSION: 1.0
RECIPE NAME: run-postinsts
LICENSE: MIT

PACKAGE NAME: shadow
PACKAGE VERSION: 4.11.1
RECIPE NAME: shadow
LICENSE: BSD-3-Clause

PACKAGE NAME: shadow-base
PACKAGE VERSION: 4.11.1
RECIPE NAME: shadow
LICENSE: BSD-3-Clause

PACKAGE NAME: shadow-
securetty
PACKAGE VERSION: 4.6
RECIPE NAME: shadow-securetty
LICENSE: MIT

PACKAGE NAME: sysvinit
PACKAGE VERSION: 3.01
RECIPE NAME: sysvinit
LICENSE: GPL-2.0-or-later

PACKAGE NAME: sysvinit-inittab
PACKAGE VERSION: 2.88dsf
RECIPE NAME: sysvinit-inittab
LICENSE: GPL-2.0-only

PACKAGE NAME: sysvinit-pidof
PACKAGE VERSION: 3.01
RECIPE NAME: sysvinit
LICENSE: GPL-2.0-or-later

PACKAGE NAME: tar
PACKAGE VERSION: 1.34
RECIPE NAME: tar
LICENSE: GPL-3.0-only

PACKAGE NAME: uio-module-drv
PACKAGE VERSION:
2.3.1.0+gitAUTOINC+78c535afe8
RECIPE NAME: uio-module-drv
LICENSE: BSD-3-Clause

PACKAGE NAME: update-
alternatives-opkg
PACKAGE VERSION: 0.5.0
RECIPE NAME: opkg-utils
LICENSE: GPL-2.0-or-later

PACKAGE NAME: update-rc.d
PACKAGE VERSION: 0.8
RECIPE NAME: update-rc.d
LICENSE: GPL-2.0-or-later

PACKAGE NAME: util-linux
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
addpart

PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-agetty
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
blkdiscard
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-blkid
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
blkzone
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
blockdev
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-cal
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-cfdisk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-chcpu
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
chmem
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
choom
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-chrt
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-col
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-colcrt
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-colrm
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux

LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
column
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
ctrlaltdel
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
delpart
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
dmesg
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-eject
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
fallocate
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-fdisk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
fincore
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-findfs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
findmnt
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-flock
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-fsck
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
fsck.cramfs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
fsfreeze

PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-fstrim
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-getopt
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
hardlink
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
hexdump
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
hwclock
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-ionice
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-ipcmk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-ipcrm
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-ipcs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-irqtop
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
isosize
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-kill
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-last
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
ldattach
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux

LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
libblkid
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: util-linux-
libfdisk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: util-linux-
libmount
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: util-linux-
libsmartcols
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: LGPL-2.1-or-later

PACKAGE NAME: util-linux-
libuuid
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux-libuuid
LICENSE: BSD-3-Clause

PACKAGE NAME: util-linux-logger
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-look
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
losetup
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-lsblk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-lscpu
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-lsipc
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-lsirq
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
lslocks
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
lslogins
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
lsmem
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &

LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-lsns
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
mcookie
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-mesg
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-mkfs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
mkfs.cramfs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
mkswap
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-more
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-mount
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
mountpoint
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-namei
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
nologin
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
nsenter
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-partx
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-pivot-
root
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &

Software Licenses

Page 118 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-prlimit
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
readprofile
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
rename
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-renice
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
resizepart
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-rev
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-rfkill
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
rtcwake
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-script
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
scriptlive
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
scriptreplay
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
setarch
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
setpriv

PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-setsid
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
setterm
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-sfdisk
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
sulogin
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
swaplabel
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
swapoff
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux

LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
swapon
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
switch-root
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
taskset
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
uclampset
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-ul
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
umount
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &

LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
unshare
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
utmpdump
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-uuidd
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
uuidgen
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
uuidparse
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-wall
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-wdctl
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
whereis
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
wipefs
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-write
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: util-linux-
zramctl
PACKAGE VERSION: 2.37.4
RECIPE NAME: util-linux
LICENSE: GPL-2.0-or-later &
LGPL-2.1-or-later & BSD-3-
Clause & BSD-4-Clause

PACKAGE NAME: zlog
PACKAGE VERSION: 1.2.15
RECIPE NAME: zlog
LICENSE: LGPL-2.1-only

15.2.2 Others

NAME: U-Boot
VERSION: v2020.01
LICENSE: GPL-2.0-or-later

NAME: PROFINET Stack-
Lizenzbedingungen
VERSION: 2011-08-01
LICENSE: License Conditions for
Siemens Profinet Stack

15.2.3 Open Source Software Copy

You may obtain a copy of the source code, if and as required under the license by sending a mail
to oss-compliance@esd.eu

You may also obtain a copy of the source code, if and as required under the license, by sending a
check or money of EUR 25.00 to:
esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover, Germany

mailto:oss-compliance@esd.eu

Declaration of Conformity

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 119 of 122

16 Declaration of Conformity

PNO Certificates

Page 120 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

17 PNO Certificates

17.1 CAN-PN/2 (C.2924.02)

PNO Certificates

CAN-PN/2 Manual Doc. No.: C.2924.21 / Rev 1.1 Page 121 of 122

17.2 CAN-PN/2-FD (C.2924.62)

Order Information

Page 122 of 122 Manual Doc. No.: C.2924.21 / Rev 1.1 CAN-PN/2

18 Order Information

Type Properties Order No.

CAN-PN/2 High-performance CAN to PROFINET-IO device gateway with
wide range of configuration options.
CAN interface according to ISO-11898 with galvanic isolation,
PROFINET physical layer 100BASE-TX according to IEEE802.3
with integrated switch for DIN rail mounting.
Comprehensive debugging options with CAN diagnostic software
CANreal via USB interface.

C.2924.02

CAN-PN/2-FD High-performance CAN FD to PROFINET-IO device gateway with
a wide range of configuration options.
CAN FD interface according to ISO-11898 with galvanic isolation,
PROFINET physical layer 100BASE-TX according to IEEE802.3
with integrated switch for DIN rail mounting.
Extensive debugging possibilities with CAN diagnostic software
CANreal via USB interface.

C.2924.62

Table 65: Order information hardware

PDF Manuals
For the availability of the manuals see table below.
Please download the manuals as PDF documents from our esd website https://www.esd.eu for free.

Manuals Order No.

CAN-PN/2-ME
Hardware and software manual for CAN-PN/2 and CAN-PN/2-
FD in English

C.2924.21

CAN-API-ME
NTCAN-API, Part 1: Application Developers Manual
NTCAN-API, Part 2: Driver Installation Guide

C.2001.21

Table 66: Available Manuals

Printed Manuals
If you need a printout of the manual additionally, please contact our sales team (sales@esd.eu) for
a quotation. Printed manuals may be ordered for a fee.

18.1 Hardware

18.2 Manuals

https://www.esd.eu/
mailto:sales@esd.eu

