

CAN-EtherCAT

EtherCAT-CAN Gateway

Manual

to Product C.2922.02

Manual • Doc. No.: C.2922.21 / Rev. 1.4

esd electronic system design gmbh Vahrenwalder Str. 207 • 30165 Hannover • Germany http://www.esd.eu Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

ΝΟΤΕ

The information in this document has been carefully checked and is believed to be entirely reliable. **esd** makes no warranty of any kind with regard to the material in this document, and assumes no responsibility for any errors that may appear in this document. In particular descriptions and technical data specified in this document may not be constituted to be guaranteed product features in any legal sense.

esd reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance or design.

All rights to this documentation are reserved by **esd**. Distribution to third parties, and reproduction of this document in any form, whole or in part, are subject to **esd'**s written approval.

© 2017 esd electronic system design gmbh, Hannover

esd electronic syster Vahrenwalder Str. 2 30165 Hannover Germany	m design gmbh 07
Phone:	+49-511-372 98-0
Fax:	+49-511-372 98-68
E-Mail:	info@esd.eu
Internet:	www.esd.eu

This manual contains important information and instructions on safe and efficient handling of the CAN-EtherCAT. Carefully read this manual before commencing any work and follow the instructions.

The manual is a product component, please retain it for future use.

Trademark Notices

CANopen® and CiA® are registered EU trademarks of CAN in Automation e.V. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. QNX® is a registered trademark of QNX Software Systems GmbH & Co. KG

All other trademarks, product names, company names or company logos used in this manual are reserved by their respective owners.

Document file:	I:\Texte\Doku\MANUALS\CAN\CAN-EtherCAT\Englisch\CAN-EtherCAT_manual_en_14.odt
Date of print:	2017-02-22
Document type number:	DOC0800
numper:	

Firmware version:	from Version 2.3
-------------------	------------------

Document History

The changes in the document listed below affect changes in the hardware as well as changes in the description of the facts, only.

Revision	Chapter	Changes versus previous version	Date
	-	Classification of Safety Information inserted and Safety messages revised	
	2.	Note concerning connectors inserted	
	3.	Safety message inserted	
	5.1.5.1	Figure about functional principle of the CAN-Rx-Message-Queues inserted and figure about transmission CAN-message -> EtherCAT-message	
	5.1.5.3	Figure about functional principle of the CAN-Tx-Message-Queues inserted and note to figure about transmission CAN-message -> EtherCAT-message	
1.3	5.1.4.1, 5.1.5.3, 5.1.5.4, 5.1.5.5 Note inserted - some write accesses only in PreOp		2016-04-08
	5.3.1	New chapter: "Firmware Update with the esd Workbench"	
	5.3.2	Figure 27 new- with Slave in Bootstrap	
	8,1, 8.2	Note to chapter 8.7 inserted	
	8.7	New chapter "Conductor Connection/Conductor Cross Sections"	
	9	Updated chapter 'Correct Wiring of Electrically Isolated CAN Networks'	
	10	Updated chapter 'CAN Troubleshooting Guide'	
	12	Declaration of Conformity new	
	13	Updated chapter 'Order Information'	
	-	Service Note revised	
1.4	5.1.5.1, 5.1.5.2	Chapter revised, Figure with sequence of Rx-Counter inserted	2017-02-22
	5.1.5.3, 5.1.5.4	Chapter revised, Figure with sequence of Tx-Counter inserted	

Technical details are subject to change without further notice.

Classification of Warning Messages and Safety Instructions

This manual contains noticeable descriptions, warning messages and safety instructions, which you must follow to avoid personal injuries and property damage.

This is the safety alert symbol.

It is used to alert you to potential personal injury hazards. Obey all safety messages and instructions that follow this symbol to avoid possible injury or death.

DANGER, WARNING, CAUTION

Depending on the hazard level the signal words DANGER, WARNING or CAUTION are used to highlight safety instructions and warning messages. These messages may also include a warning relating to property damage.

DANGER

Danger statements indicate a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Warning statements indicate a hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Caution statements indicate a hazardous situation that, if not avoided, could result in minor or moderate injury.

NOTICE

Notice statements are used to notify people on hazards that could result in things other than personal injury, like property damage.

NOTICE

This NOTICE statement contains the general mandatory sign and gives information that must be heeded and complied with for a safe use.

INFORMATION

INFORMATION

Notes to point out something important or useful.

Safety Instructions

- When working with the CAN-EtherCAT follow the instructions below and read the manual carefully to protect yourself from injury and the CAN-EtherCAT from damage.
- Do not use damaged or defective cables to connect the CAN-EtherCAT and follow the CAN wiring hints in chapter: "Correct Wiring of Electrically Isolated CAN Networks".
- In case of damages to the device, which might affect safety, appropriate and immediate measures must be taken, that exclude an endangerment of persons and domestic animals and property.
- Current circuits which are connected to the device have to be sufficiently protected against hazardous voltage (SELV according to EN 60950-1).
- The CAN-EtherCAT may only be driven by power supply current circuits, that are contact protected.

A power supply, that provides a safety extra-low voltage (SELV) according to EN 60950-1, complies with this conditions.

- Do not open the housing of the CAN-EtherCAT.
- The CAN-EtherCAT has to be securely installed before commissioning.
- Never let liquids get inside the CAN-EtherCAT. Otherwise, electric shocks or short circuits may result.
- Protect the CAN-EtherCAT from dust, moisture and steam.
- Protect the CAN-EtherCAT from shocks and vibrations.
- The CAN-EtherCAT may become warm during normal use. Always allow adequate ventilation around the CAN-EtherCAT and use care when handling.
- Do not operate the CAN-EtherCAT adjacent to heat sources and do not expose it to unnecessary thermal radiation. Ensure an ambient temperature as specified in the technical data.

DANGER

Hazardous Voltage - **Risk of electric shock** due to unintentional contact with uninsulated live parts with high voltages inside of the system into which the CAN-EtherCAT is to be integrated.

→ All current circuits which are connected to the device have to be sufficiently protected against hazardous voltage (SELV according to EN 60950-1) before you start with the installation.

Qualified Personal

This documentation is directed exclusively towards personal qualified in control and automation engineering.

The installation and commissioning of the product may only be carried out by qualified personal, which is authorized to put devices, systems and electric circuits into operation according to the applicable national standards of safety engineering.

Conformity

The CAN-EtherCAT is an industrial product and meets the demands of the EU regulations and EMC standards printed in the conformity declaration at the end of this manual.

Warning: In a residential, commercial or light industrial environment the CAN-EtherCAT may cause radio interference in which case the user may be required to take adequate measures.

Data Safety

This device is equipped with an Ethernet or other interface which is suitable to establish a connection to data networks. Depending on the software used on the device, these interfaces may allow attackers to compromise normal function, get illegal access or cause damage.

esd does not take responsibility for any damage caused by the device if operated at any networks. It is the responsibility of the device's user to take care that necessary safety precautions for the device's network interface are in place.

Intended Use

The intended use of the CAN-EtherCAT is the operation as CAN-EtherCAT gateway .

The guarantee given by esd does not cover damages which result from improper use, usage not in accordance with regulations or disregard of safety instructions and warnings.

- The CAN-EtherCAT is intended for indoor use.
- The operation of the CAN-EtherCAT in hazardous areas, or areas exposed to potentially explosive materials is not permitted.
- The operation of the CAN-EtherCAT for medical purposes is prohibited.

Service Note

The CAN-EtherCAT does not contain any parts that require maintenance by the user. The CAN-EtherCAT does not require any manual configuration of the hardware. Unauthorized intervention in the device voids warranty claims.

Disposal

Devices which have become defective in the long run have to be disposed in an appropriate way or have to be returned to the manufacturer for proper disposal. Please, make a contribution to environmental protection.

Typographical Conventions

Throughout this manual the following typographical conventions are used to distinguish technical terms.

Convention	Example
File and path names	/dev/null OF <stdio.h></stdio.h>
Function names	open()
Programming constants	NULL
Programming data types	uint32_t
Variable names	Count

Number Representation

All numbers in this document are base 10 unless designated otherwise. Hexadecimal numbers a followed by " $_{h}$ ". For example, 42 is represented as 2A_h in hexadecimal.

Table of contents

S	afety Instructions	5
1.	Overview	. 10
2.	Hardware Installation. 2.1 Connections.	.11 .11
	2.2 LEDs. 2.2.1 LED Assignment.	. 12 . 12
3.	Hardware Installation	. 14
4.	Configuration with an EtherCAT Configurator	.15
	4.1 CAN-EtherCAT Gateway Application Example	.15
	4.2 Configuration Sequence, esd EtherCAT Workbench	.16
	4.2.1 Setting the Baud Rate during Slave Initialization	.18
	4.2.2 EXPORTENI.	.19
	4.3 Configuration Sequence, becknoil Configuration	.20 26
		.20
5.	EtherCAT Communication	.27
	5.1 CAN Interface.	.27
	5.1.1 Object Dictionary Structure	.27
	5.1.1.1 Output Data	.27
	5.1.1.2 Input Data	.27
	5.1.2 Object Dictionary	.20 20
	5.1.3 Clandard Objects (1000h IFFFI)	.29 29
	5 1 3 2 Object 1008h Device Name	29
	5.1.3.3 Object 1009h Hardware Version.	.29
	5.1.3.4 Object 100Ah Software Version	.29
	5.1.3.5 Object 1018h Identity	. 30
	5.1.3.6 Object 1C00h Sync Manager Type	.31
	5.1.3.7 Object 1600h RPDO-Map CAN-Interface	.32
	5.1.3.8 Object 1A00h TPDO-Map CAN-Interface	.33
	5.1.3.9 Object 1A85h CAN Status PDO	.34
	5.1.3.10 Object 1C12h RPDO-Assign	.34
	5.1.3.11 ODject 1C130 TPDO-Assign	.34
	5.1.4 Manufacturer Specific Objects (20001-5FFFI)	. 30 35
	5 1 4 2 Object 2000h Statistics	.36
	5.1.5 Profile Specific Objects (6000h-FFFFh).	.38
	5.1.5.1 Object 6000h CAN Rx Message Queue	.38
	5.1.5.2 Object 6001h CAN Rx Extended Message Queue	.41
	5.1.5.3 Object 7000h CAN Tx Message Queue	.42
	5.1.5.4 Object 7001h CAN Tx Extended Message Queue	.45
	5.1.5.5 Object 8000h CAN-Interface-Configuration	.46
	5.1.5.6 Object 8001h CAN-Rx-Filter-Table	.47
	5.1.5.7 Object F000h Modular Device Profile	.48
	5.1.5.8 Object F108h CAN Status.	.48
	5.2 EoE	.49 5つ
	5.2 1 Switch Port Mode	. 52
	5.2.2 IP Port Mode	.52
	5.2.3 Local IP Port Mode.	.52
	5.2.4 Disabling EoE	.53

5.3 <mark>FoE</mark> 5.3.1 F 5.3.2 F	irmware Update with the esd Workbench irmware update with Beckhoff EtherCAT Configurator	54 54 56
6. Webserver 6.1 Firmwa 6.1.1 C	Interface are Update Overview	58 59 59
6.1.2 F 6.1.3 F 6.2 Status 6.2.1 C	AN Statistics.	60 62 63 63
7. Technical I 7.1 Genera 7.2 Microp 7.3 CAN Ir	Data al Technical Data rocessor and Memory	64 64 64 65
7.4 Ether 7.5 Ethern 7.6 DIAG,	AT Interface et Interface USB Interface ing System and License Information	65 65 66
8. Interfaces 8.1 24 V-P 8.2 CAN	and Connector Assignments	68 68 68
8.2.1 C 8.2.2 C 8.3 24 V a	AN Interface. AN Connector. nd CAN via InRailBus.	69 70 71
8.4 Ethern	et 100BASE-1X (IEEE 802.3)	72
8.6 DIAG 8.7 Condu	ctor Connection/Conductor Cross Sections	74 75
9. Correct Wi 9.2 Light II	ctor Connection/Conductor Cross Sections ring of Electrically Isolated CAN Networks ards concerning CAN Wiring ndustrial Environment (Single Twisted Pair Cable)	74 75 76 76 77
9.1 Standa 9.2 Light II 9.2 Light II 9.2.1 C 9.2.2 C 9.2.3 T	ctor Connection/Conductor Cross Sections ring of Electrically Isolated CAN Networks ards concerning CAN Wiring ndustrial Environment (Single Twisted Pair Cable) General Rules cabling ermination	74 75 76 76 77 77 78 78 78
8.6 DIAG 8.7 Condu 9. Correct Wi 9.1 Standa 9.2 Light II 9.2.1 C 9.2.2 C 9.2.3 T 9.3 Heavy 9.3.1 C 9.3.2 C 9.3.3 T	ctor Connection/Conductor Cross Sections ring of Electrically Isolated CAN Networks ards concerning CAN Wiring hdustrial Environment (Single Twisted Pair Cable) General Rules cabling ermination Industrial Environment (Double Twisted Pair Cable) General Rules General Rules ermination	74 75 76 77 77 77 78 78 79 79 80 80
8.6 DIAG 8.7 Condu 9. Correct Wi 9.1 Standa 9.2 Light II 9.2.1 C 9.2.2 C 9.2.3 T 9.3 Heavy 9.3.1 C 9.3.2 D 9.3.2 D 9.3.3 T 9.4 Electric 9.5 Bus Le 9.6 Examp 9.6 1 C	ctor Connection/Conductor Cross Sections. ring of Electrically Isolated CAN Networks. ards concerning CAN Wiring. hdustrial Environment (Single Twisted Pair Cable). General Rules. cabling. ermination. Industrial Environment (Double Twisted Pair Cable). General Rules. Device Cabling. ermination. cal Grounding. ength. les for CAN Cables. cable for light industrial Environment Applications (Two-Wire)	74 75 76 77 77 78 79 79 80 80 81 81 82 82
8.6 DIAG 8.7 Condu 9. Correct Wi 9.1 Standa 9.2 Light In 9.2.1 G 9.2.2 G 9.2.3 T 9.3 Heavy 9.3.1 G 9.3.2 D 9.3.3 T 9.4 Electric 9.5 Bus Le 9.6 Examp 9.6.1 G 9.6.2 C	ctor Connection/Conductor Cross Sections	74 75 76 76 77 78 78 79 79 79 80 80 81 81 82 82 82 82 82
 8.6 DIAG 8.7 Condu 9. Correct Wi 9.1 Standa 9.2 Light In 9.2.1 G 9.2.2 G 9.2.3 T 9.3 Heavy 9.3.1 G 9.3.2 D 9.3.3 T 9.4 Electric 9.5 Bus Le 9.6 Examp 9.6.1 G 9.6.2 G 10. CAN Trou 10.1 Term 10.2 Electric 10.3 Short 10.4 CAN 10.5 CAN 10.6 Supp 	ctor Connection/Conductor Cross Sections. ring of Electrically Isolated CAN Networks. ards concerning CAN Wiring. dustrial Environment (Single Twisted Pair Cable). Seneral Rules. abling. ermination. Industrial Environment (Double Twisted Pair Cable). Seneral Rules. Sevice Cabling. ermination. cal Grounding. able for CAN Cables. able for light industrial Environment Applications (Two-Wire). able for heavy industrial Environment Applications (Four-Wire). able for heavy	74 75 76 77 77 78 79 79 79 80 80 80 81 81 82 82 82 82 82 83 83 84 84 84 85 85

11.2.1 Installation of the Module Using InRailBus Connector	87
11.2.3 Connection of the Power Supply Voltage	89
11.2.4 Connection of CAN 11.3 Remove the CAN-CBX Module from InRailBus	89 90
12. Declaration of Conformity	91
13. Order Information	92

1. Overview

Figure 1: Block circuit diagram

The CAN-EtherCAT device connects an EtherCAT[®] network with one CAN network. In this case the gateway acts as an EtherCAT slave device according to "Module Profile Number 5000" of the "Modular Device Profile Description" (ETG.5001 documents).

The CAN-EtherCAT gateway allows CAN modules with CANopen[®] (CiA[®] DS 301) or Layer 2 (ISO 11898-1) implementations to connect with a real-time EtherCAT network. The gateway does not limit the number of CAN nodes.

The CAN-EtherCAT is also configurable as "Ethernet Switch Port" by Ethernet over EtherCAT (EoE), see section 5.2.

The high-speed CAN interface is compliant with ISO 11898-2 and it supports transfer rates from 50 kBit/s up to 1 MBit/s. The 100BASE-TX EtherCAT interface is IEEE802.3 compatible and runs at 100 MBit/s. The CAN interface, as well as the EtherCAT interface, is electrically isolated.

The configuration of the CAN-EtherCAT is accomplished through the EtherCAT master. CAN diagnostics and firmware updates are realized via web interface. (Firmware updates are also possible via File access over EtherCAT (FoE), see section 5.3)

2. Hardware Installation

2.1 Connections

Figure 2: Connections for operating condition

NOTICE

Read chapter "Hardware Installation " on page 14, before you start with the installation of the hardware!

Please refer to page 68 ff. for signal assignment of the connectors.

INFORMATION

The "DIAG" USB interface is currently available only for internal use at the factory!

2.2 LEDs

Figure 3: Connectors and LEDs

2.2.1 LED Assignment

LEDs at Ethernet RJ45 connector ETH:

LED	Color	LED Status	Description
Link/ Activity	green	off	no Ethernet link present
		blinking	Ethernet link present, Ethernet activity (reception of Ethernet data packages)
Speed	yellow	off	10 MBit/s
		on	100 MBit/s

 Table 1: Ethernet-LED functionality

LEDs at EtherCAT-RJ45 Connectors IN and OUT

LED	Color	LED Status	Description
Link/ Activity	green	off	no EtherCAT link present
		blinking	EtherCAT link present, EtherCAT activity (reception of Ethernet data)
Spare	yellow	-	unused

Table 2: EtherCAT LED functionality (integrated in RJ45)

EtherCAT-LEDs U, E, R, L

LED Status	Description
blinking	LED repeats: 200 ms on, 200 ms off.
flicker	LED repeats: 50 ms on, 50 ms off.
single flash	LED repeats: 200 ms on, 1000 ms off.
double flash	LED repeats: 200 ms on, 200 ms off, 200 ms on, 1000 ms off.

Table 3: LED states (according to ETG.1300 documents)

LED	Color	Function	LED Status	Description	Schematic Reference
		Universal	off	No information available	
			blinking	Device is in "Local IP Port Mode", i.e. its Webserver etc. is directly accessible, see see chapter 6.	
U	yellow		flicker	FoE firmware transfer is in progress	LED1A
			on	FoE firmware transfer finished. Visible only for a few seconds – then actual firmware update is started	
			any	Set by CoE object 0x2000.2, see 5.1.4.1	
		EtherCAT ed ERROR Indicator	off	No error	LED1B
_	red		blinking	State change failed	
_			single flash	State changed due to configuration error	
			double flash	SM watchdog time out	
	green		off	Init	LED1C
		FtherCAT	blinking	Pre-Operational	
R		en RUN Indicator*	single flash	Safe-Operational	
			on	Operational	
			flicker	Bootstrap	
	green	EEPROM	off	unable to retrieve ET1100 configuration from EEPROM	
		Loaded*	on	successful retrieval of ET1100 configuration from EEPROM	LEUID

*Directly connected to the ET1100

Table 4: EtherCAT LED functionality

3. Hardware Installation

For proper installation and setup please follow the recommended steps as shown here:

Step	Procedure	see page
	Read the safety instructions at the beginning of this document carefully, before you start with the hardware installation!	5
	Danger Hazardous Voltage - Risk of electric shock due to unintentional contact with uninsulated live parts with high voltages inside of the system into which the CAN-EtherCAT is to be integrated.	
	 → All current circuits which are connected to the device have to be sufficiently protected against hazardous voltage (SELV according to EN 60950-1) before you start with the installation. → Ensure the absence of voltage before starting any electrical work. 	
1.	Mount and connect the CAN-EtherCAT gateway and connect the interfaces (Power supply, CAN bus, EtherCAT, and – if applicable – Ethernet).	11
2.	Please note that the CAN bus has to be terminated at both ends! esd offers special T-connectors and termination connectors for external termination. Additionally the CAN_GND signal has to be connected to earth at exactly one point in the CAN network. All esd termination devices will provide a corresponding contact. For details please read chapter "Correct Wiring of Electrically Isolated CAN Networks" . Any CAN node that does not support a galvanic isolation represents the equivalent of a Ground (GND) connection.	76
3.	Turn on the 24 V-power supply voltage of the CAN-EtherCAT.	-
4.	Copy the enclosed EtherCAT slave information file (ESI) into the corresponding folder.	20
5.	Configure the CAN-EtherCAT gateway with an EtherCAT configurator.	15

4. Configuration with an EtherCAT Configurator

4.1 CAN-EtherCAT Gateway Application Example

Figure 4: CAN-EtherCAT gateway connection example

The CAN-EtherCAT gateway can take any position in an EtherCAT network.

4.2 Configuration Sequence, esd EtherCAT Workbench

The following chapter describes the CAN interface configuration of the CAN-EtherCAT gateway for example by means of the esd EtherCAT Workbench.

First, the enclosed EtherCAT Slave information file (ESI)

ESD CAN-EtherCAT.xml

must be copied to the corresponding folder.

When the Workbench is running, this can be done by the menu entry "Copy ESI file(s) to slave library" (Under "Tools"), see Figure 5. Otherwise the Workbench's start menu entry "Open slave library folder" can be used to copy the file manually.

🖾 [New Project] EtherCAT Workbench 1.0.1							
<u>F</u> ile <u>V</u> iew	Too	ls <u>?</u>	_				
🗋 New 📥 Loa	臣	Copy ESI file(s) to slave library					
🔊 Online 💿 S	63 ,	Open slave library					
→ EtherC	1	Configure <u>a</u> lias addresses for all slaves	Cyclic Com				
	0	Stop local EtherCAT Master service	cs Init Con				
	\$	Restart local EtherCAT Master service					
	B	Reset all <u>w</u> indow settings	IAL address				
	B	Edit global settings					
		Consection.					

Figure 5: Installing ESI file with the Workbench

Now the Workbench has to be (re)started and a network scan will show the device:

Figure 6: Slave tree view

Now go to the "CoE Dictionary" tab page and recreate the dictionary by the menu item "Recreate dictionary", "Online from slave" as shown in Figure 7:

Master Slave Process Data/Image Cyclic Commands
General EEPROM Memory CoE Dictionary Init Commands Mailbox Process Data DC
Reread all 😪 Recreate dictionary 🗸 🍕 Filter:
Index Na From ESI pe Default value Current value Flags
Online from slave
Empty
Online by SDO Info service
Flags: R/W = Read/Write [Only in state], M/C = Mandatory/Cond., PM = PDO Mapping, SM = Safety Mapping, CA = SDO Complete Ac

Figure 7: Recreating the CoE dictionary

Click "Reread all" to update the items, then select the "Process Data" tab page.

Master Slave Process Data	/Image Cyclic Commands
General EEPROM Memory	CoE Dictionary Init Commands Mailbox Process Data DC
Assignment Variables Opt	ions
😪 Recreate list of available	PDOs •
From ESI	- SM2 PDO Selection
Online by SDO Info s	ervice
1 MBoxIn 522 2 Outputs 0 3 Inputs 0	
Available PDOs:	
Index Size Na	me Flags

Figure 8: Recreating the list of available PDOs

Recreate list of available PDOs by SDO Info service as shown in Figure 8. As a result the PDOs 0x1600 and 0x1a00 should be mapped:

Sync Manager:)	C	Sync Manager: —			
No. Type Size Flags	SM2 PDO Selection:		No. Type	Size	Flags	SM3 PDO Selection:
0 MBoxOut 522	✓ 0x1600		0 MBoxOut	522		🗹 0x1a00
1 MBoxIn 522			1 MBoxIn	522		🔲 0x1a85
2 Outputs 198			2 Outputs	198		
3 Inputs 168			3 Inputs	168		
		L] []

PDO 0x1600 contains the CAN Tx messages, as described in 5.1.3.7, 0x1a00 contains the Rx messages as described in 5.1.3.8. (The optional PDO 0x1a85 contains CAN Status information, see 5.1.3.9 and 5.1.5.8)

Different queue sizes or 29 bit CAN IDs

If you want to use extended CAN IDs or change Rx- or Tx- queue size, you have to do this in the CoE dictionary, right after you clicked "Reread all" as described above, but it must be done **before** you recreate the list of available PDOs.

To use 29 bit IDs for example, you have to write object 0x8000.20 as described in 5.1.5.5. When the list of available PDOs is recreated afterwards you'll notice a PDO size change (With the standard queue sizes for example, the 198 bytes for the outputs will change to 262 byte).

When changing the queue sizes or CAN ID type this has to be done during slave start up, too. Section 4.2.1 shows how this is done for the CAN baud rate object – this works for other objects as well.

4.2.1 Setting the Baud Rate during Slave Initialization

Go to the "Slave", "Mailbox", "CoE" tab page, right click in the init. commands list and select "Append new item":

aster Slave Proce	ss Data/Image Cyclic Comm	ands	
General EEPROM	Memory CoE Dictionary Init	Commands Mail	box Process Data DC
General Bootstran	CoE FoF		
leit Compander	202		
Init Commands.			
Index	Transitions	Data	Comment
0x1c12:00	PS	00	Clear SM2 PDOs
0x1c12:01	PS	00 16	Download SM2 PDO1
0x1c12:00	PS	01	Download SM2 PDO count
0x1c13:00	PS	00	Clear SM3 PDOs
0x1c13:01	PS	00 1a	Download SM3 PDO1
UX IC 13:00	PS	01	Download SM3 PDO count
	Edit selected item	DblClick	
	Append new item	Ins	
Options:	Delete selected item	Del	
Download PDC	assignment 📃 Slave	e supports "Comple	te Access"
Download PDC	configuration 🗹 Slave	e supports "SDO In	fo"
Upload PDO co	nfiguration 🔽 Slave	supports "Seame	nted SDO"

Figure 9: Appending CoE init command

In the following dialog window click "Select from object dict." and select the baud rate object ($F800_h:02$) in the context menu that appears. Now the dialog should look like this:

Edit CoE init command	
Sub Index: 0x 7800 Sub Index: 0x 2 Sub Index:	Transitions: ✓ PS (Pre-Operational -> Safe-Operational) □ IP (Init -> Pre-Operational) ○ SO (Safe-Operational -> Operational) □ OS (Operational -> Safe-Operational) □ SP (Safe-Operational -> Pre-Operational) □ BI (Bootstrap -> Init)
Data: (HexBin) ff 1 byte	
Comment:	
CAN Bus Parameter Set - Baud	ate
OK Cancel	

Figure 10: CoE init. command for baud rate object

Just enter the desired baud rate index (described in 5.1.5.9) at the "Data:" input box and leave the dialog with the "OK" button. (Other settings should be left untouched)

Now the "Init Commands" list contains an additional command that sets the baud rate during the slave's "PreOp \rightarrow SafeOp" transition.

This can be done for other objects, especially the "CAN Interface Configuration" objects (8000_h , see 5.1.5.5), too.

4.2.2 Export ENI

To export the ENI for the EtherCAT network and CAN-EtherCAT you just configured click "Export master configuration file (ENI)" in the "File" menu: (Or press "Ctrl+M" or use the "Export ENI" button in the Workbench's toolbar – they all do the same)

ର୍ଚ୍ଚ (N	See [New Project] EtherCAT Workbench 1.0.1									
File	View Tools ?									
	New project	Ctrl+N								
] 🗗	Load project	Ctrl+L								
	Recent projects		Slav							
	Save project	Ctrl+S	al O							
	Save project as	Ctrl+Shift+S	eral se							
	Export master configuration file (EN	I) Ctrl+M								
5	Exit EtherCAT Workbench	Alt+F4								
			Comment							

Figure 11: Exporting the ENI

4.3 Configuration Sequence, Beckhoff Configurator

The following chapter describes the CAN interface configuration of the CAN-EtherCAT gateway for example by means of the Beckhoff EtherCAT configurator.

First, the enclosed EtherCAT Slave information file (ESI)

ESD CAN-EtherCAT.xml

must be copied to the corresponding folder.

Using the EtherCAT configurator the folder may be, for example: "C:\Program Files\EtherCAT Configurator\EtherCAT".

As soon as the EtherCAT configurator has recognized the CAN-EtherCAT, it will display it in the device tree view:

Figure 12: CAN-EtherCAT in device tree view

Use the table CoE-Online to display the object dictionary:

eneral EtherCA Update L	T Process Data Startup CoE · C	Inline Online	Show Offline Data
Advance Add to Star	All Objects All objects	Module OD (Ac	pE Port): 0
Index	Name	Flags	Value
1000	Device type	RO	0x00001389 (5001)
1001	Error register	RO	0x00 (0)
1008	Device name	RO	MEESC
1009	Hardware version	RO	1.2
100A	Software version	RO	V1.00
🛨 1018:0	Identity	RO	> 4 <
主 - 1600:0	CAN RxPDO-Map	RO	> 19 <
主 🗉 1A00:0	CAN TxPDO-Map	RO	> 20 <
🗄 1000:0	Sync manager type	RO	> 4 <
🗄 1C12:0	RxPDO assign	RW	>1<
🗄 - 1C13:0	TxPDO assign	RW	>1<
主 1C32:0	SM output parameter	RO	> 32 <
🗄 - 1C33:0	SM input parameter	RO	> 32 <
主 6000:0	CAN 11bit Rx message queue	RO	> 20 <
主 ··· 6001:0	CAN 29bit Rx message queue	RO	> 20 <
主 - 7000:0	CAN 11bit Tx message queue	RO	> 19 <
主 ··· 7001:0	CAN 29bit Tx message queue	RO	> 19 <
主 🛛 8000:0	CAN Interface configuration	RO	> 36 <
主 ··· 8001:0	CAN filter table	BW	> 0 <
.	CAN Bus Parameter Set	RO	> 24 <

Figure 13: Object dictionary

The *Process Data* section will be initially empty. Click the Load PDO info from device button to read the data:

Figure 14: Loading process data

Configuration with an EtherCAT Configurator

The configurator will now display the process data:

Ge	neral	EtherCAT	Proces	s Data	Star	tup CoE -	Online 🛛 O	Inline			
S	Sync Manager: PDO List:										
Г	SM	Size	Туре	Flags		Index	Size	Name		Flags	
	0	128	MbxOut			0x1A00	168.0	CAN Tx	:PDO-Map	F	
	1	128	MbxIn			0x1600	198.0	CAN Rx	PDO-Map	F	
	2	0	Outputs								
	3	0	Inputs								
	•			•		4					F
Þ		oiannont				PDO Conto	at (0a1A00)).			
	DUAS	signment.						J.			
						Index	Size	Offs	Name		Ty▲
						0x6000:01	2.0	0.0	TX Counter		UI
						0x6000:02	2 2.0	2.0	RX Counter		01
						0x6000:03	3 2.0	4.0	Number of RX Messages		UI
						0x6000:04	1 2.0	6.0	TX Transaction Number		UI
						0x6000:05	0 10.0	8.0	HX Message 1		AF
						UX6000:06	5 10.0	18.0	HX Message 2		AF 💌
						•					
Г	Down	load			1			Load F	PDO info from device		
	Γ P	DO Assiar	ment		'						
	1.4		minwrite								
	P P	· · · · · · · · · · · · · · D.O. Config	uration								

Figure 15: Process data display

General EtherCAT Process Data Startup CoE - Online Online										
Sync Manager: PDO List:										
SM	Size	Type	Flags	Index	Size	Name		Flags	T	
0	128	MbxOut		0x1A00	168.0	CAN TxF	РО-Мар	F	-	
1	128	MbxIn		0x1600	198.0	CAN RxP	PDO-Map	F		
2	198	Outputs								
3	0	Inputs								
•			•	•				•		
PD0/	PDO Assignment (0x1C12): PDO Content (0x1A00):									
	-	. (on ronz).		PDU Conten	(UXIAUU):					
∨ 0x	1600	. (081012).		PDU Conteni Index	Size	Offs	Name	T, A]	
₩ 0×	1600	. (081012).		Index 0x6000:01	Size 2.0	Offs 0.0	Name TX Counter	Ty ▲ UI	-	
₩ 0×	1600	. (081012).		Index 0x6000:01 0x6000:02	Size 2.0 2.0	0ffs 0.0 2.0	Name TX Counter RX Counter	Ty ▲ UI UI		
₩ 0×	1600			PDU Content Index 0x6000:01 0x6000:02 0x6000:03	Size 2.0 2.0 2.0	0ffs 0.0 2.0 4.0	Name TX Counter RX Counter Number of RX Messages			
▼ 0×	1600	(041012).		PDU Content Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04	Size 2.0 2.0 2.0 2.0 2.0 2.0	0ffs 0.0 2.0 4.0 6.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number		Ĩ	
	1600	(041012)		PDU Content Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04 0x6000:04	Size 2.0 2.0 2.0 2.0 2.0 2.0 10.0	0ffs 0.0 2.0 4.0 6.0 8.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 BX Message 1	T, A		
	1600			PDU Content Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04 0x6000:05 0x6000:06	Size 2.0 2.0 2.0 2.0 2.0 10.0 10.0	0.0 0.0 2.0 4.0 6.0 8.0 18.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2	TJ UI UI UI UI AF AF		
	1600			PDU Content Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04 0x6000:05 0x6000:06	Size 2.0 2.0 2.0 2.0 2.0 10.0 10.0	0/ffs 0.0 2.0 4.0 6.0 8.0 18.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2	T J ▲ UI UI UI UI AF AF	-	
Dov	vnload			PDU Content Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04 0x6000:05 0x6000:06 ◀	Size 2.0 2.0 2.0 2.0 2.0 10.0 10.0	0ffs 0.0 2.0 4.0 6.0 8.0 18.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2	T, UI UI UI UI AF		
	vnload PDD Assic	Inment		Index 0x6000:01 0x6000:02 0x6000:03 0x6000:04 0x6000:05 0x6000:06 0x6000:06	Size 2.0 2.0 2.0 2.0 2.0 10.0 10.0	0ffs 0.0 2.0 4.0 6.0 8.0 18.0 18.0	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2	T, UI UI UI AF		
	vnload PDO Assig	inment		PDU Content Index 0×6000:01 0×6000:02 0×6000:03 0×6000:05 0×6000:06 ■	Size 2.0 2.0 2.0 2.0 10.0 10.0	Offs 0.0 2.0 4.0 6.0 8.0 18.0 Load Pl	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2 DD info from device	T, UI UI UI AF AF		
Dov V	vnload PDO Assig PDO Confi	inment		PDU Content Index 0×6000:01 0×6000:02 0×6000:03 0×6000:05 0×6000:06 ▼	Size 2.0 2.0 2.0 2.0 10.0 10.0	0ffs 0.0 2.0 4.0 6.0 8.0 18.0 Load Pl	Name TX Counter RX Counter Number of RX Messages TX Transaction Number RX Message 1 RX Message 2	T, UI UI UI UI AF		

Figure 16: Process data (output PDOs chosen)

General EtherCAT Process Data St	artup 🛛 CoE - On	iline On	line							
Sync Manager: PDO List:										
SM Size Type Flags	Index 9	Size	Name		Flags					
0 128 MbxOut	0x1A00 1	168.0	CAN TxP	DO-Map	F					
1 128 MbxIn	0x1600 1	198.0	CAN RxP	DO-Map	F					
2 198 Outputs										
3 168 Inputs										
< >	•				Þ					
PDO Assignment (0x1C13):	PDO Content ((0x1A00):								
✓ 0x1A00	Index 9	Size	Offs	Name	Ty▲					
	0x6000:01 2	2.0	0.0	TX Counter	UI					
	0x6000:02 2	2.0	2.0	RX Counter						
	Ux6000:03 2	2.0	4.0	Number of HX Messages	UI					
	0x6000:04 2	2.0	6.U 0.0	PX Message 1						
	0x6000:05	10.0	18.0	RX Message 2						
		10.0	10.0	In Three body of 2						
Download			Load PD	0 info from device						
PD0 Assignment										
PD0 Configuration										

Figure 17: Process data (input PDOs chosen)

The CAN-EtherCAT gateway will only go active on the CAN bus after the baud rate has been set (see chapter "Object F800h CAN Bus Parameter" from page 49). Consequently, it makes sense to set the baud rate right now.

Edit CANopen Sta	rtup Entry				×
Transition □ I -> P ▼ P -> S	S→P	Index (hex): Sub-Index (dec):	f800 2	_	OK Cancel
	0->5	🗖 Validate	Complete	e Access	
Data (hexbin):	00				Hex Edit
Validate Mask:					
					_
Comment:	Baudrate				
Index	Name		Flags	Value	<u> </u>
EE 7001:0	CAN 29bit Tx	message queue	RU		
EI ≈ 8000:0	CAN Interface	e configuration	RU		
E 8001:0	CAN filter tabl	e	RW		
E F800:0	LAN Bus Par	ameter Set	RU		
F800:01	Reserveding	exui	BW		
F800:02	Baudrate		BW		
F800:03	Reserveding	exU3 04	BW		
F800.04	Reservedinge	3XU4	nw Dw/		
F800.05	Bustiming	OC	nw Du/		
F000.00	Receiveding	5XU0	DW DW		
E000.07	Reservedinde	5XU7 5000	DW/		
F800.08	Beservedinde	5XUO 5009	RW		
F800:05	BeservedInde	5A00 5010	BW		
F800:0B	BeservedInde	av11	BW		
F800-0C	ReservedInde	au12	RW		
•					

Figure 18: Baud rate setting during startup sequence

Gene	ral Ethe	rCAT Proces	s Data Startup	CoE - Online Online		
Tr	ansition	Protocol	Index	Data	Comment	
C	<ps></ps>	CoE	0x1C12:00	0x00 (0)	clear sm pdos (0x1C12)	
C	<ps></ps>	CoE	0x1C13:00	0x00 (0)	clear sm pdos (0x1C13)	
C	<ps></ps>	CoE	0x1C12:01	0x1600 (5632)	download pdo 0x1C12:01 i	
C	<ps></ps>	CoE	0x1C12:00	0x01 (1)	download pdo 0x1C12 count	
C	<ps></ps>	CoE	0x1C13:01	0x1A00 (6656)	download pdo 0x1C13:01 i	
C	<ps></ps>	CoE	0x1C13:00	0x01 (1)	download pdo 0x1C13 count	
C	PS	CoE	0xF800:02	0x00 (0)	Baudrate	
h	love Up	Move Do	wn	1	New Delete	E dit

The final startup sequence may look like shown in the following example:

Figure 19: Startup - sequence example

Following the startup sequence, the EtherCAT network can be set active by calling the Reload Devices function by clicking *Main Menu/Actions*:

Figure 20: Reload Devices

The CAN interface's process image will look as follows:

Figure 21: Can interface process image

4.3.1 Exporting EtherCAT Network Information (ENI)

To export the configuration file for an EtherCAT Master choose "Export Configuration File...":

Ger	neral [A	\dapter	EtherCAT Online	CoE - O	nline				
Netld: 1.1.1.1.3.1						Advanced Se Export Configura	ttings ition File		
						Topolog	<i>.</i>		
Ē	Frame	Cmd	Addr	Len	WC	Sync Unit	Cycle (ms)	Utilization (%)	Size / Dura
		LRW BRD	0x00010000 0x0000 0x0130	210 2	15 5	<default></default>	4.000 4.000	0.55 0.55	252 / 22.0
									Þ
	0								

Figure 22: Exporting configuration file

5. EtherCAT Communication

5.1 CAN Interface

The CAN Interface is based on a modular device profile (Fieldbus Gateway, Profile No. 5000), and it supports one CAN module. This module includes one CAN Tx message queue in the output area and one CAN Rx message queue in the input area.

5.1.1 Object Dictionary Structure

The object dictionary is composed of the following areas:

Index	Object Dictionary Areas
$0000_{h}0FFF_{h}$	Data Type Area
$1000_{h}1FFF_{h}$	Communication Area
$2000_{h}5FFF_{h}$	Vendor Specific Area
$6000_{h}6FFF_{h}$	Input Area (CAN Rx message queue)
7000 _h 7FFF _h	Output Area (CAN Tx message queue)
8000 _h 8FFF _h	Configuration Area (CAN interface configuration)
$F000_{h}FFFF_{h}$	Device Area

Table 5: Object dictionary structure

The following explains the definition of a standard and an extended CAN message queue. For proper operation one of both CAN message queues must be chosen. This can be accomplished by writing the CAN interface settings object (8000_h). The RPDO and TPDO mapping objects (1600_h and $1A00_h$) will change accordingly.

5.1.1.1 Output Data

The CAN interface output data include the Tx message queue plus the control data for the Rx and TX message queues. The CAN interface output data is always required.

5.1.1.2 Input Data

The CAN interface input data include the Rx message queue plus the status information for the Rx and Tx message queues. The CAN interface input data is always required.

5.1.2 Object Dictionary

The CAN-EtherCAT gateway layer 2 implementation supports the following objects:

Index	Name
1000 _h	Device type
1008 _h	Device name
1009 _h	Hardware version
100A _h	Software version
1018 _h	Identity
1600 _h	RPDO-Map CAN interface
1A00 _h	TPDO-Map CAN interface
1A85 _h	CAN Status PDO
1C00 _h	Sync manager type
1C12 _h	RPDO assign
1C13 _h	TPDO assign
2000 _h	Other Settings
2010 _h	Statistics
6000 _h	CAN interface input (11-bit identifier)
6001 _h	CAN interface input (29-bit identifier)
7000 _h	CAN interface output (11-bit identifier)
7001 _h	CAN interface output (29-bit identifier)
8000 _h	CAN interface configuration
8001 _h	CAN filter table
F000 _h	Modular Device Profile
F108 _h	CAN Status
F800 _h	CAN bus parameter

5.1.3 Standard Objects (1000_h...1FFF_h)

5.1.3.1 Object 1000h Device Type

Index	Sub- Index	Description	Data Type	RW	Default
1000 _h	0	Device Type	UINT32	RO	13881389 _h

Variable Description

EtherCAT Slave device type:

The low word contains the used CoE profile (5001_d). The high word contains the module profile according to the modular device profile: 5000_d .

5.1.3.2 Object 1008^h Device Name

Index	Sub- Index	Description	Data Type	RW	Default
1008 _h	0	Device Name	STRING	RO	"MEESC"

Variable Description

EtherCAT Slave device name.

5.1.3.3 Object 1009_h Hardware Version

Index	Sub- Index	Description	Data Type	RW	Default
1009 _h	0	Hardware Version	STRING	RO	

Variable Description

CAN-EtherCAT gateway hardware version.

5.1.3.4 Object 100A_h Software Version

Index	Sub- Index	Description	Data Type	RW	Default
100A _h	0	Software Version	STRING	RO	

Variable Description

CAN-EtherCAT gateway software version.

5.1.3.5 Object 1018^h Identity

Index	Sub- Index	Description	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	4
	1	Vendor ID	UINT32	RO	17 _h (23 _d)
1018 _h	2	Product code	UINT32	RO	2
	3	Revision	UINT32	RO	see below
	4	Serial number	UINT32	RO	see below

Variable Description

CAN-EtherCAT gateway identification characteristics.

Vendor IDesd vendor-ID = 23dProduct codeCAN-EtherCAT product code = 2RevisionCAN-EtherCAT ESI revision number
Corresponds to the slave revision number stored in its EEPROM ESI – used to
determine which .xml ESI the configuration tool (e.g. the esd EtherCAT
Workbench) shall use.

(Exception: With firmware version 1.0 this does not match the EEPROM revision
number – it's 100h / 256d there)Serial numberSerial number. (Always 0 with Firmware Version 1.X)

5.1.3.6 Object 1C00_h Sync Manager Type

Index	Sub- Index	Description	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	4
	1	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	1
1C00 _h	2	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	2
	3	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	3
	4	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	4

Parameter Description

Sync-Manager Type:

Sync-Manager Type Channel 1: Mailbox Write

Sync-Manager Type Channel 2: Mailbox Read

Sync-Manager Type Channel 3: Process Data Write (Outputs)

Sync-Manager Type Channel 4: Process Data Read (Inputs)

5.1.3.7 Object 1600h RPDO-Map CAN-Interface

This object defines the CAN interface mapping into the EtherCAT input data.

The first three sub-indexes contain the size of the Tx and Rx counters plus the number of Tx messages. The size of the CAN Rx message queue is configured through object 8000_{h} .

Object 8000_h is also used to define the CAN message ID mode, either 11-bit (Object 7000_h) or 29-bit (7001_h). Depending on the settings the contents of objects 7000_h and 7001_h are mapped in object 1600_h .

Object 1600_{h} is always required and must be defined in the PDO Assign Object $1C12_{\text{h}},$ sub-index 1.

Index	Sub- Index	Description	Data Type	RW	Default
	0	Number of CAN-Messages+3	UINT8	RO	
	1	1. PDO Mapping entry (object 700z _h (CAN interface output), entry 01 _h (Tx Counter))	UINT32	RO	
	2	2. PDO Mapping entry (object 700z _h (CAN interface output), entry 02 _h (Rx Counter))	UINT32	RO	
1600 _h	3	3. PDO Mapping entry (object 700z _h (CAN interface output), entry 03 _h (Number of Tx Messages))	UINT32	RO	
	4	4. PDO Mapping entry (object 700z _h (CAN interface output), entry 04 _h (Tx Message 1))	UINT32	RO	
	m	<i>m.</i> PDO Mapping entry (object 700z _h (CAN interface output), entry m (Tx Message m-3))	UINT32	RO	

5.1.3.8 Object 1A00h TPDO-Map CAN-Interface

This object defines the CAN interface mapping into the EtherCAT output data.

The first three sub-indexes contain the size of the Tx and Rx counters plus the number of Tx messages. The size of the CAN Tx message queue is configured through object 8000_{h} .

Object 8000_h is also used to define the CAN message ID mode, either 11-bit (object 7000_h) or 29 Bit (object 7001_h). Depending on the settings the contents of objects 6000_h and 6001_h are mapped in object $1A00_h$.

Object $1A00_h$ is always required and must be defined in the PDO Assign Object $1C13_h,$ sub-index 1.

Index	Sub- Index	Description	Data Type	RW	Default
1A00 _h	0	Number of CAN-Messages+4	UINT8	RO	
	1	1. PDO Mapping entry (object 6000 _h (CAN interface input), entry 01 _h (Tx Counter))	UINT32	RO	
	2	2. PDO Mapping entry (object 6000 ^h (CAN interface input), entry 02 ^h (Rx Counter))	UINT32	RO	
	3	3. PDO Mapping entry (object 6000 _h (CAN interface input), entry 03 _h (Number of Rx Messages))	UINT32	RO	
	4	4. PDO Mapping entry (object 6000 _h (CAN interface input), entry 04 _h (Tx Transaction Number))	UINT32	RO	
	5	5. PDO Mapping entry (object 6000 _h (CAN interface input), entry 05 _h (Rx Message 1))	UINT32	RO	
	m	<i>m. PDO Mapping entry</i> (object 6000 _h (CAN interface input), entry m (Rx Message m-4))	UINT32	RO	

5.1.3.9 Object 1A85_h CAN Status PDO

This object allows to map the CAN Status entries from object $F108_h$. See 5.1.5.8 for details about the mapped entries.

Index	Sub- Index	Description	Data Type	RW	Default
	0	Max Subitem	UINT8	RO	14 _d
	1	Object F108 _h sub index 01 _h	UINT32	RO	
	2	Object F108 _h sub index 02 _h	UINT32	RO	
1A85 _h	3	Object F108 _h sub index 03 _h	UINT32	RO	
	4	Padding (1 Bit)	UINT32	RO	
	5	Object F108 _h sub index 05 _h	UINT32	RO	
	6	Object F108h sub index 06h	UINT32	RO	
	7	Padding (10 Bit)	UINT32	RO	
	8	Object F108 _h sub index 11 _h	UINT32	RO	
	9	Object F108 _h sub index 12 _h	UINT32	RO	
	10	Object F108 _h sub index 13 _h	UINT32	RO	
	11	Object F108 _h sub index 14 _h	UINT32	RO	
	12	Padding (12 Bit)	UINT32	RO	
	13	Object F108 _h sub index 21 _h	UINT32	RO	
	14	Object F108 _h sub index 22 _h	UINT32	RO	

5.1.3.10 Object 1C12_h RPDO-Assign

Object 1C12_h assigns the mapping of the CAN interface RPDOs.

Index	Sub- Index	Description	Data Type	RW	Default
1C12 _h	0	Number of sub-indexes	UINT8	RW	1
	1	CAN-Interface RPDO	UINT16	RW	1600 _h

5.1.3.11 Object 1C13_h TPDO-Assign

Object 1C13_h assigns the mapping of the CAN interface TPDOs.

Index	Sub- Index	Description	Data Type	RW	Default
1C13 _h	0	Number of sub-indexes	UINT8	RW	1
	1	CAN-Interface TPDO	UINT16	RW	1A00 _h

5.1.4 Manufacturer Specific Objects (2000_h-5FFF_h)

5.1.4.1 Object 2000^h Other Settings

NOTICE

The following CoE object (Index, Sub-Index) can only be written in *Pre-Operational* state: Index: 2000_h , Sub-Index: 1

Index	Sub- Index	Name	Data Type	RW	Default
2000 _h	0	Number of sub-indexes	UINT8	RO	2
	1	EoE IP Port local mode	BOOL	RW	0
	2	Custom LED state	UINT8	RW	0

Parameter Description

EoE IP Port local mode	Set to TRUE when Local IP Port Mode (section 5.2.3) shall be enabled
Custom LED state	Used to overwrite the state of the "Universal" LED (section 2.2.1)
	Values / State:
	0: Off
	14: Flash x1Flash x4
	13: Blink
	14: Flicker
	15: On
	Reading this value reflects only the value that was last written – not the actual LED state. The state set by writing this object is overwritten whenever the CAN-EtherCAT itself sets a state for the LED (i.e. the LED is usually turned off when the EtherCAT State changes)

5.1.4.2 Object 2010^h Statistics

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	33
	1	Reset	UINT32	RW	
	2	Cyclic handler time (min.)	UINT32	RO	
	3	Cyclic handler time (max.)	UINT32	RO	
	4	Cyclic handler time (avg.)	UINT32	RO	
	5	CAN handler time (min.)	UINT32	RO	
	6	CAN handler time (max.)	UINT32	RO	
	7	CAN handler time (avg.)	UINT32	RO	
	8	Watchdog triggered	UINT32	RO	
	10 _h	EoE Frames EtherCAT Rx	UINT32	RO	
	11 _h	EoE Frames EtherCAT Tx	UINT32	RO	
	12 _h	EoE Frames EtherCAT Tx Error	UINT32	RO	
	13 _h	EoE Frames EtherCAT Tx Overrun	UINT32	RO	
	14 _h	EoE Frames Local Rx	UINT32	RO	
	15 _h	EoE Frames Local Tx	UINT32	RO	
	16 _h	EoE Frames Local Tx Error	UINT32	RO	
2010 _h	20 _h	App. CPU Usage (User)	UINT8	RO	
	21 _h	App. CPU Usage (System)	UINT8	RO	
	30 _h	CAN Frames TX Requested	UINT32	RO	
	31 _h	CAN Frames TX	UINT32	RO	
	32 _h	CAN Frames RX	UINT32	RO	
	34 _h	CANDriver Controller overrun	UINT32	RO	
	35 _h	CANDriver FIFO overrun	UINT32	RO	
	36 _h	CANDriver Error Frames	UINT32	RO	
	37 _h	CANDriver Aborted Frames	UINT32	RO	
	38 _h	CANDriver RX Frames	UINT32	RO	
	39 _h	CANDriver RX RTR Frames	UINT32	RO	
	3A _h	CANDriver RX Frames Ext.	UINT32	RO	
	3B _h	CANDriver RX RTR Frames Ext.	UINT32	RO	
	3C _h	CANDriver TX Frames	UINT32	RO	
	3D _h	CANDriver TX RTR Frames	UINT32	RO	
	3Eh	CANDriver TX Frames Ext.	UINT32	RO	
	$3F_{h}$	CANDriver TX RTR Frames Ext.	UINT32	RO	
Parameter Description

Reset	When this object is written the statistics are reset. (Reading this value shows the time stamp of the last reset –
Cyclic handler time (min.)	For debugging purposes only. (Minimum time in application's cvclic handler within its last 10000 calls, in us)
Cyclic handler time (max.)	For debugging purposes only. (Maximum time in application's cyclic handler within its last 10000 calls in us)
Cyclic handler time (avg.)	For debugging purposes only. (Average time in application's cyclic handler within its last 10000 calls in us)
CAN handler time (min.)	For debugging purposes only. (Minimum time in application's CAN handler within its last 1000 calls in us)
CAN handler time (max.)	For debugging purposes only. (Maximum time in application's CAN handler within its last 1000 calls, in us)
CAN handler time (avg.)	For debugging purposes only. (Average time in application's CAN handler within its last 1000 calls, in us)
Watchdog triggered	Times application watchdog was triggered due to missing process data (Outputs).
	(Watchdog value is calculated by ESC registers 0x0400 and 0x0420)
EoE Frames EtherCAT Rx	No. of Éthernet frames received from EtherCAT
EoE Frames EtherCAT Tx	No. of Ethernet frames sent to EtherCAT
EoE Frames EtherCAT Tx Error	No. of Ethernet frames that could not be sent to EtherCAT due to an error
EoE Frames EtherCAT Tx Overrun	No. of Ethernet frames that could not be sent to EtherCAT due to Tx buffer overrun
ESE France Local Dy	protocols on Ethernet side, such as TCP/IP, will handle this)
EDE Frames Local RX	No. of Ethernet frames cent to least Ethernet interface
	No. of Ethernet frames that sould not be cent to local Ethernet
EOE Frames Local TX Error	interface
App. CPU Usage (User/System)	For debugging purposes only. (Application's average CPU usage since last reading one of these two items, in percent)
CAN Frames TX Requested	Total No. of CAN frames that should have been sent – according to write accesses to "Tx Counter" objects, etc.
CAN Frames TX	Number of CAN frames that were successfully forwarded to the CAN driver
CAN Frames RX	Total No. of CAN frame successfully copied to the RX objects
CANDriver Controller overrun	CAN Driver statistics: No. of CAN Controller overruns
CANDriver FIFO overrun	CAN Driver statistics: No. of FIFO overruns
CANDriver Error Frames	CAN Driver statistics: No. of error frames
CANDriver Aborted Frames	CAN Driver statistics: No. of aborted frames
CANDriver RX Frames	CAN Driver statistics: No. of standard frames received
CANDriver RX RTR Frames	CAN Driver statistics: No. of standard RTR frames received
CANDriver RX Frames Ext.	CAN Driver statistics: No. of extended frames received
CANDriver RX RTR Frames Ext.	CAN Driver statistics: No. of extended RTR frames received
CANDriver TX Frames	CAN Driver statistics: No. of standard frames sent
CANDriver TX RTR Frames	CAN Driver statistics: No. of standard RTR frames sent
CANDriver TX Frames Ext.	CAN Driver statistics: No. of extended frames sent
CANDriver TX RTR Frames Ext.	CAN Driver statistics: No. of extended RTR frames sent

5.1.5 Profile Specific Objects (6000_h-FFFF_h)

These objects are identical for all EtherCAT Slave devices supporting the profile number 5000 ("CAN Interface").

5.1.5.1 Object 6000h CAN Rx Message Queue

Figure 23: Relationship of the CAN Rx message queues

The number of transmitted Rx messages (**n**) is written in *Number of Rx Messages* (Sub-Index 3) and must not be changed until the "Rx Counters" are equal again. For the chronological sequence see the example in Figure 25 on page 40.

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	
	1	Tx Counter Gateway	UINT16	RO	
	2	Rx Counter Gateway	UINT16	RO	
6000	3	Number of Rx Messages	UINT16	RO	
0000h	4	Tx Transaction Number	UINT16	RO	
	5	Rx Message 1	OCTET-STRING[10]	RO	
	m	Rx Message m-4	OCTET-STRING[10]	RO	

This object contains the CAN interface input messages with 11 Bit ID.

Parameter Description

Tx Counter Gateway	The Tx counter is increased by the Gateway to indicate that the CAN
	Tx messages were copied from the output data to the local CAN send
	queue (see Figure 26).

- *Rx Counter Gateway* The Rx counter is increased by the Gateway every time when new CAN Rx data arrived and the *Rx Counter Gateway* (6000_h, sub-index 02) is identical with *Rx Counter Application* (7000_h, sub-index02). This indicates that new Rx data has been written into the process input data (see Figure 23).
- *Number of Rx Messages* Contains the number of CAN Rx messages in the following input data when the RX Counter was increased (1...m-4).
- *Tx Transaction Number* Contains the transaction number of the last sent Tx (see Figure 24)
- Rx Message 1...(m-4)1. to (m-4). CAN Rx messageThe message is composed of the following components:
 - Bit 0-3: CAN message length (0...8 bytes)
 - Bit 4: RTR Bit
 - Bit 5-15: CAN Identifier (11-bit CAN ID)
 - Bit 16-79: CAN-Rx data

Figure 24: Formatting of the CAN data in the EtherCAT process image (11-bit Rx and Tx)

Example Sequence Rx-Counter

Figure 25: Chronological sequence of the Rx-Counters

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	
	1	Tx Counter Gateway	UINT16	RO	
	2	Rx Counter Gateway	UINT16	RO	
	3	Number of Rx Messages	UINT16	RO	
6001 _h	4	Tx Transaction Number	UINT16	RO	
	5	Rx Message 1	OCTET-STRING[14]	RO	
	m	Rx Message m-4	OCTET-STRING[14]	RO	

5.1.5.2 Object 6001_h CAN Rx Extended Message Queue

This object contains the CAN interface input messages with 29-bit ID.

See Figure 23 for the relationship of the CAN-Rx-Message-Queues. For 29-Bit-Identifiers objects 6001h and 7001h are used instead of objects 6000h and 7000h accordingly.

For the chronological sequence see the example in Figure 25 on page 40.

Parameter Description

Tx Counter Gateway	The Tx counter is increased by the Gateway to indicate that the CAN Tx messages were copied from the output data to the CAN send queue (see Figure 26).				
Rx Counter Gateway	The Rx counter is increased by the Gateway every time when new CAN Rx data arrived and the <i>Rx Counter Gateway</i> (6001_h , sub-index 02) is identical with <i>Rx Counter Application</i> (7001_h , sub-index 02). This indicates that new Rx data has been written into the process input data (see Figure 23).				
Number of Rx Messages	Contains the when the Rx	Contains the number of CAN Rx messages in the following input data when the Rx counter was increased (1m-4).			
Tx Transaction Number	Contains the transaction number of the last sent Tx message (see Figure 24).				
Rx Message 1(m-4)	1. to (m-4). (The messag	CAN Rx message e is composed of the following components:			
	Bit 0-3:	CAN-Rx message length (08 byte)			
	Bit 5-15: Bit 16-44:	reserved CAN Identifier (11- or 29-bit CAN identifier)			
	Bit 46:	RTR bit			
	Bit 47:	0 = 11-bit CAN identifier 1 = 29-bit CAN identifier			
	Bit 48-111:	CAN Rx data			

5.1.5.3 Object 7000h CAN Tx Message Queue

Figure 26: Relationship of the CAN Tx message queues

The number of effectively transmitted Tx messages (\mathbf{N}) is written in *Number of Tx Messages* (Sub-Index 3) and will not be changed until the "Tx Counters" are equal again. For the chronological sequence see the example in Figure 27 on page 44.

The following CoE objects (Index, Sub-Index) can only be written in *Pre-Operational* state: Index: 7000_h , Sub-Index: $4...m_h$

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	
	1	Tx Counter Application	UINT16	RW	
	2	Rx Counter Application	UINT16	RW	
7000 _h	3	Number of Tx Messages	UINT16	RW	
	4	Tx Message 1	OCTET-STRING[12]	RW	
	m	Tx Message m-3	OCTET-STRING[12]	RW	

This object contains the CAN interface output messages with 11-bit ID.

The maximum value of the sub-index, and thus the number of Tx messages, is defined in the RxPDO-Mapping-Object (object 1600_h).

Parameter Description

Tx Counter Application	This counter must be increased when or after writing the CAN Tx message to the output data (see Figure 26).				
Rx Counter Application	This counter must be increased by the EtherCAT Master application for each CAN Rx message list it has received and read. This indicates that the received Rx messages have been read (see Figure 23).				
Number of Tx Messages	Contains the number of CAN Tx messages, which are transmitted with every increase of the Tx counter (N = $1m-3$).				
Tx Message 1(m-3)	CAN Tx m counter. The messa	essages which are transmitted with every increase of the Tx age is composed of the following components:			
	Bit 0-15: Bit 16-19:	Transaction Number The transaction number of the last transmitted CAN Tx message; readable in the input data. CAN message length (08 bytes)			
	Bit 20:	RTR bit			
	Bit 21-31:	CAN identifier (11-bit CAN ID)			
	Bit 32-95:	CAN Tx data			
	See Figure	e 24 on page 39.			

Example Chronological Sequence Tx-Counter

Figure 27: Chronological Sequence Tx-Counter

5.1.5.4 Object 7001_h CAN Tx Extended Message Queue

NO.	TICE
-----	------

The following CoE objects (Index, Sub-Index) can only be written in *Pre-Operational* state: Index: 7001_h , Sub-Index $4...m_h$

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	
1		Tx Counter Application	UINT16	RW	
	2	Rx Counter Application	UINT16	RW	
7001 _h	3	Number of Tx Messages	UINT16	RW	
	4	Tx Message 1	OCTET-STRING[16]	RW	
	m	Tx Message m-3	OCTET-STRING[16]	RW	

This object contains the CAN interface input messages with 29-Bit ID.

See Figure 26 for the relationship of the CAN-Tx-Message-Queues. For 29-Bit-Identifiers objects 6001h and 7001h are used instead of objects 6000h and 7000h accordingly. For the chronological sequence see the example in Figure 27 on page 44.

Parameter Description

Tx Counter Application	This counter must be increased when or after writing the CAN Tx message to the output data (see Figure 26).				
Rx Counter Application	This counter must be increased by the EtherCAT Master application for each CAN Rx message list it has received and read. This indicates that the received Rx messages have been read (see Figure 23).				
Number of Tx Messages	Contains the number of CAN Tx messages which are transmitted with every increase of the Tx counter (1m-3).				
Tx Message 1(m-3)	CAN Tx me counter. The messag Bit 0-15:	ssages which are transmitted with every increase of the Tx ge is composed of the following components: Transaction Number The transaction number of the last transmitted CAN Tx message; readable in the input data.			
	Bit 16-31:	CAN message length (08 byte)			
	Bit 32-60:	CAN Identifier (11- or 29-bit CAN ID)			
	Bit 62:	RTR bit			
	Bit 63:	0 = 11-bit CAN identifier 1 = 29-bit CAN identifier			
	Bit 64-127:	CAN Tx data			

5.1.5.5 Object 8000^h CAN-Interface-Configuration

i

NOTICE The following CoE objects (Index, Sub-Index) can only be written in *Pre-Operational* state: Index: 8000_h , Sub-Index: 20_h , 21_h , 22_h

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RO	24 _h (36 _d)
	1	Node Address	UINT16	RW	0000 _h
	219 _h Reserved for fu	Reserved for future extensions	-	-	-
8000	20 _h	Flags	UINT16	RW	0000 _h
0000h	21 _h	Rx queue size	UINT8	RW	10 _h (16 _d)
	22 _h	Tx queue size	UINT8	RW	10 _h (16 _d)
	23 _h	Local Rx queue size	UINT16	RW	03E8 _h (1000 _d)
	24 h	Local Tx queue size	UINT16	RW	03E8 _h (1000 _d)

The CAN interface can be configured with this object.

Parameter Description

Node Address	Must be set to 0		
Flags	Bit 0-2:	Reserved for future extensions; must be 0	
	Bit 3:	0 = Standard Queue (11-bit identifier), 1 = Extended Queue (29-bit identifier)	
	Bit 4-14:	Reserved for future extensions; must be 0	
Rx queue size	Number of Rx messages; max. 250 _d *		
Tx queue size	Number of Tx messages; max. 250 ^d *		
Local Rx queue size	Rx queue size of the internal CAN driver		
Local Tx queue size	Tx queue size of the internal CAN driver		

* Also limited by SM size/configuration

5.1.5.6 Object 8001_h CAN-Rx-Filter-Table

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RW	
8001 _h	1	Identifier Area 1	UINT64	RW	
	m	Identifier Area m	UINT64	RW	

This object assigns the CAN identifier areas, which are filled into the RX queue and are transmitted with the EtherCAT input data.

INFORMATION

For 29-Bit CAN identifiers bit 31 and 63 must be set!

In case this object is not configured, all received CAN messages will be assigned to the Rx queue and transmitted through the EtherCAT input data.

Parameter Description

Identifier Area 1	Byte 0-3: First identifier to be assigned to the Rx queue [*]
	Byte 4-7: Last identifier to be assigned to the Rx queue ^{$*$}
Identifier Area m	Byte 0-3: First identifier to be assigned to the Rx queue $$
	Byte 4-7: Last identifier to be assigned to the Rx queue [*]

 $m = \max. FF_{h} (255_{d})$

^{*}Firmware version 1.0: "First" and "Last" are exchanged, i.e. "First identifier" is in Byte 4-7 and "Last identifier" is in Byte 0-3.

5.1.5.7 Object F000^h Modular Device Profile

Usually only needed by configuration tools, e.g. esd EtherCAT Workbench. See ETG.5100 documents for details.

Index	Sub- Index	Name	Data Type	RW	Default
	0	Max. sub-index	UINT8	RO	3
E000	1	Index distance	UINT	RO	16 _d
FUUUh	2	Maximum number of modules	UINT	RO	1
	3	General configuration	UDINT	RO	1

5.1.5.8 Object F108_h CAN Status

Index	Sub- Index	Name	Data Type	RW	Default
	0	Max. sub-index	UINT8	RO	22 _h
	1	Bus OFF (Read from CAN controller status byte)	BOOL	RO	false
	2	Warning Limit reached (Read from CAN controller status byte)	BOOL	RO	false
	3	Rx overflow (Read from CAN controller overrun counter)	BOOL	RO	false
	4	Reserved	BIT1	RO	0
	5	Tx overflow (Not served, always false)	BOOL	RO	false
E109	6	Ack error (Not served, always false)	BOOL	RO	false
FIUOh	7	Reserved	BIT2	RO	0
	8	Reserved	BIT8	RO	0
	11 _h	Reserved (by esd)	BIT1	RO	0
	12 _h	Reserved (by esd)	BIT1	RO	0
	13 _h	Reserved (by esd)	BIT1	RO	0
	14 _h	Reserved (by esd)	BIT1	RO	0
	21 _h	Rx error counter (Read from CAN controller Rx error counter byte)	USINT	RO	0
	22 _h	Tx error counter (Read from CAN controller Tx error counter byte)	USINT	RO	0

5.1.5.9 Object F800_h CAN Bus Parameter

Index	Sub- Index	Name	Data Type	RW	Default
	0	Number of sub-indexes	UINT8	RW	
	1	Reserved for future extensions			
E800	2	Baud rate	UINT8	RW	FFh
1 000h	3, 4	Reserved for future extensions			
	5	API-baud rate	UINT32	RW	$7FFFFFFF_h$
	624	Reserved for future extensions			

This object contains the baud rate.

Parameter Description

Baud rate

CAN bit rate according to table below:

Parameter Baud rate [decimal]	CAN Bit rate [kBaud]						
0	1000						
1	800						
2	500						
3	250						
4	125						
5	100						
6	50						
7	not allowed						
8	not allowed						
255	Baud rate as defined in parameter "API-baud rate" sub-index 5						
Table 6: Parameters Baud rate							

API-baud rate The structure of the 32-bit parameter "API-baud rate" depends on the UBR and UBRN values as shown in the following:

31 <i>UBR</i>	30 <i>LOM</i>	29 UBRN	282	24	23	16	15	8	7	0
0	LOM	0	Reserved			Table index				
0	LOM	1	Reserved Numerical Value							
1	LOM	0	Reserved	d CAN_BR (of ARM9)						

A combination of UBR = UBRN = 1 is not allowed!

Table 7: Parameter API-baud rate

Bit(s)	Value	Description			
	0	Use the pre-defined bit rate table (Table Index)(in combination with UBRN)			
UBR	1	Set the CAN controller bit rate register directly (BTR0/BTR1)			
LOM	0	Configure the bit rate in 'active' mode (normal operation)			
	1	Configure the bit rate in 'Listen-Only' mode			
UBRN	0	Use the pre-defined bit rate table (in combination with UBR)			
	1	Set bit rate to numerical value			
Table index	х	Use the bit rate in pre-defined Table 9			
CAN_ BR	х	CAN baud rate register of ARM9 AT91SAM9263			

Table 8: Bits of parameter API-baud rate

When 'User Bit Rate' (UBR) and 'User Bit Rate Numerical' (UBRN) are set to 0, bits 0...15 are interpreted as an index to a pre-defined bit rate table. This allows the setting of CAN bit rates without detailed knowledge of the CAN controller hardware.

Table index	Bit rate [kBit/s]	Constant *1)
0	1000	NTCAN_BAUD_1000
Eh	800	NTCAN_BAUD_800
1	666.6	-
2	500	NTCAN_BAUD_500
3	333.3	-
4	250	NTCAN_BAUD_250
5	166	-
6	125	NTCAN_BAUD_125
7	100	NTCAN_BAUD_100
10 _h	83.3	-
8	66.6	-
9	50	NTCAN_BAUD_50
A _h	33.3	not allowed
B _h	20	not allowed
Ch	12.5	not allowed
D _h	10	not allowed

*1) The constants follow the CiA (CAN in Automation) recommendations.

 Table 9: Pre-defined bit rate table

Constant	Value	Function
NTCAN_BAUD_1000	0	Sets baud rate to 1000 kBit/s
NTCAN_BAUD_800	Eh	Sets baud rate to 800 kBit/s
NTCAN_BAUD_500	2	Sets baud rate to 500 kBit/s
NTCAN_BAUD_250	4	Sets baud rate to 250 kBit/s
NTCAN_BAUD_125	6	Sets baud rate to 125 kBit/s
NTCAN_BAUD_100	7	Sets baud rate to 100 kBit/s
NTCAN_BAUD_50	9	Sets baud rate to 50 kBit/s
NTCAN_NO_BAUDRATE	7FFF FFFF _h	Gateway cannot receive or transmit any message; stays passive on CAN bus
NTCAN_AUTOBAUD	00FF FFFEh	Gateway checks baud rates until it detected the correct one
NTCAN_USER_BAUDRATE	8000 0000 _h	sets the <i>UBR</i> bit
NTCAN_USER_BAUDRATE_NUM	2000 0000 _h	Sets the UBRN bit
NTCAN_LISTEN_ONLY_MODE	4000 0000 _h	Sets the LOM bit

Constants and special features

Table 10: Constant

Leaving the CAN Bus

The special constant NTCAN_NO_BAUDRATE can be used as an argument for the Parameter *API-baud rate* to force the hardware to leave the CAN bus and return to the Boot-Up condition (or to start it).

Automatic Baud Rate Detection

The CAN-EtherCAT gateway is capable of detecting the CAN baud rate and initiating bus communication without effecting the CAN bus operation. This is only possible with the default bit rates from the esd bit rate table supporting the CiA bit timing requirements.

The automatic baud rate detection requires at least two other CAN nodes communicating with each other. The CAN-EtherCAT gateway will initially act as 'Listen-Only'.

Use the special constant NTCAN_AUTOBAUD as an argument for the parameter API baud rate to initiate the automatic baud rate detection.

The driver will cease the automatic baud rate detection as soon as a valid baud rate is recognized, which is reported to the application through a so-called baud rate change event, or when a tangible baud rate was set through object $F800_h$.

With the UBR flag set to '1' and the URBN flag set to '0' the bits 0...24 are used to configure the CAN controller's bit rate register directly using the predefined values.

In order to set the bit rate register directly the following information will be necessary: CPU: ARM9 (see technical data from page 64) CPU Master Clock: 120 MHz CPU Manual: http://www.atmel.com -> CAN -> CAN Baud Rate Register When the UBR flag is set to '0' and the UBRN flag is set to '1' the bits 0... 23 represent the baud rate as a numerical value in bits per second.

INFORMATION

When using the UBRN flag the BTR values are generated and may deviate from the values in the baud rate table.

UBR and UBRN cannot be set at the same time!

Listen Only Mode

This mode was developed for the purpose of CAN bus monitoring without effecting other CAN nodes. Combined with the baud rate setting it serves the implementation of 'hot plugging'.

With the Listen Only Mode (LOM) flag set to '0' the CAN controller works in regular active mode using the bit rate, which implies that messages can be received and transmitted.

Setting the LOM flag to '1' causes the CAN controller to operate in Listen Only Mode using the bit rate and can only receive messages.

5.2 EoE

The CAN-EtherCAT supports three different EoE modes, it is selected by the master sending the EoE configuration. (Fig. 36 and Fig. Fehler: Referenz nicht gefunden show configuration tool samples)

5.2.1 Switch Port Mode

This is the default mode, it is enabled when no EoE configuration is received. (i.e. usually configuration tools don't send a configuration when this mode is selected) This mode is also set when an invalid EoE configuration is received.

Every Ethernet frame received from EtherCAT will be sent to Ethernet interface and vice versa.

5.2.2 IP Port Mode

This mode is enabled when an EoE configuration is received. The EoE configuration must contain the IP address, subnet mask and default gateway. The MAC-Id value is ignored, the name server is optional.

In this mode the CAN-EtherCAT also acts as DHCP server for a single DHCP client on its Ethernet interface: The received IP configuration is offered to the DHCP client. (Therefore only one client must be connected)

5.2.3 Local IP Port Mode

This mode is enabled when an EoE configuration is received and object 0x2000.1 (see 5.1.4.1) was set to TRUE. As for the IP Port Mode the EoE configuration must contain the IP address, subnet mask and default gateway. The MAC-Id value is ignored, the name server is optional.

In this mode the CAN-EtherCAT uses the received IP configuration itself – allowing access to itsPage 52 of 92Manual • Doc. No.: C.2922.21 / Rev. 1.4CAN-EtherCAT

Webserver Interface, see chapter 6.

(As Ethernet–EtherCAT forwarding is still active this configuration should match the LAN settings the EtherCAT network is in, i.e. no duplicate IP addresses must exist, etc.)

5.2.4 Disabling EoE

The CAN-EtherCAT reads the "EoE enabled" bit from its EEPROM (cat. "General", as defined in ETG.1000.6 documents). When this is set to 0 (checked at first change to PreOp after device start up), all EoE activity will be disabled and all EoE configuration options are ignored.

N	laster Slave Pro	cess Data/Image Cyclic Commands									
ſ	General EEPROM Memory CoE Dictionary Init Commands Mailbox Process Data DC										
H	🕞 From device 🛛 🥭 To device 🛛 🥭 Direct edit 🛛 💽 New 👻 🔄 From file 🔚 To file										
I	Detailed Data Hex. Data										
H	Categories Σ Update checksum										
I		· · · · · · · · · · · · · · · · · · ·									
Ш	Edit EEPROM	Categories									
I	Type	Edit General category:									
I	General										
I	SyncManager										
I	TxPDO ByPDO	Order No.: 1 CAN-EtherCAT 2.0									
I		Name: 3 C.2922.02 EtherCAT-CAN gatew	ау								
I		СоЕ:									
I		SDO SDO info	Download								
I		Download PDO config V Upload PDO config	SDO com								
I		Other:									
I	Enable FoE Enable EoE E-Bus current										
		c Flags:									
1		SafeOp Not LRW									

Figure 28: esd EtherCAT Workbench: Where to en/disable EoE

5.3 FoE

5.3.1 Firmware Update with the esd Workbench

NOTICE

Do not interrupt the CAN-EtherCAT gateway power supply during a firmware update as this might result in unforeseeable operating conditions.

- 1. Make sure slave is connected, etc.
- 2. Set the slave in the state *Bootstrap*. Therefore choose the tab *Slave* and than *General*. *Now* click on the button *Bootstr* as described in Figure 29. The *Current state*: of the CAN-EtherCAT gateway is switched to *Bootstrap*.

Master S	ilave F	Process Data/	Image	Cyclic Co	mmands	Slave29	lave Communic	ation C	OC Diagnostics		
General	EEPRO	OM Memory	CoE	Dictionary	SoE Did	tionary	nit Commands	Mailbox	Process Data	DC	Device Specific
C.2922.02 EtherCAT-CAN gateway											
Auto	AutoInc. addr.: 0 (0x0000) Phys. addr.: 1001 (0x03e9) Manual: 2000 🖨										
	Port A: Ethemet: Connected to Master										
	Port B	:									
	Port C	: 0									
	Port D	: 0									
	Тур	e: CAN-Ethe	erCAT				Vendor	ld: 23	(esd electronic sy	stem des	ign gmbh)
Pro	duct cod	e: 34 (0x000	000022)			Revision N	o.: 1 (0	x00000001, "000	01-0000")
	Serial No	o.: XX12345	i6 (0xbd	c1e240)							
Current state: Bootstrap Clear Error Request state: Bootstr. Init PreOp SafeOp Op											
Commen	t:										
Slave cr	reated fro	om EEPROM o	data 20	16-03-21 1	0:52:49						

Figure 29: Firmware update via FoE

3. Select the tab *Slave/Mailbox* and choose the tab *FoE*. Enter "firmwareUpdate" as name of the file in the input field *FoE filename:*. The *FoE password* has to be set to "0".

EtherCAT Master	Master Slave Process Data/Image Cyclic Commands Slave2Slave Communication DC Diagnostics
Slave 1 (CAN-EtherCAT)	General EEPROM Memory CoE Dictionary SoE Dictionary Init Commands Mailbox Process Data DC Device Specific
	General Bootstrap CoE EoE FoE SoE
	FoE password: FoE filename:
	Local filename:
	[File infas]
	EtherCAT state shortcuts:
	Master to Init Slave to BootStrap
	Master to PreOp Slave to PreOp

Figure 30: FoE file transfer dialog

4. Click the button *Download to device* (see Figure 30) and select the firmware file in the Windows selection dialog that appears.

Confirm your settings with the OK button and wait until the file is transferred (a progress bar will appear and the yellow LED is flickering while the transfer is in progress)

- 5. Wait until the update procedure is completed (approx. 3 minutes)
- 6. Change to the tab CoE Dictionary under Slave.

aster Slave	e Process Data/Image Cyclic	c Commands Slave	2Slave Communication DC Dia	agnostics		
General EE	EPROM Memory CoE Diction	ary Init Commands	Mailbox Process Data DC	Device Specific		
💈 Reread a	all visible 🛛 🔀 Reread all 🛛 🎉 R	lecreate dict. 👻 🔍	<u>F</u> ilter:	🕞 Clea	ar 💈 🤇	Go to "Mailbox -> CoE
Index	Name	Туре	Current value	Value read at	Flags	-
0x1000	Device Type	UDINT	327685001 (0x13881389)	2013-03-11 06:42:27	R	
0x1008	Device Name	STRING	"MEESC"	2013-03-11 06:42:27	R	
0x1009	Hardware Version	STRING	"1.2"	2013-03-11 06:42:27	R	
0x100a	Software Version	STRING	"2.1"	2013-03-11 06:42:27	R	
0x1018	Identity	RECORD				
	[0x1018.00] {Max SubIndex}	USINT	4 (0x04)	2013-03-11 06:42:27	R	
	[0x1018.01] Vendor Id	UDINT	23 (0x0000017)	2013-03-11 06:42:27	R	
	[0x1018.02] Product Code	UDINT	2 (0x0000002)	2013-03-11 06:42:27	R	
	[0x1018.03] Revision Number	UDINT	1 (0x0000001)	2013-03-11 06:42:27	R	
	[0x1018.04] Serial Number	UDINT	3183600192 (0xbdc1e240)	2013-03-11 06:42:27	R	
0x1600	CAN RxPDO-Map	RECORD				
	[0x1600.00] {Max SubIndex}	USINT	19 (0x13)	2013-03-11 06:42:27	R	
	[0x1600.01] PDO Mapping	PDO_MAPPING	0x7000.01 (16 bit)	2013-03-11 06:42:27	R	
	[0x1600.02] PDO Mapping	PDO_MAPPING	0x7000.02 (16 bit)	2013-03-11 06:42:27	R	
	[0x1600.03] PDO Mapping	PDO_MAPPING	0x7000.03 (16 bit)	2013-03-11 06:42:27	R	
	[0x1600.04] PDO Mapping	PDO_MAPPING	0x7000.04 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.05] PDO Mapping	PDO MAPPING	0x7000.05 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.06] PDO Mapping	PDO MAPPING	0x7000.06 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.07] PDO Mapping	PDO MAPPING	0x7000.07 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.08] PDO Mapping	PDO MAPPING	0x7000.08 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.09] PDO Mapping	PDO_MAPPING	0x7000.09 (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.0a] PDO Mapping	PDO_MAPPING	0x7000.0a (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.0b] PDO Mapping	PDO MAPPING	0x7000.0b (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.0c] PDO Mapping	PDO MAPPING	0x7000.0c (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.0d] PDO Mapping	PDO MAPPING	0x7000.0d (96 bit)	2013-03-11 06:42:27	R	
	[0x1600.0e] PDO Mapping	PDO MAPPING	0x7000.0e (96 bit)	2013-03-11 06:42:27	R	
	f0v1600.0f1 PDO Manning	PDO MAPPING	0x7000 0f (96 bit)	2013-03-11 06-42-27	R	

Figure 31: CAN-EtherCAT CoE Dictionary

- 7. Click on the button *Reread all* to ensure that the current objects are displayed.
- 8. Verify the current software version in object $100A_h$, see Figure 31.

5.3.2 Firmware update with Beckhoff EtherCAT Configurator

NOTICE

Do not interrupt the CAN-EtherCAT gateway power supply during a firmware update as this might result in unforeseeable operating conditions.

- 1. Make sure slave is connected, etc.
- 2. Set slave to "Bootstrap", by button Bootstrap (Fig. 32)

 SYSTEM - Configuration Real-Time Settings Additional Tasks I/O - Configuration I/O Devices Device 1 (EtherCAT) Device 1-Image Inputs Outputs Son 1 (CAN-EtherCAT 2.0) 	General EtherCAT Process Data Startu State Machine Init Bootstrap Init Init Bootstrap Init Init Pre-Op Safe-Op Op Clear Error DLL Status Port A: Init Init Init Port A: Init Init Init Init Init Port A: Init Init Init Init Init Init Port B: Init Init <t< th=""><th>Image: point of the point</th></t<>	Image: point of the point

Figure 32: Firmware update by FoE

- 3. Click the Download... button and select the firmware file you received in the Windows file selection dialog that appears
- 4. Now a file transfer dialog (Fig. 33) will appear: Set the file name string to "firmwareUpdate" and leave the password at "00000000"

Edit FoE Name		
String:	firmwareUpdate	ОК
Hex:	66 69 72 6D 77 61 72 65 55 70 64 61 74 65	Cancel
Length:	14	
Password (hex):	0000000	

Figure 33: FoE file transfer dialog

- 5. Click OK and wait until the file is transferred (a progress bar will appear and the yellow LED is flickering while the transfer is in progress)
- 6. Wait until the update is applied, approx. 3 minutes
- 7. Now click "Reload I/O Devices" 🚵 in the Configurator toolbar (activating "Free run" is not needed) and switch to the "CoE Online" tab page.

 Verify the current version in object 100A_h, Fig. 34 (Make sure you're actually seeing online data: uncheck "Show Offline Data", and perhaps do "Reload I/O Devices" again, etc.)

eneral EtherC	AT Process Data Startup CoE -	Online Online		
Update	List 🗌 Auto Update 🔽	Single Update 📃	Show Offline Data	
Advance	ed All Objects			
Add to Sta	Online Data	Module OD (Ad	E Port): 0	
Index	Name	Flags	Value	
1000	Device Type	RO	0x13881389 (327685001)	
1008	Device Name	RO	MEESC	
1009	Hardware Version	RO	1.2	
100A	Software Version	RO	2.0	
÷ 1018:0	Identity	RO	> 4 <	
± 1600:0	CAN RxPDO-Map	RO	> 19 <	
🕂 1A00:0	CAN TxPDO-Map	RO	> 20 <	
+ 1A85:0	CAN Status PDO	RO	> 14 <	
± 1C00:0	SM types	RO	> 4 <	
. 1C12:0	RxPDO assign	RW	>1<	
🗄 1C13:0	TxPDO assign	RW	>1<	
÷ 2000:0	Other Settings	RO	>1<	
÷ 6000:0	CAN 11bit Rx message queue	RO	> 20 <	
÷ 6001:0	CAN 29bit Rx message queue	RO	> 20 <	~

Figure 34: CAN-EtherCAT CoE dict., Software/Firmware version selected

6. Webserver Interface

To access the Webserver the CAN-EtherCAT has to be in "Local IP Port Mode", see section 5.2.3. (EoE itself requires the EtherCAT device state "Operational")

Make sure the IP settings assigned to the CAN-EtherCAT match the settings that are used by the system that shall access it, e.g. no IP address conflicts must occur etc.

Master Slave Process	Data/Image Cyclic Commands
General EEPROM M	emory CoE Dictionary Init Commands Mailbox P
General Bootstrap C	CoE EoE
 Switch port 	
 IP port 	
Auto config by	master presets
MAC Id:	00-02-27-ee-00-01
DNS name:	
Use DHCP	
IP address:	10.0.1.42
Subnet mask:	255.255.0.0
Default gateway:	10.0.1.1
DNS server:	10.0.1.1

Figure 35: esd EtherCAT Workbench: Sample IP settings for the CAN-EtherCAT

∃ General	EoE	
Behavior Timeout Settings FMMU / SM Init Commands Mailbox COE FOE EOE	Virtual Ethemet Port Virtual MAC Id: Switch Port IP Port DHCP	02 01 05 10 03 e9
Ð Distributed Clock Ð ESC Access	● IP Address Subnet Mask: Default Gateway: DNS Server: DNS Name:	10.0.1.42 255.255.0.0 10.0.1.1 10.0.1.1

6.1 Firmware Update

The CAN-EtherCAT gateway uses an internal HTTP server. Through means of a standard web browser it allows firmware updates and the display of CAN status information.

Just enter the IP address that was assigned to the CAN-EtherCAT in the web browser at the device that is connected to the CAN-EtherCAT. (e.g. http://10.0.1.42 for the sample screen shots above)

6.1.1 Overview

The browser window provides a menu on the left hand side of the screen.

EtherCAT-CAN-G	ateway	esd gmbh, Hannover
Overview		
Overview		
Configuration	Firmware Version 1.0	
Firmware update		
Reboot		
Status		
CAN		
Information		
Contact		
഻		
esd electronic system design gmbh		

Figure 37: Overview

6.1.2 Firmware Update

In order to initiate a firmware update click the corresponding menu item Firmware Update.

Figure 38: Firmware update

The upload of the file is handled through the web browser. Enter the file name or click the Choose... command button to select a file name.

The firmware update starts after confirmation of the entry with the command button Submit. This procedure will take some time. The progress of the update is recorded.

NOTICE

Do not interrupt the CAN-EtherCAT gateway power supply during a firmware update as this might result in unforeseeable operating conditions.

Example of a firmware update:

EtherCAT-CAN-Ga	ateway esd gmbh, Hannover
Overview Overview	Firmware Update
Configuration Firmware update	This page is intended to upload new software to the EtherCAT-CAN-Gateway.
Reboot Status	Important: After clicking the Submit button it can take some time until the update is finished. Usually you just have to wait, but if your browser times out you have to relead this page by clicking the Eirmy are Update link on the left.
CAN Information	Updating now
Contact	End of file found. All good. Unpacking updater. Please wait img_upd.raw tar: img_upd.raw: time stamp 2010-07-26 16:55:19 is 1280162283.074035927 s in the future Flashing updater and rebooting
ൟഁ	Please be patient after clicking "Submit", do not power off the device!
esd electronic system design gmbh	

Figure 39: Firmware update output

Please wait until the firmware update is finished, which may take several minutes.

When finished the system will initiate an automatic restart.

6.1.3 Reboot

To initiate a system restart choose the menu item *Reboot*; then click the **Reboot** now command button.

Figure 40: Reboot

6.2 Status

6.2.1 CAN Statistics

Click the CAN menu item to access the CAN bus statistics.

Figure 41: CAN status output

7. Technical Data

7.1 General Technical Data

Power supply voltage	Nominal voltage: typical: 24 V/DC, (min.: 18 V, max.: 32 V) Current consumption: (24 V, 20 °C): typ. 150 mA		
Connectors	24V	24 V-power supply voltage (X1, 4-pin. COMBICON- connector with spring-cage connection)	
	CAN	CAN Bus interface (X2, 5-pin Phoenix Contact MC 1,5/5-GF-3,81)	
	IN/OUT	EtherCAT interface (X3A/B, 2x RJ45 socket)	
	ETH	Ethernet interface (X5, 8-pin. RJ45 socket)	
	InRailBus	CAN Bus interface and power supply voltage via InRailBus (X6, 5-pin TBUS-connector, accessory)	
	Only for ma	anufacturing purposes:	
	DIAG	DIAG interface (X4, USB connector type-B)	
Temperature range	0 °C 50	°C ambient temperature	
Humidity	max. 90%, non-condensing		
Pollution degree	maximum permissible according to DIN EN 61131-2: Pollution Degree 2		
Dimensions	Width: 22.5	Width: 22.5 mm, Height: 114.5 mm, Depth: 99 mm	
Weight	130 g	130 g	

Table 11: General data of the module

7.2 Microprocessor and Memory

CPU	ARM9-Prozessor, 240 MHz, AT91SAM9263
Data Flash	1 MB
NAND Flash	256 MB
SDRAM	32 MB

Table 12: Microprocessor and memory

7.3 CAN Interface

Number of CAN interfaces	1x CAN
CAN controller	integrated in CPU
CAN protocol	according to ISO 11898-1
Physical layer	High-speed CAN interface according to ISO 11898-2, bit rate from 50 kBit/s up to 1 Mbit/s
Electrical isolation	Isolation voltage U: 500 V (= withstand-impulse voltage according to DIN EN 60664-1)
Bus termination	terminating resistor has to be set externally, if required
Connector	CAN, 5-pin COMBICON (X2)

Table 13: Data of the CAN interface

7.4 EtherCAT Interface

Number of interfaces	1
Controller	Beckhoff ET1100
Bit rate	100BASE-TX, 100 Mbit/s
Connection	Twisted Pair (compatible to IEEE 802.3), 100BASE-TX
Electrical isolation	via transformer
Connector	2x RJ-45-socket with integrated LEDs in the front panel IN (X3B), OUT (X3A)

Table 14: Data of the EtherCAT interface

7.5 Ethernet Interface

Number of Ethernet interfaces	1
Bit rate	10BASE-T, 100BASE-TX, 10/100 Mbit/s
Connection	Twisted Pair (compatible to IEEE 802.3), 100BASE-TX,
Electrical isolation	via transformer
Connector	RJ-45-socket with integrated LEDs in the front panel (X5)

Table 15: Data of the Ethernet interface

7.6 DIAG, USB Interface

Design	USB, for manufacturing purposes only
USB interface	USB 2.0, Full-Speed, 12 Mbit/s
Connector	DIAG (X4), USB type B connector

Table 16: Data of the USB interface

7.7 Operating System and License Information

Operating system	QNX 6.5 (Firmware 1.0: QNX 6.4)
------------------	---------------------------------

Bootloader	U-Boot
License information	This product uses the open source-bootloader "Das U-Boot". The U-Boot- source code is released under the terms of the GNU Public License (GPL). The complete text of the license is contained in the esd-document "3rd Party Licensor Notice" as part of the product documentation. esd provides the complete bootloader-source code on request. esd strives to restore all changes on the bootloader into the official sources. The homepage of the U-Boot project is: http://www.denx.de/wiki/U-Boot .

HTTP server	thttpd - tiny/turbo/throttling HTTP server	
Copyright Information	Copyright (C) 1995,1998,1999,2000,2001 by Jef Poskanzer <jef@mail.acme.com>. All rights reserved.</jef@mail.acme.com>	
	Redistribution and use in source and binary forms, with or without modification, are permitted provide	
	 Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 	
	2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.	
	THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.	

8. Interfaces and Connector Assignments

8.1 24 V-Power Supply Voltage

The power supply voltage can be fed via connector X1 or optional via InRailBus (connector assignment see page 86)

Device socket:	Phoenix Contact MSTBO 2,5/4-G1L-KMGY
Line connector:	Phoenix Contact FKCT 2,5/4-ST, 5.0 mm pitch,
	spring cage connection,
	Phoenix Contact order No.: 19 21 90 0 (included in the scope of delivery)

Pin Position:

Pin Assignment:

Labelling of			24V		
the CAN-EtherCAT	-	-	М	Р	
Connector label	(free)	(free)	-	+	
Pin-Nr.	1	2	3	4	
Signal	P24 (+ 24 V)	M24 (GND)	M24 (GND)	P24 (+ 24 V)	

Please refer to the connecting diagram page 11.

The pins 1 and 4 are connected internally. The pins 2 and 3 are connected internally.

NOTICE

Feeding through the +24V power supply voltage can cause damage on the modules. It is not permitted to feed through the power supply voltage through the connector X1 and to supply the power supply voltage to another CAN module station!

Signal Description:

- P24... power supply voltage +24 V \pm 10 %
- M24... reference potential

8.2 CAN

8.2.1 CAN Interface

The CAN bus signals are electrically isolated from the other signals via digital isolator and DC/DC-converter.

Figure 42: CAN-Interface

The CAN interface can be connected via CAN connector (X2) or optionally via InRailBus (connector assignment see page 86).

8.2.2 CAN Connector

Device connector : Phoenix Contact MC 1,5/5-GF-3,81 Line connector: Phoenix Contact FK-MCP 1,5/5-STF-3,81, spring-cage connection Phoenix Contact Order No.: 1851261 (included in delivery)

Pin Position:

Pin Assignment:

(device connector view)	Pin	Signal
	1	CAN_GND
L	2	CAN_L
Sh	3	Shield
	4	CAN_H
	5	-

Signal description:

CAN_L, CAN_H ... CAN signals CAN_GND ... reference potential of the local CAN physical layer Shield ... pin for line shield connection (using hat rail mounting direct contact to the mounting rail potential) - ... not connected

Recommendation of an adapter cable from 5-pin COMBICON (here line connector FK-MCP1,5/5-STF_3,81 with spring-cage-connection) to 9-pin DSUB:

8.3 24 V and CAN via InRailBus

Power supply voltage and CAN can optionally be fed via InRailBus.

Use the mounting-rail bus connector of the CBX-InRailBus for the connection via the InRailBus, see order information (page 92).

Read and follow the instructions for connecting power supply and CAN signals via InRailBus (see page 87)!

8.4 Ethernet 100BASE-TX (IEEE 802.3)

Device connector: RJ45 socket, 8-pin, according to IEEE 802.3-2008, Table 25-3 'UTP MDI contact assignment'

The ports have an identical pin assignment.

Pin Position:

Pin Assignment:

Pin	Signal	Meaning
1	MDI0+ (TxD+)	Transmit Data +
2	MDI0- (TxD-)	Transmit Data -
3	MDI1+ (RxD+)	Receive Data +
4	-	-
5	-	-
6	MDI1- (RxD-)	Receive Data -
7	-	-
8	-	-

S	Shield	
---	--------	--

Pin 1 to 8 are connected to a line termination.

Signal Description:

MDI0+/-, MDI0+/-,	
MDI1+/-, MDI1+/	EtherCAT data lines
	reserved for future applications, do not connect!
Shield	line shield connection (using hat rail mounting direct contact to the mounting rail potential)

NOTICE

Permissible cables: To ensure function in networks with up to 100 MBit/s cables of Cat. 5e or better have to be used. To ensure the EC Conformity cables with shielding SF/UTP or better have to be used.
8.5 EtherCAT

Device connector: RJ45 socket, 8-pin, according to IEEE 802.3-2008, Table 25-3 'UTP MDI contact assignment'

The ports have an identical pin assignment.

Pin Position:

Pin Assignment:

Pin	Signal	Meaning
1	MDI0+ (TxD+)	Transmit Data +
2	MDI0- (TxD-)	Transmit Data -
3	MDI1+ (RxD+)	Receive Data +
4	-	-
5	-	-
6	MDI1- (RxD-)	Receive Data -
7	-	-
8	-	-

S	Shield	

Pin 1 to 8 are connected to a line termination.

Signal Description:

MDI0+/-, MDI0+/-,	
MDI1+/-, MDI1+/	EtherCAT data lines
	reserved for future applications, do not connect!
Shield	line shield connection (using hat rail mounting direct contact to the mounting rail potential)

NOTICE

Permissible cables: To ensure function in networks with up to 100 MBit/s cables of Cat. 5e or better have to be used. To ensure the EC Conformity cables with shielding SF/UTP or better have to be used.

8.6 DIAG

The USB interface DIAG does not fulfill a function and is only used for manufacturing purposes.

NOTICE The CAN-Ethe

The CAN-EtherCAT may only be operated with USB nets with USB interfaces with versions 1.1 or 2.0! Operability can only be guaranteed for these USB interfaces.

Pin Position:

Pin Assignment:

Pin	Signal	
1	V _{BUS}	
2	D-	
3	D+	
4	GND	
Shell	Shield	

USB socket (type B)

8.7 Conductor Connection/Conductor Cross Sections

The following table contains an extract of the technical data of the cable plugs.

	Connector Type ¹		
Characteristics	Power Supply Voltage 24 V	CAN Connector	
Connector type plug component (Range of articles)	FKCT 2,5/ST KMGY	FK-MCP 1,5/5-STF- 3,81	
Connection method	spring-cage connection	screw connection	
Stripping length	10 mm	9 mm	
Conductor cross section solid min. / max.	0.2 / 2.5 mm ²	0.14 / 1.5 mm²	
Conductor cross section stranded min. / max.	0.2 / 2.5 mm ²	0.14 / 1.5 mm²	
Conductor cross section stranded, with ferrule without plastic sleeve min. / max.	0.25 / 2.5 mm²	0.25 / 1.5 mm²	
Conductor cross section stranded, with ferrule with plastic sleeve min. / max.	0.25 / 2.5 mm²	0.25 / 0.5 mm²	
Conductor cross section AWG/kcmil min. / max.	24 / 12	26 / 16	
2 conductors with same cross section, without TWIN ferrules with plastic sleeve	not allowed	not allowed	
2 conductors with same cross section, stranded, TWIN ferrules with plastic sleeve, min./ max.	0.5 / 1.0 mm²	not allowed	
Minimum AWG according to UL/cUL	26	28	
Maximum AWG according to UL/cUL	12	16	

¹ Technical Data from Phoenix Contact website, printed circuit board connector, plug component

9. Correct Wiring of Electrically Isolated CAN Networks

For the CAN wiring all applicable rules and regulations (EU, DIN), e.g. regarding electromagnetic compatibility, security distances, cable cross-section or material, have to be observed.

9.1 Standards concerning CAN Wiring

The flexibility in CAN network design is one of the key strengths of the various extensions and additional standards like e.g. CANopen, ARINC825, DeviceNet and NMEA2000 that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898. They have made system level tradeoffs for data rate, cable length, and parasitic loading of the bus.

However for CAN network design margin must be given for signal loss across the complete system and cabling, parasitic loadings, network imbalances, ground offsets against earth potential and signal integrity. Therefore the practical maximum number of nodes, bus length and stub length are typically much lower.

esd has concentrated her recommendations concerning CAN wiring on the specifications of the ISO 11898-2. Thus this wiring hints forgoes to describe the special features of the derived standards CANopen, ARINC825, DeviceNet and NMEA2000.

The consistent compliance to ISO 11898-2 offers significant advantages:

- Durable operation due to well proven design specifications
- Minimizing potential failures due to sufficient margin to physical limits
- Trouble-free maintenance during future network modifications or during fault diagnostics due to lack of exceptions

Of course reliable networks can be designed according the specifications of CANopen, ARINC825, DeviceNet and NMEA2000, however it must be observed that it is strictly not recommended to mix the wiring guidelines of the various specifications!

9.2 Light Industrial Environment (Single Twisted Pair Cable)

9.2.1 General Rules

NOTICE

esd grants the EU Conformity of the product, if the CAN wiring is carried out with at least single shielded **single** twisted pair cables that match the requirements of ISO 11898-2. Single shielded *double* twisted pair cable wiring as described in chapter 9.3. ensures the EU Conformity as well.

The following **general rules** for CAN wiring with single shielded *single* twisted pair cable should be followed:

1	A cable type with a wave impedance of about 120 $\Omega \pm 10\%$ with an adequate conductor cross-section ($\geq 0.22 \text{ mm}^2$) has to be used. The voltage drop over the wire has to be considered.
2	For light industrial environment use at least a two-wire CAN cable. Connect
	 the two twisted wires to the data signals (CAN_H, CAN_L) and the cable shield to the reference potential (CAN_GND).
3	The reference potential CAN_GND has to be connected to the functional earth (FE) at exactly one point.
4	A CAN net must not branch (exception: short cable stubs) and has to be terminated with the characteristic impedance of the line (generally 120 $\Omega \pm 10\%$) at both ends (between the signals CAN_L and CAN_H and not at CAN_GND).
5	Keep cable stubs as short as possible (I < 0.3 m).
6	Select a working combination of bit rate and cable length.
7	Keep away cables from disturbing sources. If this cannot be avoided, double shielded wires are recommended.

Figure 43: CAN wiring for light industrial environment

9.2.2 Cabling

• To connect CAN devices with just one CAN connector per net use a short stub (< 0.3 m) and a T-connector (available as accessory). If this devices are located at the end of the CAN network, the CAN terminator "CAN-Termination-DSUB9" can be used.

Figure 44: Example for proper wiring with single shielded single twisted pair wires

9.2.3 Termination

- A termination resistor has to be connected at both ends of the CAN bus. If an integrated CAN termination resistor which is equipped at the CAN interface at the end of the bus is connected, this one has to be used for termination instead of an external CAN termination plug.
- 9-pin DSUB-termination connectors with integrated termination resistor and male and female contacts are available from esd (order no. C.1303.01).
- DSUB termination connectors with male contacts (order no. C.1302.01) or female contacts (order no. C.1301.01) and additional functional earth contact are available, if CAN termination <u>and grounding</u> of CAN_GND is required.

9.3 Heavy Industrial Environment (Double Twisted Pair Cable)

9.3.1 General Rules

The following **general rules** for the CAN wiring with single shielded *double* twisted pair cable should be followed:

1	A cable type with a wave impedance of about 120 $\Omega \pm 10\%$ with an adequate conductor cross-section ($\geq 0.22 \text{ mm}^2$) has to be used. The voltage drop over the wire has to be considered.
2	For heavy industrial environment use a four-wire CAN cable. Connect
	 two twisted wires to the data signals (CAN_H, CAN_L) and the other two twisted wires to the reference potential (CAN_GND) and the cable shield to functional earth (FE) at least at one point.
3	The reference potential CAN_GND has to be connected to the functional earth (FE) at exactly one point.
4	A CAN bus line must not branch (exception: short cable stubs) and has to be terminated with the characteristic impedance of the line (generally 120 Ω ±10%) at both ends (between the signals CAN_L and CAN_H and not to CAN_GND).
5	Keep cable stubs as short as possible (I < 0.3 m).
6	Select a working combination of bit rate and cable length.
7	Keep away CAN cables from disturbing sources. If this can not be avoided, double shielded cables are recommended.
	I

Figure 45: CAN wiring for heavy industrial environment

9.3.2 Device Cabling

NOTICE

If single shielded *double* twisted pair cables are used, realize the T-connections by means of connectors that support connection of two CAN cables at one connector where the cable's shield is looped through e.g. DSUB9 connector from ERNI (ERBIC CAN BUS MAX, order no.:154039).

The usage of esd's T-connector type C.1311.03 is not recommended for single shielded *double* twisted pair cables because the shield potential of the conductive DSUB housing is not looped through this T-connector type.

If a mixed application of single twisted and double twisted cables is unavoidable, take care that the CAN GND line is not interrupted!

Figure 46: Example of proper wiring with single shielded double twisted pair cables

9.3.3 Termination

- A termination resistor has to be connected at both ends of the CAN bus. If an integrated CAN termination resistor which is equipped at the CAN interface at the end of the bus is connected, this one has to be used for termination instead of an external CAN termination plug.
- 9-pin DSUB-termination connectors with integrated termination resistor and male and female contacts are available from esd (order no. C.1303.01).
- 9-pin DSUB-connectors with integrated switchable termination resistor can be ordered e.g. from ERNI (ERBIC CAN BUS MAX, female contacts, order no.:154039).

9.4 Electrical Grounding

- For CAN devices with electrical isolation the CAN_GND must be connected between the CAN devices.
- CAN_GND should be connected to the earth potential (FE) at **exactly one** point of the network.
- Each CAN interface with electrical connection to earth potential acts as a grounding point. For this reason it is recommended not to connect more than one CAN device with electrical connection to earth potential.
- Grounding can be made e.g. at a termination connector (e.g. order no. C.1302.01 or C.1301.01).

9.5 Bus Length

NOTICE

Please note that the cables, connectors and termination resistors used in CANopen networks shall meet the requirements defined in ISO11898-2. In addition, further recommendations of the CiA, like standard values of the cross section, depending on the cable length, are described in the CiA recommendation CiA 303-1 (see CiA 303 CANopen Recommendation - Part 1: "Cabling and connector pin assignment", Version 1.8.0, Table 2).

Bit-Rate [kbit/s]	Theoretical values of reachable wire length with esd interface I _{max} [m]	CiA recommendations (07/95) for reachable wire lengths I _{min} [m]	Standard values of the cross-section according to CiA 303-1 [mm ²]
1000	37	25	0,25 to 0,34
800	59	50	
666,6	80	-	
500	130	100	0,34 to 0,6
333,3	180	-	
250	270	250	
166	420	-	
125	570	500	0,5 10 0,6
100	710	650	
83,3	850	-	0.75 to 0.8
66,6	1000	-	0,75100,8
50	1400	1000	
33,3	2000	-	
20	3600	2500	not defined in
12,5	5400	-	CiA 303-1
10	7300	5000	

Table 17: Recommended cable lengths at typical bit rates (with esd-CAN interfaces)

• Optical couplers are delaying the CAN signals. esd modules typically reach a wire length of 37 m at 1 Mbit/s within a proper terminated CAN network without impedance disturbances like e.g. caused by cable stubs > 0.3 m.

9.6 Examples for CAN Cables

esd recommends the following two-wire and four-wire cable types for CAN network design. These cable types are used by esd for ready-made CAN cables, too.

9.6.1 Cable for light industrial Environment Applications (Two-Wire)

Manufacturer	Cable Type		
U.I. LAPP GmbH Schulze-Delitzsch-Straße 25 70565 Stuttgart Germany www.lappkabel.com	e.g. UNITRONIC ®-BUS CAN UL/CSA (1x 2x 0.22 (UL/CSA approved) UNITRONIC ®-BUS-FD P CAN UL/CSA (1x 2 (UL/CSA approved)) Part No.: 2170260 x 0.25) Part No.: 2170272	
ConCab GmbH Äußerer Eichwald 74535 Mainhardt Germany www.concab.de	e. g. BUS-PVC-C (1x 2x 0.22 mm²) BUS-Schleppflex-PUR-C (1x 2x 0.25 mm²)	Order No.: 93 022 016 (UL appr.) Order No.: 94 025 016 (UL appr.)	

9.6.2 Cable for heavy industrial Environment Applications (Four-Wire)

Manufacturer	Cable Type	
U.I. LAPP GmbH Schulze-Delitzsch-Straße 25 70565 Stuttgart Germany www.lappkabel.com	e.g. UNITRONIC ®-BUS CAN UL/CSA (2x 2x 0.22 (UL/CSA approved) UNITRONIC ®-BUS-FD P CAN UL/CSA (2x 22 (UL/CSA approved)) Part No.: 2170261 x 0.25) Part No.: 2170273
ConCab GmbH Äußerer Eichwald 74535 Mainhardt Germany www.concab.de	e. g. BUS-PVC-C (2x 2x 0.22 mm²) BUS-Schleppflex-PUR-C (2x 2x 0.25 mm²)	Order No.: 93 022 026 (UL appr.) Order No.: 94 025 026 (UL appr.)

INFORMATION

Ready-made CAN cables with standard or custom length can be ordered from esd.

10. CAN Troubleshooting Guide

The CAN Troubleshooting Guide is a guide to find and eliminate the most frequent hardware-error causes in the wiring of CAN networks.

Figure 47: Simplified diagram of a CAN network

10.1 Termination

The termination is used to match impedance of a node to the impedance of the transmission line being used. When impedance is mismatched, the transmitted signal is not completely absorbed by the load and a portion is reflected back into the transmission line. If the source, transmission line and load impedance are equal these reflections are avoided. This test measures the series resistance of the CAN data pair conductors and the attached terminating resistors.

To test it ,please

- 1. Turn off all power supplies of the attached CAN nodes.
- 2. Measure the DC resistance between CAN_H and CAN_L at one end of the network ① (see figure above).

The measured value should be between 50 Ω and 70 $\Omega.$

If the value is below 50 Ω , please make sure that:

- there is no **short circuit** between CAN_H and CAN_L wiring
- there are not more than two terminating resistors connected
- the nodes do not have faulty transceivers.

If the value is higher than 70 Ω , please make sure that:

- there are no open circuits in CAN_H or CAN_L wiring
- your bus system has two terminating resistors (one at each end) and that they are 120 Ω each.

10.2 Electrical Grounding

The CAN_GND of the CAN network should be connected to the functional earth potential (FE) at only **one** point. This test will check if the CAN_GND is grounded in several places. To test it, please

- 1. Disconnect the CAN_GND from the earth potential (FE).
- 2. Measure the DC resistance between CAN_GND and earth potential (see figure on the right).
- 3. Reconnect CAN_GND to earth potential.

Figure 48: Simplified schematic diagram of ground test measurement

The measured resistance should be higher than 1 M Ω . If it is lower, please search for additional grounding of the CAN_GND wires.

10.3 Short Circuit in CAN Wiring

A CAN bus might possibly still be able to transmit data if there is a short circuit between CAN_GND and CAN_L, but generally the error rate will increase strongly. Make sure that there is no short circuit between CAN_GND and CAN_L!

10.4 CAN_H/CAN_L-Voltage

Each node contains a CAN transceiver that outputs differential signals. When the network communication is idle the CAN_H and CAN_L voltages are approximately 2.5 V measured to CAN_GND. Faulty transceivers can cause the idle voltages to vary and disrupt network communication.

To test for faulty transceivers, please

- 1. Turn on all supplies.
- 2. Stop all network communication.
- 3. Measure the DC voltage between CAN_H and CAN_GND (2) (see figure at previous page).
- 4. Measure the DC voltage between CAN_L and CAN_GND ③ (see figure at previous page).

Normally the voltage should be between 2.0 V and 3.0 V.

If it is lower than 2.0 V or higher than 3.0 V, it is possible that one or more nodes have faulty transceivers. For a voltage lower than 2.0 V please check CAN_H and CAN_L conductors for continuity.

To find the node with a faulty transceiver within a network please test the CAN transceiver resistance (see below) of the nodes.

10.5 CAN Transceiver Resistance Test

CAN transceivers have circuits that control CAN_H and CAN_L. Experience has shown that electrical damage of the circuits may increase the leakage current in these circuits.

To measure the current leakage through the CAN circuits, please use a resistance measuring device and:

- 1. Switch **off** the node and **disconnect** it from the network (4) (see figure below).
- 2. Measure the DC resistance between CAN_H and CAN_GND (5) (see figure below).
- 3. Measure the DC resistance between CAN_L and CAN_GND (6) (see figure below).

The measured resistance has to be about 500 k Ω for each signal. If it is much lower, the CAN transceiver it is probably faulty.

Another indication for a faulty transceiver is a very high deviation between the two measured input resistances (>> 200 %).

Figure 49: Measuring the internal resistance of CAN transceivers

10.6 Support by esd

If you have executed the fault diagnostic steps of this troubleshooting guide and you even can not find a solution for your problem our support department will be able to assist. Please contact our support via email at **support@esd.eu** or by phone **+40-511-37298-130**.

11. Option InRailBus

11.1 Connector Assignment 24V and CAN via InRailBus

Connector type: InRailBus PCB direct plug-in mount CAN-CBX-TBUS (Phoenix Contact ME 22,5 TBUS 1,5/5-ST-3,81 KMGY)

Connector View:

Pin Assignment:

Pin	Signal	
5	M24 (GND)	
4	P24 (+24 V)	
3	CAN_GND	
2	CAN_L	
1	CAN_H	

S	FE	(PE_GND)
---	----	----------

Signal Description:

CAN_L, CAN_H ... CAN signals CAN_GND ... reference potential of the local CAN-Physical layers P24... power supply voltage +24 V M24... reference potential FE... functional earth contact (EMC) (connected to mounting rail potential)

11.2 Using InRailBus

INFORMATION

This chapter describes the installation when using the InRailBus for CAN-CBX-modules. For the CAN-EtherCAT gateway the following chapters apply accordingly.

11.2.1 Installation of the Module Using InRailBus Connector

If the CAN bus signals and the power supply voltage shall be fed via the InRailBus, please proceed as follows:

Figure. 50: Mounting rail with bus connector

- 1. Position the InRailBus connector on the mounting rail and snap it onto the mounting rail using slight pressure. Plug the bus connectors together to contact the communication and power signals (in parallel with one). The bus connectors can be plugged together before or after mounting the CAN-CBX modules.
- 2. Place the CAN-CBX module with the DIN rail guideway on the top edge of the mounting rail.

Figure. 51: Mounting CAN-CBX modules

Option InRailBus

- 3. Swivel the CAN-CBX module onto the mounting rail in pressing the module downwards according to the arrow as shown in figure 51. The housing is mechanically guided by the DIN rail bus connector.
- 4. When mounting the CAN-CBX module the metal foot catch snaps on the bottom edge of the mounting rail. Now the module is mounted on the mounting rail and connected to the InRailBus via the bus connector. Connect the bus connectors and the InRailBus, if not already done.

Figure. 52: Mounted CAN-CBX module

11.2.2 Connecting Power Supply and CAN Signals to CBX-InRailBus

To connect the power supply and the CAN-signals via the InRailBus, a terminal plug is needed. The terminal plug is not included in delivery and must be ordered separately (order no.: C.3000.02, see order information for InRailBus Accessories, page 92).

Figure. 53: Mounting rail with InRailBus and terminal plug

Plug the terminal plug into the socket on the right of the mounting-rail bus connector of the InRailBus, as described in Figure 53. Then connect the CAN interface and the power supply voltage via the terminal plug.

11.2.3 Connection of the Power Supply Voltage

NOTICE

It is **not permissible** to feed through the power supply voltage through the CBX station and to supply it to another CBX station via 24V connector! A feed through of the +24 V power supply voltage can cause damage on the CBX modules.

11.2.4 Connection of CAN

Figure. 55: Connecting the CAN signals to the CAN-CBX station

Generally the CAN signals can be fed via the CAN connector of the first CAN-CBX module of the CBX station. The signals are then connected through the CAN-CBX station via the InRailBus. To lead through the CAN signals the CAN bus connector of the last CAN-CBX module of the CAN-CBX station has to be used. The CAN connectors of the CAN-CBX modules which are not at the ends of the CAN-CBX station <u>must not</u> be connected to the CAN bus, because this would cause incorrect branching.

A bus termination must be connected to the CAN connector of the CAN-CBX module at the end of the CBX-InRailBus (see Fig. 55), if the CAN bus ends there.

11.3 Remove the CAN-CBX Module from InRailBus

If the CAN-CBX module is connected to the InRailBus please proceed as follows:

Release the module from the mounting rail in moving the foot catch (see Fig. 52) downwards (e.g. with a screwdriver). Now the module is detached from the bottom edge of the mounting rail and can be removed.

INFORMATION

It is possible to remove individual devices from the whole without interrupting the InRailBus connection, because the contact chain will not be interrupted.

12. Declaration of Conformity

EU-KONFORMITÄTSERKLÄRUNG EU DECLARATION OF CONFORMITY

Adresse esd electronic system design gmbh Address Vahrenwalder Str. 207 30165 Hannover Germany

esd erklärt, dass das Produkt esd declares, that the product

CAN-EtherCAT

Typ, Modell, Artikel-Nr. *Type, Model, Article No.* **C.2922.02**

die Anforderungen der Normen fulfills the requirements of the standards	EN 61000-6-2:2005, EN 61000-6-4:2007+A1:2011		
gemäß folgendem Prüfbericht erfüllt. according to test certificate.	H-K00-0336-09, H-Z01-0336-14		
Das Produkt entspricht damit der EU-Richtlinie "EMV" Therefore the product conforms to the EU Directive 'EMC'	2014/30/EU		
Das Produkt entspricht der EU-Richtlinie "RoHS" The product conforms to the EU Directive 'RoHS'	2011/65/EU		
Diese Erklärung verliert ihre Gültigkeit, wenn das Produkt nicht den Herstellerunterlagen			

Diese Erklärung verliert ihre Gültigkeit, wenn das Produkt nicht den Herstellerunterlagen entsprechend eingesetzt und betrieben wird, oder das Produkt abweichend modifiziert wird. *This declaration loses its validity if the product is not used or run according to the manufacturer's documentation or if non-compliant modifications are made.*

Name / *Name* Funktion / *Title* Datum / *Date* T. Ramm CE-Koordinator / *CE Coordinator* Hannover, 2015-02-12

Rechtsgültige Unterschrift / authorized signature

I:\Texte\Doku\MANUALS\CAN\CAN-EtherCAT\Konformitätserklärung\CAN-EtherCAT_EU-Konformitaetserklaerung_2015-02-12.odt

13. Order Information

Туре	Properties	Order No.
CAN-EtherCAT	EtherCAT/CAN gateway, documentation and EtherCAT Slave Information (ESI) file on CD	C.2922.02
Accessories		
CAN-CBX- TBUS	Mounting-rail bus connector of the CBX-InRailBus for CAN-CBX modules (order separately)	C.3000.01
CAN-CBX- TBUS- Connector	Terminal plug of the CBX-InRailBus for the connection of the +24V power supply voltage and the CAN interface Female type	C.3000.02
CAN-CBX- TBUS- Connection adapter	Terminal plug of the CBX-InRailBus for the connection of the +24V power supply voltage and the CAN- Interface Male type	C.3000.03

Table 18: Order information

PDF Manuals

Manuals are available in English and usually in German as well. Available manuals are listed in the following table

Please download the manuals as PDF documents from our esd website www.esd.eu for free.

Manuals		Order No.
CAN-EtherCAT-MD	Manual in German	C.2922.20
CAN-EtherCAT-ME	Manual in English	C.2922.21

Table 19: Available manuals

Printed Manuals

If you need a printout of the manual additionally, please contact our sales team: sales@esd.eu for a quotation. Printed manuals may be ordered for a fee.