
NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 1 of 218

NTCAN

Part 2:
Installation, Configuration and

Firmware Update

Installation Guide

 esd electronics gmbh

 Vahrenwalder Str. 207 • 30165 Hannover • Germany
 http://www.esd.eu
Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

Page 2 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document and assumes no
responsibility for any errors that may appear in this document. In particular descriptions and technical
data specified in this document may not be constituted to be guaranteed product features in any
legal sense.

esd reserves the right to make changes without notice to this, or any of its products, to improve
reliability, performance, or design.

All rights to this documentation are reserved by esd. Distribution to third parties, and reproduction of
this document in any form, whole or in part, are subject to esd's written approval.

© 2024 esd electronics gmbh, Hannover

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Phone: +49-511-372 98-0

Fax: +49-511-372 98-68

E-Mail: info@esd.eu

Internet: www.esd.eu

Trademark Notices

.NET: The Microsoft®.NET logo is a registered trademark of Microsoft Corporation in the United States and/or other
countries.
CiA® and CANopen® are registered community trademarks of CAN in Automation e.V..
Linux® is the registered trademark of Linus Torvalds in the United States and/or other countries.
Microsoft®, Windows®, Windows Vista®, and the Windows logo are registered trademarks of Microsoft Corporation in the
United States and/or other countries.
QNX® and Neutrino® are registered trademarks of QNX Software Systems Limited, and are registered trademarks and/or
used in certain jurisdictions.
Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and in other countries.
TENASYS® and INTIME® are registered trademarks of TenAsys Corporation.
UNIX® is a registered trademark of The Open Group in the United States and other countries.
VxWorks® is a registered trademark of Wind River Systems, Inc.

All other trademarks, product names, company names or company logos used in this manual are reserved by their
respective owners.

mailto:info@esd.eu
http://www.esd.eu/

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 3 of 218

Document file: I:\Texte\Doku\MANUALS\PROGRAM\CAN\C.2001.21_NTCAN\Installation\NTCAN_Installation_en_48.docx

Date of print: 2024-02-01

Document type
number:

DOC0800

Products covered by this document.

CAN-Driver / SDK (Driver) Revision

CAN SDK for Windows 4.x.y

Windows 95/98/ME VxD-Driver 1.x.y

Windows NT Device Driver 2.x.y

Windows 2000
Windows XP (32/64-Bit)
Windows Vista (32/64-Bit)
Windows 7 (32/64-Bit)
Windows 8 / 8.1 (32/64-Bit)
Windows 10 (32/64-Bit)
Windows 11 (64-Bit)

2.x.y
3.x.y
4.x.y

Linux Driver (32-/64-Bit) 3.x.y
4.x.y

LynxOS Driver 1.x.y

PowerMAX OS Driver 1.x.y

Solaris-Driver 3.x.y

SGI-IRIX6.5 Driver 2.x.y

AIX Driver 1.x.y

VxWorks 5.x/6.x (Non-VxBus)
VxWorks 6.x (VxBus)
VxWorks 7.x (VxBus GEN2)

2.x.y
3.x.y
4.x.y

QNX4 Driver 2.x.y

QNX6 / QNX 7 Driver 3.x.y / 4.x.y

RTOS-UH Driver 2.x.y

RTX / RTX64 Driver 3.x.y / 4.x.y

INtime Driver 4.x.y

On Time RTOS-32 3.x.y

CAN-Hardware Order No.

EtherCAN C.2050.xx

EtherCAN/2 C.2051.xx

CAN-ISA/200 C.2011.xx

CAN-ISA/331 C.2010.xx

CAN-PC104/200 C.2013.xx

CAN-PC104/331 C.2012.xx

CAN-PCI104/200 C.2046.xx

CAN-PCI/200 C.2021.xx

CAN-PCI/266 C.2036.xx

CAN-PCI/331 C.2020.xx

CAN-PCI/360 C.2022.xx

CAN-PCI/400 C.2048.xx

CAN-PCI/402 C.2049.xx

CAN-Hardware Order No.

CAN-PCI/402-FD C.2049.xx

CAN-PCI/405 C.2023.xx

CAN-PCIe/200 C.2042.xx

CAN-PCIe/400 C.2043.xx

CAN-PCIe/402 C.2045.0x

CAN-PCIe/402-FD C.2045.xx

CAN-PCIeMini/402 C.2044.xx

CAN-PCIeMini/402-FD C.2044.xx

CAN-PCIeMiniHS/402-FD C.2054.xx

CAN-M.2/402-2-FD C.2074.xx

PMC-CAN/266 C.2040.xx

PMC-CAN/331 C.2025.xx

PMC-CAN/400 C.2047.xx

PMC-CAN/402-FD C.2028.xx

PMC-CPU/405 V.2025.xx

CPCI-CAN/200 C.2035.xx

CPCI-CAN/331 C.2027.xx

CPCI-CAN/360 C.2026.xx

CPCI-CAN/400 C.2033.xx

CPCI-CAN/402 I.2332.xx

CPCI-CAN/402-FD I.2332.xx

CPCI-405 I.2306.xx

CPCI-CPU/750 I.2402.xx

CPCIserial-CAN/402 I.3001.04

CPCIserial-CAN/402-FD I.3001.6x

CAN-PCC C.2422.xx

CAN-USB/Mini C.2464.xx

CAN-USB/Micro C.2068.xx

CAN-USB/2 C.2066.xx

CAN-USB/3-FD C.2076.xx

CAN-USB/400 C.2069.xx

CAN-USB/400-FD C.2069.xx

CAN-CBX-AIR/2 C.3051.xx

CAN-CBX-AIR/3 C.3052.xx

VME-CAN2 V.1405.xx

VME-CAN4 V.1408.xx

AMC-CAN4 U.1002.xx

XMC-CAN/402-FD C.2018.xx

Document History

Page 4 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

The changes in the document listed below affect changes in the software as well as changes in the
description of the facts, only.

Rev. Chapter Changes versus previous version Date

4.8 2.9
Moved the content covering Windows 8.x to the chapter for legacy
Windows versions.

2024-01-02

 4.4 New chapter which covers the support for the real-time OS INtime® 2024-01-08

 4.6
Moved the content covering On-Time RTOS-32 to the chapter for
legacy RTOS versions.

2024-01-02

4.7 1.5.2 Updated USB Hardware ID table 2021-10-22

 2.4.4 New chapter to enforce driver installation. 2021-10-25

 2.8.1
Revised document for the latest changes in the Windows driver
code signing policies.

2021-10-22

 2.9
Moved the chapters for Windows XP, Vista and 7 to the legacy
Windows versions.

2021-10-22

 3.2
Moved the content for PowerMAX OS, Solaris, SGI-IRIX and AIX
to the chapter for legacy UNIX versions.

2021-10-22

 5.1 Extended table 18 for CAN-USB/2V2 and CAN-USB/3-FD 2021-10-25

 N/A Editorial changes for Windows 11 support. 2021-10-22

4.6 5.1 Revised and extended description of update process 2018-09-19

 N/A Editorial changes 2019-07-25

4.5 1.5.1 Updated PCI Hardware ID table 2018-01-22

 1.5.2 Updated USB Hardware ID table 2017-10-30

 2.8 Completely revised to cover Microsoft's SHA-1 deprecation policy. 2018-05-28

 4.1 Added VxWorks 7.0 support 2018-06-07

 4.2.1 Updated for QNX7 2018-05-08

 N/A Editorial changes 2018-06-11

4.4 N/A Editorial changes 2017-06-08

4.3 2 Description to preinstall device drivers on Windows. 2016-02-08

 2.1 Description of device driver installation on Windows 10. 2016-02-09

 2.2.1 Device Driver Configuration completely revised and extended. 2016-02-12

 2.4 New chapter to troubleshoot Windows driver installation. 2016-03-11

 2.9 Moved Windows 2000 to the legacy Windows versions. 2016-02-09

 N/A Editorial changes 2016-04-06

4.2 2 Added description of WDF based CAN device driver. 2014-12-15

 2.2.2
Revised description of CAN driver property sheet in device
manager with new chapter how to configure IRQ affinity

2015-01-23

 N/A Added CAN-USB/400 specific information 2015-01-23

N/A

Editorial changes

2014-12-07

4.1 4.4 Revised RTX installation instructions with regard to RTX64 2014. 2014-11-24

4.0 N/A
The complete document is revised, large parts of the text are
rewritten, and the drawings are updated.

2013-08-12

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 5 of 218

Rev. Chapter Changes versus previous version Date

 1 Introduction completely rewritten. 2013-08-12

 2.1 Description of device driver installation on Windows 8. 2013-08-12

 2.9.1 Description of device driver installation on Windows 7. 2013-08-12

 2.8 New chapter about Windows Digital Signatures. 2013-08-12

 3.1 New introduction for Linux driver. 2013-08-12

 3.1.2.2
Linux CAN-Module IDs: Modules inserted (AMC-CAN4, CAN-
PCI/400, CAN-PCIe/400, CPCI-CAN/400, PMC-CAN/400),
Modules deleted (CAN-USB/2, VME-CAN2, VME-CAN4)

2013-08-12

 3.1.2.3
Unpacking of Linux TGZ archive for drivers released after
07-2012 inserted 2013-08-12

 - Chapter 'Installation of Linux drivers < 3.x.x.x deleted'. 2013-08-12

 3.1.3 New chapter with installation for Linux CAN (aka SocketCAN) 2013-08-12

 3.1.4 New chapter for Linux EtherCAN/2 installation. 2013-08-12

 4.1 Installation on VxWorks completely rewritten. 2013-08-12

 4.2.1
QNX6: Program for setting the PCI Class inserted.
CAN interface family C400 support inserted.
Additional commands for Resource Manager.

2013-08-12

 4.4
Installation on RTX completely revised and extended with
installation instructions for RTX64.

2013-08-12

 5
Description of firmware update completely revised and combined
in one chapter for all platforms.

2013-08-12

Technical details are subject to change without further notice.

Page 6 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Typographical Conventions

Throughout this manual the following typographical conventions are used to distinguish technical
terms.

Convention Example

File and path names /dev/null or <stdio.h>

Function names open()

Programming constants NULL

Programming data types uint32_t

Variable names Count

The following indicators are used to highlight noticeable descriptions.

 Note

Notes to point out something important or useful.

Attention!
Cautions to tell you about operations which might have unwanted side
effects.

Number Representation

All numbers in this document are base 10 unless designated otherwise. Hexadecimal numbers have
a prefix of 0x, and binary numbers have a prefix of 0b. For example, 42 is represented as 0x2A in
hexadecimal and 0b101010 in binary.

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 7 of 218

Abbreviations

ABI Application Binary Interface
AMC Advanced Mezzanine Cards
API Application Programming Interface
BSD Berkley Software Distribution
BSP Board Support Package
CAN Controller Area Network
CPU Central Processing Unit
CiA CAN in Automation
COTS Commercial off-the-shelf
CPCI Compact Peripheral Component Interconnect (Computer Bus)
CPCIserial Compact Peripheral Component Interconnect Seriell (Computer Bus)
CRC Cyclic Redundancy Check
DLC Data Length Code
DLL Dynamic Link Library
DNS Domain Name Service
EFF Extended Frame Format
ACC Advanced CAN Controller
FIFO First-In-First-Out
FTP File Transfer Protocol
FW Firmware
HW Hardware
I/O Input/Output
ISA Industry Standard Architecture (Computer Bus)
IPC Interprocess Communication
IRIG Inter-range Instrumentation Group
LSB Least Significant Bit
LSW Least Significant Word
MCU Micro Controller Unit
MSB Most Significant Bit
MSW Most Significant Word
NVRAM Non-Volatile Random Access Memory
N/A Not Applicable
OS Operating System
PCI Peripheral Component Interconnect (Computer Bus)
PCIe Peripheral Component Interconnect Express (Computer Bus)
PIC Programmable Interrupt Controller
PMC PCI Mezzanine Card
PnP Plug and Play
RAM Random Access Memory
REC Receive Error Counter
RTSS Real-Time Sub-System
SDK Software Development Kit
SMP Symmetric Multiprocessor
SoC System on Chip
SFF Standard (Base) Frame Format
SW Software
TEC Transmit Error Counter
USB Universal Serial Bus
UP Uniprocessor
URL Universal Resource Locator
WDM Windows Driver Model
WDF Windows Driver Foundation
WHQL Windows Hardware Quality Lab
WoW64 Windows 32-bit on Windows 64-bit
XMC Express Mezzanine Card

Page 8 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Reference

/1/ esd electronics gmbh, NTCAN-API Application Developers Manual, Revision 5.8, 2024

/2/ ISO 11898-1, Road vehicles – Controller area network (CAN) – Data link layer and physical
signalling, 2015

/3/ esd electronic system design gmbh, EtherCAN/2 Hardware Manual, Revision 2.0, 2021

/4/ esd electronic system design gmbh, CAN-Wiring, Revision 4.6, 2022

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 9 of 218

Table of Contents

1 Introduction ... 14

1.1 Scope .. 14

1.2 Overview ... 15

1.3 Terminology ... 16

1.4 CAN Interface Families .. 18

1.5 Hardware IDs .. 19

1.5.1 PCI / PCIe / PCIe Mini / CPCI / CPCIserial / PMC / XMC ... 19

1.5.2 USB ... 21

1.5.3 Ethernet ... 21

1.6 Software Deployment .. 22

1.6.1 Windows .. 22

1.6.2 Linux / Unix .. 22

1.6.3 Real-Time Operating Systems ... 22

2 Windows® .. 23

2.1 Windows 10 / 11 .. 27

2.1.1 Hardware-First Driver Installation ... 28

2.1.2 Software-First Driver Installation .. 33

2.1.3 Driver Lifecycle Management ... 33

2.2 Configuration ... 34

2.2.1 Device Driver ... 34

2.2.1.1 Standard Settings ... 34

2.2.1.2 Expert Settings ... 37

2.2.1.3 Device Specific Settings ... 38

2.2.2 System .. 39

2.2.2.1 Power Management .. 39

2.2.2.2 Interrupt Affinity ... 39

2.3 Device Driver Preinstallation .. 40

2.3.1 Driver Staging .. 40

2.3.2 Driver Installation for Non-Administrators ... 41

2.4 Troubleshooting Driver Installation ... 43

2.4.1 Error Code 31 .. 44

2.4.2 Error Code 39 .. 45

2.4.3 Error Code 52 .. 45

2.4.4 Best Driver already Installed .. 46

2.5 Device Driver Lifecycle Management ... 48

2.5.1 Driver Update .. 48

2.5.2 Driver Rollback .. 49

2.5.3 Driver Uninstall .. 50

Introduction

Page 10 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.6 EtherCAN and EtherCAN/2 ... 51

2.6.1 Installation ... 51

2.6.2 Configuration ... 52

2.6.3 Uninstall ... 53

2.7 Windows CAN Software Development Kit (SDK) ... 54

2.7.1 Setup Command Line Parameter ... 54

2.7.2 Installation Options .. 55

2.7.3 Uninstall ... 56

2.7.4 IDE Integration ... 56

2.8 Digital Signatures .. 57

2.8.1 Overview.. 57

2.8.2 Driver Installation ... 59

2.8.3 Software Installation .. 60

2.8.4 Digital Signature Verification .. 61

2.9 Legacy Windows Versions ... 63

2.9.1 Windows 7 / 8.x / Server 2008 R2 .. 63

2.9.1.1 Hardware-First Driver Installation .. 63

2.9.1.2 Software-First Driver Installation ... 67

2.9.1.3 Driver Lifecycle Management.. 67

2.9.2 Windows Vista® and Server 2008 .. 68

2.9.2.1 Hardware-First Driver Installation .. 68

2.9.2.2 Software-First Driver Installation ... 72

2.9.2.3 Driver Lifecycle Management.. 72

2.9.3 Windows XP and Server 2003 ... 73

2.9.3.1 Hardware-First Driver Installation .. 73

2.9.3.2 Software-First Driver Installation ... 77

2.9.3.3 Driver Lifecycle Management.. 77

2.9.4 Windows 2000 ... 78

2.9.4.1 Hardware-First Driver Installation .. 78

2.9.4.2 Software-First Driver Installation ... 82

2.9.4.3 Driver Lifecycle Management.. 82

2.9.4.4 Non-PnP hardware ... 83

2.9.5 Windows NT 4.0 .. 84

2.9.5.1 Driver Installation .. 84

2.9.5.2 Driver Configuration .. 85

2.9.5.3 Driver Start ... 88

2.9.5.4 Driver Uninstall ... 89

2.9.6 Windows 9x/ME ... 89

2.9.6.1 Installation of PnP CAN modules .. 90

2.9.6.2 Installation of non-PnP CAN modules ... 90

3 Unix® Operating Systems .. 101

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 11 of 218

3.1 Linux® .. 101

3.1.1 CAN Board Support Overview ... 103

3.1.2 NTCAN Driver .. 105

3.1.2.1 Files of the Linux Package .. 106

3.1.2.2 CAN-Module-ID and Default Parameters of the Driver 108

3.1.2.3 Installation .. 109

3.1.3 Linux CAN Driver (aka SocketCAN) ... 115

3.1.3.1 Integration... 115

3.1.3.2 Installation .. 115

3.1.3.3 Configuration .. 116

3.1.3.4 Restrictions ... 117

3.1.4 EtherCAN and EtherCAN/2 .. 119

3.1.4.1 Installation .. 120

3.1.4.2 Configuration .. 121

3.1.4.3 Miscellaneous ... 122

3.2 Legacy UNIX Versions ... 123

3.2.1 PowerMAX OS Installation ... 123

3.2.1.1 Files of the PowerMAX OS Package... 123

3.2.1.2 Sequence of Installation Under PowerMAX OS .. 124

3.2.2 Solaris™ Installation .. 126

3.2.2.1 Files of the Solaris Package ... 126

3.2.2.2 Sequence of Installation Under Solaris ... 127

3.2.3 SGI-IRIX6.5 Installation ... 131

3.2.3.1 Files of the SGI-IRIX6.5-Package ... 131

3.2.3.2 Sequence of Installation Under SGI-IRIX6.5 ... 132

3.2.4 AIX Installation ... 133

3.2.4.1 Special Features of the AIX Implementation ... 133

3.2.4.2 Files of the AIX Package ... 133

3.2.4.3 Installation Sequence under AIX ... 134

4 Real-Time Operating Systems ... 136

4.1 VxWorks® .. 136

4.1.1 CAN Board Support Overview ... 137

4.1.2 Driver Integration ... 139

4.1.2.1 VxWorks 5.x ... 139

4.1.2.2 VxWorks 6.x ... 140

4.1.2.3 VxWorks 7.x ... 141

4.1.3 Driver Configuration ... 143

4.1.3.1 VxWorks 5.x ... 143

4.1.3.2 VxWorks 6.x (Non-VxBus) .. 146

4.1.3.3 VxWorks 6.x (VxBus) .. 150

4.1.3.4 VxWorks 7.x (VxBus GEN2) ... 153

Introduction

Page 12 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.4 Driver Start .. 156

4.1.4.1 VxWorks 5.x ... 156

4.1.4.2 VxWorks 6.x (Non-VxBus) .. 156

4.1.4.3 VxWorks 6.x/7.x (VxBus) .. 157

4.1.5 Miscellaneous .. 158

4.1.5.1 Unresolved Symbols Building the VxWorks Image .. 158

4.1.5.2 Number of Available NTCAN Handles ... 158

4.1.5.3 Test Program 'canTest' .. 158

4.1.5.4 Unexpected Behaviour of Software Timestamps ... 158

4.1.5.5 Correct Interpretation of Error Codes Returned by the Driver 159

4.1.5.6 Support of the CAN Extended Frame Format ... 160

4.1.6 Troubleshooting Hints .. 161

4.1.6.1 Where to Implement Needed Configuration Changes 162

4.1.6.2 Public Interface of the Version 2.x Driver Core .. 162

4.1.6.3 Public Interface of the VME-CAN4 Driver Core ... 163

4.1.6.4 Address Translation and Board Access Issues ... 163

4.1.6.5 Interrupt Connection Issues .. 169

4.1.6.6 VxBus Driver Prerequisites ... 172

4.2 QNX .. 175

4.2.1 QNX 6 and QNX 7 ... 175

4.2.1.1 Driver Package Content .. 175

4.2.1.2 Sequence of Installation Under QNX6 and QNX7 ... 176

4.2.2 QNX4 ... 180

4.2.2.1 Files of the QNX4 Packages ... 180

4.2.2.2 Sequence of Installation Under QNX4 .. 181

4.3 IntervalZero RTX® and RTX64® ... 184

4.3.1 Driver Integration ... 185

4.3.1.1 RTX .. 185

4.3.1.2 RTX64 .. 186

4.3.2 Driver Installation ... 187

4.3.2.1 RTX .. 187

4.3.2.2 RTX64 .. 188

4.3.3 Driver Start .. 191

4.3.4 Driver Configuration ... 192

4.3.4.1 Command Line Parameter .. 192

4.3.4.2 SMP Support .. 192

4.3.5 Miscellaneous .. 193

4.3.5.1 Application Development .. 193

4.3.5.2 Example Application ... 193

4.4 TenAsys® INtime® .. 194

4.4.1 Driver Integration ... 195

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 13 of 218

4.4.2 Driver Installation ... 196

4.4.2.1 INtime for Windows ... 196

4.4.3 Driver Start .. 200

4.4.4 Driver Configuration ... 201

4.4.4.1 Command Line Parameter .. 201

4.4.4.2 Priority Layout ... 202

4.4.5 Driver Unload ... 203

4.4.6 Miscellaneous .. 203

4.4.6.1 Application Development .. 203

4.4.6.2 Example Application ... 203

4.5 Legacy Support ... 204

4.5.1 LynxOS .. 204

4.5.1.1 Driver Installation .. 205

4.5.2 OnTime RTOS-32 .. 206

4.5.2.1 Overview .. 206

4.5.2.2 Implementation ... 206

4.5.2.3 RTOS-32 Software Requirement .. 206

4.5.2.4 Required (RTOS-32) Libraries .. 206

4.5.2.5 Using the esd NTCAN Library ... 207

4.5.2.6 Compiling the Sample Application “cantest” .. 209

5 Firmware Update Application ... 215

5.1 Updating the Firmware .. 216

5.2 Switch between CAN 2.0A and CAN 2.0B Mode.. 218

Introduction

Page 14 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

1 Introduction
This document describes the device driver installation and configuration process of the cross-
platform architecture for esd Controller Area Network (CAN) hardware as well as the steps to update
the firmware of active CAN boards.

Within this document this architecture and its usual implementation as a combination of a device
driver and a library is referred to as NTCAN. The name has its origin in the initial implementation for
Windows NT but it is now the common API for all Operating Systems (OS).

The CAN bus is specified in /2/.

Attention:
Before you start with the software installation refer to the CAN board hardware manual
how to install the device mechanically and electrically in your system.

Please refer to the CAN-Wiring document /4/ for further information on the wiring of the
CANbus, cable selection, correct termination, etc.

The documents are either located on the CD which comes with your hardware or can be
downloaded from the esd web site (https://www.esd.eu/)

1.1 Scope

This document covers the CAN board and operating system specific installation of the NTCAN
architecture which usually consists of an OS and CAN hardware specific device driver and a (shared)
library which exports the application interface to integrate CAN I/O into an application as well as
required files to use the API in your application (header files, startup code, ...).

 The NTCAN architecture and the API (which is identical for all platforms) to develop
CAN based applications is described in the first part of the CAN-API documentation
called ‘NTCAN, Part 1: Application Developers Manual’ /1/.

https://www.esd.eu/

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 15 of 218

The NTCAN architecture is implemented for the following desktop, embedded, real-time and UNIX
operating systems.

Windows UNIX Real-Time

Active

Windows 11 (64 Bit)
Windows 10 (32-/64-Bit)

Linux (32-/64-Bit)

QNX 6/7
VxWorks 5.x/6.x/7.x
RTX64
INttime 6.x/7.x

Legacy

Windows 9x/ME
Windows NT
Windows 2000
Windows XP (32-/64-Bit)
Windows Vista (32-/64-Bit)
Windows 7 (32-/64-Bit)
Windows 8 / 8.1 (32-/64-Bit)

AIX
PowerMAX OS
SGI-IRIX 6.5
Solaris

LynxOS
On-Time RTOS-32
QNX4
RTX

Table 1: Supported Operating Systems

Attention:

esd electronics gmbh does no longer provide support and maintenance for operating
systems which are considered as Legacy according to the table above.

1.2 Overview

The document is made up of 5 main chapters with the following topics:

Chapter 1 contains a general overview on the structure of this manual.

Chapter 2 describes the installation process on the various version of Windows®.

Chapter 3 covers the installation process on Unix® based operating systems (inclusive Linux®).

Chapter 4 describes the device driver integration in various (embedded) real time OS.

Chapter 5 provides information about the firmware update process of active CAN boards.

Introduction

Page 16 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

1.3 Terminology

Within this manual you will encounter the following terms:

Base Frame Format CAN messages with 11-bit CAN-IDs according to /2/

Board Support Package A Board Support Package (BSP) is the common name for the hardware
specific code which is necessary for an operating system to support an
embedded board. It typically consists at least of the code to initialize the
hardware to a point to load and start the operating system and all device
drivers to support the on-board interfaces.

CAN Controller Area Network
A serial bus system (also known as CAN bus) that was originally
designed for use in vehicles but is now also used in automation
technology.

CAN Board A CAN board is a hardware which makes one or more physical CAN
ports available for use by an application. This is either an esd CAN
Interface or an embedded system with an on-board CAN Controller.

CAN Controller A chip whose hardware processes the CAN bus protocols. This can be
a stand-alone chip which is solely dedicated to this function or a System
on Chip (SoC) which integrates one or more CAN controllers as external
interface.

CAN Device The (logical) application view to a physical CAN port.

CAN Family A CAN family describes the group of CAN boards which are handled
with the same device driver (see chapter 1.4).

CAN Handle Logical link between the application and a physical CAN port. An
application can open several CAN handles to the same or to different
CAN ports.

CAN-ID Identifier of a CAN message either in the Standard Frame Format (11-
bit) or the Extended Frame Format (29-bit)

CAN Interface A CAN interface is a dedicated esd hardware which is either connected
to a local bus (PCI, USB, PC/104, etc.) of a CPU or remotely (Ethernet,
Wireless, etc.) to a host system.

CAN Node All hardware connected to the CAN bus. This can be any hardware with
a CAN port ranging from a simple sensor up to a complex control
system.

CAN Message Logical unit which consists of a CAN-ID and a payload either as data
frame or as remote request frame.

CAN Port The physical connector to a CAN bus which is handled by a CAN
controller.

Driver Store Repository for device driver introduced with Windows Vista.

Extended Frame Format CAN messages with 29-bit CAN-IDs according to /2/

Hot Plugging Hot Plugging describes the capability of a hardware to be connected or
replaced without shutting down the system.

INTx INTx or Legacy Interrupts describe the method to signal interrupts with
the help of dedicated pins in contrast to MSI.

Legacy Interrupt See INTx.

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 17 of 218

IRIG B Time code format used to provide time-of-day information to
communication systems which have to correlate data (reception) with
time.

MSI Message Signaled Interrupts are defined in the PCIe standard as a
method to signal interrupts as an in-band message instead of using
dedicated pins. One of the advantages compared to traditional INTx
signaling is that MSIs are never shared.

Plug and Play (PnP) Hardware capability to support automatic device detection and
configuration without user intervention. Examples for PnP capable
buses are PCI, PCIe, CPCI, PMC, PCI104 and USB.

RTSS Real-Time Sub-System for Windows provide by RTX/RTX64.

Standard Frame Format Same as Base Frame Format.

UAC User Account Control is a security infrastructure introduced with
Microsoft Windows Vista.

VxBus Software infrastructure to integrate device drivers in the real time
operating system VxWorks with minimal BSP support.

VxD Device driver model of Windows 9x/ME.

WDM The Windows Driver Model was introduced with Windows 98/2000 as a
common driver model to replace VxD and the Windows NT Driver Model
with a unified API.

WDF The Windows Driver Foundation is a WDM based driver model
(framework) introduced in 2006 which provides a robust object-based
interface for device drivers.

WHQL Windows Hardware Quality Labs (WHQL) Testing is Microsoft's
testing process which involves running a series of tests on third-party
hardware/software. For device driver passing the WHQL tests, Microsoft
creates a digitally signature.

WoW64 WoW64 (Windows 32-bit on Windows 64-bit) is a subsystem included
on all 64-bit versions of Windows that is capable of running 32-bit
applications.

Introduction

Page 18 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

1.4 CAN Interface Families

A single esd NTCAN device driver supports in most cases more than one CAN interface. For this
reason, the operating system specific installation and configuration instructions of a device driver in
this manual are usually intended for complete CAN interface family covering several CAN interfaces.
Each CAN family device driver is assigned a unique signature which is used in log messages, etc.
to distinguish drivers of different CAN interface families on the same host system and a device driver
name which follows one of two possible naming conventions.

The table below gives an overview on the CAN interfaces or boards that are covered by a CAN family
device driver, their assigned signatures and device driver names:

CAN Interface Families
Family
Name

Signature Driver Name
(Naming Convention I)

Driver Name
(Naming Convention II)

CAN-PCI/200, CAN-PCI/266
CAN-PCIe/200, CAN-
PCI104/200
CPCI-CAN/200, PMC-CAN/266

C200 C200 c200 pci200-sja1000

CAN-PCI/331, CPCI-CAN/331,
PMC-CAN/331

C331 C331 c331 pci331-i20

CAN-PCI/360, CPCI-CAN/360 C360 C360 c360 pci360-i20

CAN-PCI/400, CAN-PCIe/400,
CPCI-CAN/400, PMC-CAN/400

C400 C400 c400 pci400-esdacc

CAN-PCI/402, CAN-PCIe/402,
CAN-PCIMini/402,
CPCI-CAN/402,
CPCIserial-CAN/402,
PMC-CAN/402, XMC-CAN/402,
CAN-M.2/402-2-FD,
CAN-PCIeMiniHS/402
+ CAN FD enabled derivatives

C402 C402 c402 pci402-esdacc

CAN-PCI/405 C405 C405 c405 pci405-pcimsgx

CAN-USB/Mini USB1 U331 usb331 N/A

CAN-USB/Micro,CAN-USB/2
CAN-USB/2V2, CAN-AIR/2

USB2 U2292 usb2292 N/A

CAN-USB/3-FD USB3 U3FD usb3fd N/A

CAN-USB/400
CAN-USB/400-IRIG-B

U400 U400 u400 N/A

CAN-ISA/200, CAN-
PC104/200,
Memory mapped NXP SJA1000

C200I C200I c200i isa200-sja1000

CAN-ISA/331, CAN-PC104/331 C331I C331I c331i isa331-i20

CAN-VME2 CAN2 ICAN2 ican2 N/A

CAN-VME4 CAN4 ICAN4 ican4 N/A

Table 2: Overview of the CAN Interface Families

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 19 of 218

1.5 Hardware IDs

To identify and esd (P'n'P) CAN interface in a system or to troubleshoot an installation it is sometimes
helpful to know it's bus specific hardware ID. This chapter gives an overview on the hardware IDs
for the esd Commercial off-the-shelf (COTS) CAN interfaces.

The knowledge about the hardware IDs helps troubleshooting installations and interpreting log
messages.

1.5.1 PCI / PCIe / PCIe Mini / CPCI / CPCIserial / PMC / XMC

An esd CAN interface attached to the PCI, PCIe, PCIe Mini, CPCI, CPCIserial, PMC or XMC bus
can be unambiguously identified by the ID pair for the main chip (Vendor ID and Device ID) and a
vendor specific ID pair for the device (Subsystem Vendor ID and Subsystem ID). Each ID is 16-bit
and the Vendor and Subsystem Vendor IDs are assigned by the PCI SIG.

The PCI SIG also defines a ID pair of of class and subclass for the device type. The class and
subclass ID are 8-bit each. As a class dedicated to CAN interfaces was not introduced before PCI
Local Bus Specification Revision 2.3 you will find esd CAN interfaces utilize three different classes.

PCI Class PCI Subclass Description

0x06 0x80 Other Bridge Device / Other System Peripheral

0x02 0x80 Other Network Controller

0x0C 0x09 CAN bus

Table 3: PCI device classes assigned to esd CAN interfaces

Attention:
Some operating systems and BIOS versions are known to not assign I/O resources to
PCI devices with the class 0x06 and subclass 0x80 (Other Bridge Device). Please
contact esd in these cases for a solution.

Introduction

Page 20 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

The table below gives an overview on the COTS esd CAN interfaces, their local bus IDs and device
classes.

CAN Interface
Vendor ID Device ID Subsystem

Vendor ID
Subsystem

ID
Class /

Subclass

CAN-PCI/200 0x10B5 0x9050 0x12FE 0x0004 0x06 / 0x80

CAN-PCI/266 0x10B5 0x9056 0x12FE 0x0009 0x06 / 0x80

CAN-PCIe/200 0x10B5 0x9056 0x12FE 0x0200 0x0C / 0x09

CAN-PCI104/200 0x10B5 0x9030 0x12FE 0x0501 0x0C / 0x09

CPCI-CAN/200 0x10B5 0x9030 0x12FE 0x010B 0x02 / 0x80

PMC-CAN/266 0x10B5 0x9056 0x12FE 0x000E 0x06 / 0x80

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

0x10B5 0x9050 0x12FE 0x0001 0x06 / 0x80

PMC-CAN/331 (3.3 V) 0x10B5 0x9030 0x12FE 0x000C 0x06 / 0x80

CAN-PCI/360 0x10E3 0x0860 0x12FE 0x0000 0x06 / 0x80

CPCI-CAN/360 0x10E3 0x0860 0x12FE 0x0007 0x06 / 0x80

CAN-PCI/400-2
CAN-PCI/400-4

0x10B5 0x9056 0x12FE 0x0200 0x0C / 0x09

CAN-PCIe/400-2
CAN-PCIe/400-4

0x10B5 0x9056 0x12FE 0x0201 0x0C / 0x09

CPCI-CAN/400-2 0x10B5 0x9056 0x12FE 0x0141 0x0C / 0x09

CPCI-CAN/400-4 0x10B5 0x9056 0x12FE 0x0142 0x0C / 0x09

CPCI-CAN/400-4I 0x10B5 0x9056 0x12FE 0x0143 0x0C / 0x09

CPCI-CAN/400-2-PXI 0x10B5 0x9056 0x12FE 0x0144 0x0C / 0x09

CPCI-CAN/400-4-PXI 0x10B5 0x9056 0x12FE 0x0145 0x0C / 0x09

CPCI-CAN/400-4I-PXI 0x10B5 0x9056 0x12FE 0x0146 0x0C / 0x09

PMC-CAN/400-4 0x10B5 0x9056 0x12FE 0x04C2 0x0C / 0x09

PMC-CAN/400-4I 0x10B5 0x9056 0x12FE 0x04C3 0x0C / 0x09

CAN-PCIe/402,
CAN-PCI/402,
CPCI-CAN/402,
CPCIserial-CAN/402,
CAN-PCIMini/402

0x12FE 0x0402 0x12FE 0x0401
0x0402
0x0403

0x0C / 0x09

CAN-PCI/402-FD,
CAN-PCIe/402-FD,
CAN-PCIMini/402-FD,
CPCIserial-CAN/402-FD,
PMC-CAN/402-FD,
XMC-CAN/402-FD
CAN-M.2/402-2-FD
CAN-PCIeMiniHS/402

0x12FE 0x0402 0x12FE 0x1402
0x1403

0x0C / 0x09

CAN-PCI/405 0x1014 0x0156 0x12FE 0x0008 0x02 / 0x80

Table 4: Hardware IDs for CAN PCI, PCIe, PCIe Mini, CPCI, CPCIserial and PMC bus interfaces

Introduction

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 21 of 218

1.5.2 USB

An esd CAN interface attached to the USB bus can be unambiguously identified by an ID pair which
consists of a Vendor ID which is assigned by the USB committee and a vendor specific Device ID.
Each ID is 16-bit numerical value.

The table below gives an overview on the COTS esd USB CAN interfaces and their unique Ids.

CAN Interface Vendor ID Device ID

CAN-USB/Mini 0x0AB4 0x0001

CAN-USB/Micro 0x0AB4 0x0011

CAN-USB/2
CAN-USB/2V2

0x0AB4 0x0010

CAN-USB/3-FD 0x0AB4 0x0014

CAN-AIR/2 0x0AB4 0x0018

CAN-CBX-AIR/2 0x0AB4 0x0019

CAN-CBX-AIR/3 0x0AB4 0x001B

CAN-USB/400 0x0AB4 0x0400

CAN-USB/400-IRIG-B 0x0AB4 0x0401

CAN-USB/400-FD 0x0AB4 0x0402

CAN-USB/400-FD-IRIG-B 0x0AB4 0x0403

Table 5: Hardware IDs for CAN USB bus Interfaces

1.5.3 Ethernet

An esd CAN interface attached to the Ethernet has a unique 48-bit MAC address which consists of
a 24-bit vendor ID assigned by the Internet Assigned Number Authority (IANA) and a 24-bit vendor
specific part. All Ethernet CAN Gateways use a unique MAC address with the format below:

esd Vendor ID Device ID

00-02-27 xx-xx-xx

Table 6: MAC addresses of esd Ethernet devices

Introduction

Page 22 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

1.6 Software Deployment

The necessary (device driver) software is usually shipped on a CD/DVD together with the CAN
interface or can be downloaded (Windows/Linux) as an archive from the esd website (www.esd.eu).
The scope of delivery consists at least of a device driver and the NTCAN-API library. For most
supported platforms the necessary files to develop NTCAN based applications (header files,
example source, documentation, etc.) is also part of the software package.

A CD/DVD usually contains the (device driver) software and HW/SW manuals for all CAN interfaces
supported on a platform, the downloadable software distributions only for a CAN interface family.

1.6.1 Windows

If you install from CD/DVD you have all necessary software and can continue reading chapter 2
which describes the installation process for the various versions of the Windows OS.

If you want to download the software from the esd website for Windows 10 and later, you need the
CAN interface family (see chapter 1.4) and CPU architecture specific (32-/64-bit) device driver
package. If you want to develop NTCAN based software on the target PC you also have to download
the CAN SDK for Windows before you proceed reading chapter 2.

Device driver for legacy versions of Windows 9x/ME/NT/2000/XP/Vista/7/8.x can also still be
downloaded but they are no longer technically supported.

1.6.2 Linux / Unix

The (device driver) software for all Unix based systems (except Linux) is shipped exclusively on
CD/DVD with the hardware and cannot be downloaded from the esd website. So usually you have
all necessary software and can continue reading chapter 3 which describes the installation process
for the various Unix systems.

Because of the rapid change in the Linux kernel source tree which often leads to problems compiling
the device driver for the latest kernel versions the Linux drivers can also be download from the esd
website. You need a CAN interface family (see chapter 1.4), Linux kernel version (2.4.x/2.6.x/3.x)
and CPU architecture specific (32-/64-bit) device driver package which also contains all necessary
files to develop NTCAN based software on the target PC before you proceed reading chapter 3.

Some CAN interfaces are supported directly by Linux CAN (aka SocketCAN) which is part of the
Linux kernel since version 2.6.25. As the SocketCAN has an individual API esd provides a NTCAN
wrapper library for SocketCAN so you can use NTCAN based applications with this driver, too (see
chapter 3.1.3).

Device driver for other Unix versions but Linux are no longer technically supported.

1.6.3 Real-Time Operating Systems

The (device driver) software for all real-time operating systems is shipped exclusively on CD/DVD
with the hardware and cannot be downloaded from the esd website. So you have all necessary
software and can continue reading chapter 4 which describes the installation process for the various
supported systems.

http://www.esd.eu/

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 23 of 218

2 Windows®
This chapter describes the necessary steps to install the (kernel mode) device driver for esd Plug
and Play (PnP) capable CAN hardware which are connected to a local PnP capable bus (PCI, USB,
…) on the various versions of Microsoft Windows®. There is no device driver support for non PnP
esd CAN modules on legacy buses (ISA, PC104, Parallel Port,...).

 Note:
The standard driver installation is based on the hardware-first installation mechanism
which involves that the installation of the device driver is triggered by plugging in the
esd CAN hardware to the system. Starting with Windows Vista Microsoft also
integrated the tools for an in-box software-first installation mechanism which allows a
driver preinstallation without the presence of the hardware during this process.

The CAN device drivers for Windows are either based on the WDM (Windows Driver Model) or the
WDF (Windows Driver Foundation). The WDM was introduced with Windows 2000 and WDF was
introduced by Microsoft in 2006 as a robust object-based interface for device drivers on top of WDM.
The WDF consists of a Kernel Mode Driver Framework (KMDF) and User Mode Driver Framework
(UMDF). All WDF based CAN device driver are KMDF driver.

The KMDF comes as a library which is either already part of Windows or is installed together with
the CAN device driver once per system with the help of a WDF co-installer. The WDF based CAN
driver currently use the KMDF library version 1.9 which is part of Windows since Windows 7.

The installation procedure for WDM and WDF based driver described for the various Windows
versions in chapter 2.1 to 2.9.4 is identical.

 Note:
The KMDF library version 1.9 does not support Windows 2000 so a WDF based CAN
device driver requires Windows XP or later to run. Please refer to the WDF driver
release notes for further differences between these two driver types.

Attention:
The WDM based device drivers for the C400, C402 and C405 family do not support a
change to a low power state (standby or hibernation) and you have to disable this on
your Windows system. Please refer to chapter 2.2.2 for details.

The tables on the next pages give you an overview on the various files which are part of a WDM/WDF
driver for 32- or 64-bit Windows.

Windows®

Page 24 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

A WDM based kernel mode device driver package for 32-bit Windows contains the following files
where <drvname> is the device family specific driver name following driver naming convention I (see

chapter 1.4).

Filename Description

x86/<drvname>.sys The 32-bit WDM based device driver.

x86/ntcan.dll The 32-bit NTCAN library

x86/canui32.dll The 32-bit Device Manager property sheet extension

x86/calcan32.dll The 32-bit protocol helper library

<drvname>.inf The driver's INF file.

<drvname>.cat The driver's catalogue file with cryptographic hashes.

Table 7: Files of 32-bit WDM based driver package

A WDM based kernel mode device driver package for 64-bit Windows contains the following files
where <drvname> is the device family specific driver name following driver naming convention I (see

chapter 1.4).

Filename Description

amd64/<drvname>a.sys The 64-bit WDM based device driver.

amd64/ntcan64.dll The 64-bit NTCAN library (Renamed to ntcan.dll during install)

amd64/canui64.dll The 64-bit Device Manager property sheet extension

amd64/calcan64.dll The 64-bit protocol helper library

x86/ntcan.dll The 32-bit NTCAN library (for WoW64)

x86/calcan32.dll The 32-bit protocol helper library (for WoW64)

<drvname>a.inf The driver's INF file.

<drvname>a.cat The driver's catalogue file with cryptographic hashes.

Table 8: Files of 64-bit WDM based driver package

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 25 of 218

A WDF based device driver package for 32-bit Windows contains the following files where
<drvname> is the device family specific driver name following driver naming convention I (see

chapter 1.4).

Filename Description

x86/<drvname>k.sys The 32-bit WDF (KMDF) based device driver.

x86/WdfCoInstallerMMmmm.dll The 32-bit WDF co-installer.*

x86/ntcan.dll The 32-bit NTCAN library

x86/canui32.dll The 32-bit Device Manager property sheet extension

x86/calcan32.dll The 32-bit protocol helper library

<drvname>k.inf The driver's INF file.

<drvname>k.cat The driver's catalogue file with cryptographic hashes.

Table 9: Files of 32-bit WDF based driver package

A WDF based device driver package for 64-bit Windows contains the following files where
<drvname> is the device family specific driver name following driver naming convention I (see

chapter 1.4).

Filename Description

amd64/<drvname>ak.sys The 64-bit WDF (KMDF) based device driver.

amd64/WdfCoInstallerMMmmm.dll The 64-bit WDF co-installer.*

amd64/ntcan64.dll The 64-bit NTCAN library (Renamed to ntcan.dll during
install)

amd64/canui64.dll The 64-bit Device Manager property sheet extension

amd64/calcan64.dll The 64-bit protocol helper library

x86/ntcan.dll The 32-bit NTCAN library (for WoW64)

x86/calcan32.dll The 32-bit protocol helper library (for WoW64)

<drvname>ak.inf The driver's INF file.

<drvname>ak.cat The driver's catalogue file with cryptographic hashes.

Table 10: Files of 64-bit WDF based driver package

*MM is the major version and mmm is the minor version number of the WDF co-installer. For the WDF version

1.09 this would result in the filename WdfCoInstaller01009.dll.

Windows®

Page 26 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Chapter 2.2 covers the device driver configuration with the Windows Device Manager for Windows
2000 and later.

The mechanisms for a device driver preinstallation introduced by Microsoft with Windows Vista are
described in chapter 2.3 and chapter 2.5 covers the post installation aspects of device driver update,
device driver rollback and device driver uninstall.

The installation and configuration of the EtherCAN/2 driver software (for all supported versions of
Windows) is described in the separate chapter 2.6 as this CAN interface is using a user mode device
driver and a hardware specific configuration tool.

Development of NTCAN based applications (on any hardware) requires the installation of the CAN
Software Development Kit (SDK) for Windows which comes as separate package. The installation
of this package is described for in chapter 2.7.

Chapter 2.8 contains information on device driver and software signing.

The final chapter 2.9 is intended as reference for the installation and configuration of the device
driver for the legacy versions of Windows (9x/ME/NT/2000) which are no longer actively supported
by Microsoft as well as esd.

 Note:
This chapter sometimes refers to Microsoft keyboard short-cuts in combination with the
Windows Key or WinKey. This is the key with the Windows logo shown on it and it is
usually found between the Ctrl and Alt keys on your keyboard. A simultaneous key press
with another letter is written in this manual as e.g. WinKey + R (which does not mean
that you have to capitalize the letter).

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 27 of 218

2.1 Windows 10 / 11

This chapter covers the device driver installation for Windows 10 and Windows 11.

The installation procedure is identical for the 32-bit and the 64-bit version of Windows 10 but different
driver binaries are required. On the 64-bit OS versions all libraries to run 32-bit NTCAN based
applications in the WoW64 subsystem are installed automatically.

Attention!
The device driver for the CAN hardware of the C400, C402 and C405 family currently
do not support the Hybrid Shutdown mechanism which is the default for these Windows
versions. Please refer to chapter 2.2.2 to disable it before you install the device driver.

 Note:

Please read the current Release Notes file that comes with the software!

Please note the drivers delivered on CD are most likely outdated. We rather recommend
checking the esd electronics gmbh website for newer driver releases and use these
ones to circumvent any problems caused by known and fixed issues before they occur.

https://www.esd.eu/

Windows®

Page 28 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.1.1 Hardware-First Driver Installation

To initiate the device driver installation process, you have to connect the CAN module to your system.
Depending on the Hot Plugging capability of the hardware you might have to shut down Windows
for this. Please refer to the CAN module specific hardware manual for advises.

Attention!
A user which wants to install a device driver must be member of the Administrators
group.

Starting with Windows 7 the presence of a new hardware does not automatically start the Found
New Hardware Wizard to locate and install a driver for the new device with user interaction as in
previous versions of Windows. To initiate the interactive device driver installation you now have to
open the Device Manager. One of the fastest way to do this is to press WinKey + Pause/Break and
to select Device Manager or your local translation of this tool in the newly opened dialogue box.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 29 of 218

In the Device Manager windows there will be a device under Other Devices with a yellow exclamation
point next to the icon to indicate that there is no device driver installed yet. The text next to the device
will depend on the CAN module attached.

Right click on the device to bring up the context menu as shown above and select the menu item
Update Driver Software... which opens the following dialogue box.

Right click on the device to bring up the context menu as shown above and select the menu item
Update Driver Software... which opens the following dialogue box.

Windows®

Page 30 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Select the second option to “Browse the computer for driver software” and the following dialogue
box will appear.

Press the Browse... button to define the location of the driver files. This might either be the drive
letter of your optical driver if you want to use the CD which accompanied the delivery of your CAN
module or is the location on your hard disk where you have extracted a driver archive downloaded
from the esd website (www.esd.eu). If the driver files are in a sub directory of the configured path do
not forget to check the “Include subfolders” option in the dialogue before you press the Next button
to start copying the files to your system which may take some time.

http://www.esd.eu/

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 31 of 218

During driver installation you will see a security message similar to in the dialogue below.

All CAN device drivers are digitally signed to give you as end user who is installing this software the
possibility to verify that esd is really the publisher of this driver package and that the binaries are not
tampered. Please refer to chapter 2.8 for more details about Digital Signatures.

 Note:
If you activate the check box “Always trust software from esd electronic system design
gmbh” you will not have to confirm this dialogue in the future during the installation of
another digitally signed driver for an esd device.

Press the Install button to continue.

Windows®

Page 32 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

When the installation is finished a completion dialogue as above is displayed and the driver is now
started automatically with every Windows start-up. The displayed device name depends on the CAN
module. Press the Close button to complete the installation.

If you return to the Device Manager window you will see that the CAN module is now listed below
the new device class “CAN Interface”.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 33 of 218

If you have installed several esd CAN modules attached to a local bus of your system you will find
all of them here. By double clicking the device you will open the Properties dialogue where you can
configure the device specific options described in chapter 2.2 via the Settings tab.

 Note:
If you just want to run NTCAN based application on the system you are done.

If you intend to develop NTCAN based applications on this system you also must install
the CAN SDK as described in chapter 2.7 which contains in addition to many tools the
required header files, library files and/or wrapper for your development environment.

2.1.2 Software-First Driver Installation

The process for a software-first driver installation is similar on all versions of Windows since Vista
and is covered in chapter 2.3.

2.1.3 Driver Lifecycle Management

The process of updating, rolling back or uninstalling a device driver package is very similar on all
Windows versions and covered in chapter 2.5.

Windows®

Page 34 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.2 Configuration

This chapter contains a description of configuration options of the device driver and Windows itself.

2.2.1 Device Driver

2.2.1.1 Standard Settings

This chapter covers the CAN device driver configuration for Windows 2000 and later versions.

To configure several CAN driver related settings or to check the version of the installed components
you must open the Windows Device Manager. All device drivers for esd CAN modules are installed
as a CAN Interface class as shown below.

To change the device driver configuration parameter, double-click the device instance to open the
Properties dialogue of the device and select the Settings tab.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 35 of 218

The settings dialogue (Rev. 1.6.x or later) contains the following read only information:

• Device name with CAN controller type and CAN controller frequency.

• Device driver revision and type (WDM / WDF), the firmware revision(s) (if applicable) and
the hardware revision.

• The serial number (if serial number access is supported by the hardware).

• The timestamp frequency (if timestamping is supported) and the information if this is a
hardware (HW) or software (SW) timestamp.

• The CAN interface and driver related device capabilities.

• The version of the libraries which are installed together with the driver.

Nearly all elements in the configuration dialogues will present a context sensitive (English) help text
if you move the mouse on them and wait for a while.

The text 'Device Info' at the top the dialogue may be replaced by a problem notification with increased
font size to ease troubleshooting.

If you click on the esd logo your default web browser is launched with the URL of the esd website
where you can check if device driver updates for your CAN hardware are available for download.

Windows®

Page 36 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

The dialogue also allows to configure several driver parameters on a per device basis.

 Attention!
Parameter changes are applied with the next start of the device driver and not
immediately after the dialogue is closed.

Base Net

Via Base Net a logical net number is assigned to the CAN module which is used by NTCAN
to distinguish between several physical CAN ports. The number of available physical ports is
indicated here. If a CAN interface has more than one physical CAN port, the logical net
number entered in Base Net is assigned to the first physical port and further ports will be
assigned consecutive increasing net numbers. The default value for the first instance of a
hardware is always 0.

 Attention!
If there is more than one CAN module in the system, the user has to
make sure that the logical net numbers which are assigned to the
physical ports do not overlap!

Smart Disconnect

The Smart Disconnect Feature to disable a port after the last handle is closed can be enabled
or disabled, if supported by the CAN hardware. The default after installation is disabled.

Timestamp sample point

An ESDACC based CAN hardware (C400,C402 and U400 CAN device family) allows to
configure if the timestamp of a CAN frame is captured at the Start of Frame (SOF) or at the
End of Frame (EOF) which is the default after driver installation. For other CAN device
families this configuration option is not available.

CPU Affinity

Earlier versions of this dialogue allowed to configure the CPU Affinity of the devices interrupt
handler. This option has been removed (from the dialogue and the driver) as modifying the
CPU affinity mask within the driver caused unwanted side effects if the interrupt was shared
with another device. Please refer to chapter 2.2.2.2 for this topic.

Smart Suspend

Earlier versions of this dialogue allowed to configure the Smart Suspend option here which
is now moved into the Expert Settings dialogue described in the next chapter.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 37 of 218

2.2.1.2 Expert Settings

Via the cogwheel icon you can reach an expert settings dialogue after you have confirmed the
warning that changing parameters in this dialogue may have (negative) system-wide effects.

Debug Trace Mask

For all device driver with a version greater than 3.10.x you can enable a trace mask which
causes the driver to send trace messages via the Windows kernel debugger API. For the
release build of the device driver only the options marked green have an effect. From
Microsoft TechNet you can download the tool DebugView to capture these messages without
setting up a kernel debugger.

https://technet.microsoft.com/en-us/sysinternals/debugview.aspx

Windows®

Page 38 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Timer Resolution

In Windows the clock interrupt frequency can be changed within certain limits. The dialogue
shows the actual active clock interrupt resolution in nanoseconds as well as the system
specific minimum and maximum value. A higher value for the clock interrupt frequency
decrease in some cases the I/O latency and improves the granularity of configured timeouts.

If you enable the Low Latency Timer option the device driver will configure the interrupt
resolution to 1 ms with the next driver start.

 Attention!
Note that the result of changing the clock interrupt frequency is system-wide
and can also have a severely negative effect on system performance. Also note
that higher clock interrupt frequencies can shorten a system's battery life.

Service Thread Priority

All device driver V4.x.x and later process CAN messages on passive level instead on DPC
level to reduce the overall system latency on multicore CPUs. The thread priority of the
passive level worker thread which handles the CAN messages can be configured here.

Smart Suspend

If the device driver supports this feature a change into a lower power state (Sleep/Hibernate)
is rejected by the device driver as long as there is an application with an open CAN handle.

 Note:
A device driver is only able on Windows 2000/XP to prevent a state into a low
power state completely. On Windows Vista and later a device driver cannot
prevent such a change if it is explicitly requested by a user but it can prevent
changes if they result on configurations in the powerplan.

2.2.1.3 Device Specific Settings

If a device specific configuration tool is available for a CAN hardware (CAN-AIR/2, CBX-AIR/2, CBX-
AIR/3) the common Settings dialogue will show a tools icon which opens this hardware specific
configuration tool if clicked.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 39 of 218

2.2.2 System

2.2.2.1 Power Management

The WDM device drivers (3.x.y) for the C400, C402 and C405 family (see 1.4) of CAN devices do
not support a change to a low power state which includes the support of the Hybrid Shutdown feature
introduced with Windows 8. With Hybrid Shutdown (which is enabled by default) the states of drivers
and services are saved into the hiberfile on shutdown for a faster reboot.

To prevent problems using hardware from this driver families on Windows you have to make sure
that the change to a low power state is disabled on your system. This can be archived via various
power management related dialogues in Windows but the easiest method is to use the powercfg
command line utility which was introduced with Windows XP SP2. Powercfg must be run from an
elevated command prompt and requires administrator rights.

Use the command powercfg -h off (1) to disable hibernation and implicitly the Hybrid Shutdown

feature of Windows 8. If you want to restore hibernation you have to use 'on' instead of 'off'.

Use the command powercfg -x -standby-timeout-ac 0 (2) to disable Windows standby mode.

If you want to restore the standby behaviour use a positive value in minutes instead of 0 as
parameter. On Windows XP you have to write -change instead of the abbreviation -x.

2.2.2.2 Interrupt Affinity

The interrupt affinity is the set of processors/cores that should service an interrupt in a multi-
processor/multi-core architecture. After the device driver installation each PCI / PCIe / CPCI / PMC
based CAN device has the default interrupt affinity policy that any processor/core can handle its
interrupt which usually need not to be changed.

In cases you want to assign the affinity to dedicated (set) of processors or cores you should use the
intfiltr.exe tool which is part of the Windows 2003 Resource Kit for Windows 2000/XP or the

Microsoft Interrupt-Affinity Policy Tool for Windows Vista and later.

Windows®

Page 40 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.3 Device Driver Preinstallation

This chapter describes the process of (pre-)installing a device driver before the hardware is present
(software-first installation) for Windows Vista and later so the device driver for esd CAN hardware is
installed as soon as the PnP manager detects a (new) instance of the hardware without further user
interaction like devices which are supported by Windows in-box drivers.

2.3.1 Driver Staging

Starting with Windows Vista, Microsoft introduced a repository for device drivers which is called the
Driver Store and split up the device installation process into two steps:

• Driver Staging: The process of adding driver packages to the Driver Store.

• Driver Installation: The process of installing drivers from the Driver Store.

During a hardware-first installation the PnP Manager performs the step of driver staging implicitly so
a device driver is always installed from the driver store but the user experience remains similar to
the Windows versions before Vista. You can find a detailed description of the steps during driver
installation in this Microsoft TechNet article.

The central repository which even keeps several versions of a device driver offers some advantages
compared to earlier versions of Windows:

• Driver Repair or Re-installation no longer requires the source media.

• Managing a driver rollback (see chapter 2.5.2) is easily possible.

• The driver store can be preloaded with OEM drivers and the device hardware does not need
to be present during this staging process.

The option to stage a device driver is the precondition for a software-first installation process. The
in-box (console) staging tool for Windows is PnPUtil which usage requires administrative privileges
on the system. During driver staging, the driver files are verified and copied into the driver store.
They are not installed on the system until the device hardware is detected by the PnP manager.

The staging process is triggered with the command

pnputil -a <Path\drvname.inf>

as shown in the picture below for a CAN-USB/400 device driver. The directory with the INF file has
to contain all driver files in the hierarchy of the distribution media.

https://technet.microsoft.com/en-us/library/cc731478.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550419(v=vs.85).aspx

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 41 of 218

During the staging process you have to complete the Windows Security dialogue with the Install
button in the same way you have to do it for hardware-first installation process. Optionally you may
choose to accept esd as trustworthy software publisher so this dialogue will not appear in further
device driver staging or installation tasks (refer to chapter 2.8.2 for more information about digital
signatures).

Successfully staged drivers can also be removed from the driver store. For this purpose you have to
note the Published Name which is indicated during the staging process in the console window. This
name consists of the common prefix 'oem' followed by a digital number and the suffix '.inf'. In the
example above the name is oem124.inf and you can remove this staged driver with the command:

pnputil -d oem124.inf

2.3.2 Driver Installation for Non-Administrators

Without further administrative action the installation of a device driver, which has been staged as
described in the previous chapter, is only possible for users which belong to the local Administrators
group.

This Microsoft TechNet article describes the required steps to configure a policy with the Local Group
Policy Editor to allow users which do not belong to the local Administrators group to install previously
staged device drivers. If you follow the steps of this article you have to double click the “Allow non-
administrators to install drivers for these device setup class” rule as shown in the following
picture:

https://technet.microsoft.com/en-us/library/cc725772.aspx

Windows®

Page 42 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

The device setup class for esd CAN devices is {42EEB68D-02B1-406c-B4F6-902F240EF58D}
which has to be added in the dialogue which is opened if you click the “Show” button.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 43 of 218

2.4 Troubleshooting Driver Installation

If the installation of a device driver fails, the Windows Device Manager is the central starting point
for troubleshooting the problem. One of the fastest ways to open the Device Manager (which works
on any supported Windows version) is pressing the key combination WinKey + Pause/Break. This
opens the system settings dialogue where you can open the Device Manager with a further mouse
click.

In case of a problem the CAN hardware is marked with a yellow exclamation point and you can
double-click on the device to view more information about the problem.

Follow this link for a list of possible error codes and reasons. The next two chapters deal with the
two most common error situations:

https://msdn.microsoft.com/en-us/library/windows/hardware/ff541422(v=vs.85).aspx

Windows®

Page 44 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.4.1 Error Code 31

This is an indication that Windows starts the device driver but something went wrong during the
startup process. In this case in many error situations the CAN device driver will store additional
information in the Windows System Event Log. You can open the Windows Event Viewer by pressing
the key combination WinKey + R and starting eventvwr.msc.

WDM based device driver from the driver package 2.6.8 and later as well as all WDF based device
driver can indicate the error reason in the upper left corner of the device's Settings tab.

The error reason is indicated as a CAN device driver specific major and minor error code separated
by a colon. If you double click on this number the Windows Event Viewer will be opened with a filter
configured for this device driver.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 45 of 218

The following table contains a list of common major error codes which are reported during device
initialization.

Error Code Description

1 Failed to map physical address.

2 Failed to attach the interrupt handler.

3 Failed to verify the CAN hardware.

6 Failed to create the logical base net as it is already in use by another CAN
device.

7 Out of resources.

8 No interrupt assigned to the device.

11 Firmware and device driver are incompatible. Update firmware or driver.

12 Hardware and device driver are incompatible. Update device driver.

13 Unrecoverable PCI bridge bug detected.

14 Failed to write into the PCI configuration space.

16 This is an engineering release of a debug driver without CAN I/O functionality.

19 Internal error during initialization.

20 Failed to attach to a lower level device driver.

21 Failed to register CAN interface class.

22 Failed to configure an USB device.

25 Bootloader update required (CAN-PCI/405).

28 Error returning from standby or hibernate.

29 Failed to create a logical net as it is already in use by another CAN device.

Table 11: Windows Device Driver Installation Error Codes

2.4.2 Error Code 39

This is an indication that the device driver is missing, corrupted or especially on 64-bit system the
validation of the digital signature has failed (see chapter 2.8.2).

If re-installing the device driver does not solve the problem you can check a plaint text log file where
Windows Vista and later versions of Windows store information about device driver installation
process especially if a signing problem exists. You will find this log file in

%SystemRoot%\inf\setupapi.dev.log

2.4.3 Error Code 52

This is an indication that the device driver may be unsigned or corrupted. (see chapter 2.8.2).

Windows®

Page 46 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.4.4 Best Driver already Installed

Windows implements an internal mechanism of driver ranking. If there is already a driver installed
which is ranked higher than the one you want to install Windows will cancel the installation process
with the message that the “Best Driver is already Installed”. If the driver has to be installed anyway,
there are two possibilities to overcome this situation:

1. Uninstall existing drivers until Windows reports that there is no driver available for this device
(see chapter 2.5.3).

2. Enforce the installation of the driver installation as follows:

Open the Device Manager, select “Update Driver” in the context menu of the device (see chapter
2.5.1) and choose “Browse my computer for drivers” in the dialogue which is opened by Windows.

Choose “Let me pick…” in the following dialogue.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 47 of 218

Select “All available devices” in the following dialogue:

Choose “Have Disk…”, change to the location of your driver installation package and start installing
the driver.

Windows®

Page 48 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.5 Device Driver Lifecycle Management

This chapter describes the process of updating a device driver to a newer version, rolling back a
device driver to a previous version or uninstall a device driver. This process is similar for all Windows
versions.

 Attention!
Close all applications which are using the NTCAN-API before you start updating or
rolling back a device driver.

 Note:
As most device driver packages are family device driver which support more than one
CAN device type (see chapter 1.4) all devices covered by this driver are affected by
any change.

2.5.1 Driver Update

To update the device driver to a newer version open the Device Manager and select in the context
menu of the CAN device Update Driver Software as shown in the picture below for Windows 7.

Follow the steps of the wizard which will guide you through the device driver update process which
is like the initial installation of a device driver.

 Note:
Depending on the files which are updated a restart of the system might be required.
The configuration of the device driver is not affected by the driver update. If an update
introduces new configuration parameter, they will have the default value.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 49 of 218

2.5.2 Driver Rollback

If you have updated the initially installed driver to a newer one, starting with Windows XP you can
roll back your driver to the previous version. Double click the CAN device in the Device Manager and
select in the Properties dialogue the Driver tab as shown in the picture below for Windows 7.

To roll back to a previous version of the driver press the Roll Back Driver button and confirm the
following security dialogue.

 Note:
If the installed device driver is the only one in the Windows driver store for this hardware
the Roll Back Driver button is not enabled.

 Attention!
A newer version of a device driver often adds functionality and fixes problems that were
discovered in earlier versions. Rolling back a driver can cause the loss of that new
functionality and can reintroduce the problems that were addressed with the newer
version. Furthermore, the DLLs are shared between device driver packages for different
esd CAN device families so that a roll back of one driver might also affect files of
another driver.

Windows®

Page 50 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.5.3 Driver Uninstall

Starting with Windows Vista you can completely remove an installed driver package from the driver
store if you start a device Uninstall operation in the device manager

and check the Delete the driver software for this device in the confirmation dialogue box.

If an older version of the device driver is available in the driver store Windows will choose this one
the next time the device is enumerated so basically this driver uninstall operation is a driver rollback
as described in the previous chapter without and implicit re-enumeration.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 51 of 218

2.6 EtherCAN and EtherCAN/2

In comparison to CAN interfaces connected to a local PC bus (PCI, USB, …) supported with a
Windows kernel mode device driver the EtherCAN and EtherCAN/2 interfaces are supported with a
user mode device driver which integrates this remote CAN hardware into the NTCAN architecture in
the same way as a local interface. This user mode device driver supports the EtherCAN/2 as well as
the legacy EtherCAN hardware but for reasons of simplicity this chapter only refers to the
EtherCAN/2.

The EtherCAN/2 driver software comes as a digitally signed Windows installer (see chapter 2.8.3)
which supports Windows 2000 and later versions (32-/64-bit).

 Attention!
A user which wants to install/uninstall the software must be member of the
Administrators group.

2.6.1 Installation

Start the installer application received on CD/DVD or downloaded from the esd website and follow
the dialogue based setup process shown in the picture below.

Windows®

Page 52 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.6.2 Configuration

For configuration of the EtherCAN/2 please refer to the EtherCAN/2 hardware manual /3/.

The local driver is configured with the help of the CAN Control application that can be started by
clicking on “esd/EtherCAN/CAN Control Panel” in the Windows Start Menu which opens a dialogue
similar to the picture below:

The following driver configuration options are available:

Interface In the drop-down box you can choose the EtherCAN/2 interface instance.
With the Add button you can create additional instances. With the Delete
button you can remove the currently selected instance. The default after
installation are 5 EtherCAN/2 instances which can not be deleted.

Virtual CAN port You must assign a CAN network number between 0 and 255 and have to
enable it before this net number is available in the NTCAN environment to
be used by your application.

 Attention!
Please make sure that the assigned logical net number is not
already in use by another EtherCAN/2 or another CAN
interface attached to a local bus.

TCP/IP Configuration

Configure the IP address or hostname (if registered in the DNS server) of
the EtherCAN/2 interface. A change of the default port 22080 is not
supported at the moment. The IP address must be identical with the one
that is assigned to the EtherCAN/2 (please refer to /3/ for details)

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 53 of 218

Timeouts Currently three separate timeouts can be configured.
The connection timeout defines the time the EtherCAN/2 driver waits for
a response during the initial connection before the client software returns
with a timeout.
The command timeout defines the time after which a request to the
EtherCAN/2 interface must be replied before the client software returns with
a timeout.
The keep alive timeout defines the time after which a keep alive request
must be replied by the EtherCAN/2 interface before the host driver tries to
reset and re-establish the connection.

Defaults The Default button restores all driver defaults for the timeout parameter.

 Note:
If you just want to run NTCAN based application on the system you are done.

If you intend to develop NTCAN based applications on this system you also have to
install the CAN SDK as described in chapter 2.7 which contains in addition to many
tools the required header files, library files and/or wrapper for your development
environment.

2.6.3 Uninstall

To uninstall the EtherCAN/2 driver from your computer you must open the Add/Remove Programs
(Windows 2000/XP) or Programs and Features (Windows Vista and later) dialogue via the Control
Panel and uninstall the EtherCAN and EtherCAN/2 host driver.

The process of uninstallation is described in more detail for the CAN SDK in chapter 2.7.3.

Windows®

Page 54 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.7 Windows CAN Software Development Kit (SDK)

After driver installation you can proceed with the installation of the esd CAN SDK which supports
software development on 32- and 64-bit Windows versions. It contains the necessary files,
documentation, and tools to develop, debug and test NTCAN-API based applications.

Please refer to the release notes which gets installed with the CAN SDK for a complete list of
supported programming languages and development environments.

 Note:
If you have installed an older version (before V 2.x) of the CAN SDK uninstall this version
before you install the new version.

If you have already installed a CAN SDK revision 2.x or newer you can overwrite the
older installation or the uninstall process of a previous version is triggered implicitly if
necessary.

The CAN SDK is deployed either on the CAN driver CD you receive with your CAN hardware or can
be downloaded as an archive from the esd website. To install the CAN SDK, start CAN_SDK.exe

located in the directory CAN_SDK of the CAN driver CD or start the installer after unpacking the

downloaded archive. The installer is digitally signed so you can verify its integrity (see chapter

2.8.4) before you start installation.

 Attention!
A user which wants to install/uninstall the software must be member of the
Administrators group.

Follow the steps of the setup wizard to complete the installation.

2.7.1 Setup Command Line Parameter

The following table contains the most important command line parameters which are supported by
the setup application to automate the installation process:

Parameter Description

/HELP, /? Shows a summary of all available parameters.

/SP Disables the This will install... Do you wish to continue? prompt at the
beginning of Setup.

/LOG Causes Setup to create a log file in the user's TEMP directory detailing
actions taken during the installation process. The log file is created with a
unique name based on the current date (It will not overwrite or append to
existing files). The information contained in the log file is technical in nature
and therefore not intended to be understandable by end users.

/LOG=”filename” Same as /LOG, except it allows you to specify a fixed path/filename to use
for the log file. If a file with the specified name already exists it will be
overwritten. If the file cannot be created, Setup will abort with an error
message

/LANG=language Specifies the language to use (en or de). When a valid /LANG parameter is
used, the Select Language dialog will be suppressed.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 55 of 218

2.7.2 Installation Options

At the start of the installation, you are asked for the installation language. Currently an installation in
English and German is supported. The installation language also defines the language of the
installed documentation (if available in both languages).

The installer allows to choose between a full installation, a compact installation and a custom
installation. The full installation installs everything. The compact installation installs only the files
which are necessary for software development. The custom installation lets you choose which
components of the SDK are to be installed. The categories currently available are Tools,
Documentation, Sample Code and Software Development files.

Windows®

Page 56 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.7.3 Uninstall

To uninstall the CAN SDK from your computer you must open the Add/Remove Programs
(Windows 2000/XP) or Programs and Features (Windows Vista and later) dialogue via the Control
Panel.

To open the Control Panel in all versions of Windows open the run dialogue by pressing the keys
WinKey + R and type control as shown below for Windows 7.

Choose in the Programs and Features dialogue as shown below for Windows 7 the CAN SDK, click
Uninstall and follow the steps of the wizard.

2.7.4 IDE Integration

Many Integrated Development Environments allow to define paths relative to an environment
variable. For this reason, during the installation the environment variable CanSdkDir is created

which is set to the installation directory of the CAN SDK. Using this environment variable in paths
makes a project independent of the installation directory of the CAN SDK.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 57 of 218

2.8 Digital Signatures

2.8.1 Overview

All binaries (device drivers, libraries (DLLs) and installers) of the current esd CAN device driver
packages and the package itself are digitally signed. A digital signature is an electronic security mark
that can indicate the publisher of the software, as well as whether someone has changed the original
contents of the files. The code-signing technology built in Microsoft Windows operating system for
this is called Authenticode.

Certificates issued by certification authorities (CA) trusted by Windows for the initial implementation
of Authenticode used SHA-1 cryptographic hash functions. These have been deprecated by the
National Institute of Standards and Technology (NIST) in 2011 because of significant mathematical
weaknesses according to the collision resistance which allows brute force attacks to circumvent the
security. For this reason, in 2015 Microsoft published a SHA-1 code signing certificate deprecation
policy with the aim to migrate to SHA-2 code signing certificates in future and at this time still
supported Windows versions. This SHA-1 deprecation policy distinguishes in the level of support
between kernel mode code (device driver) and user mode code for the different major versions of
Windows.

The table below gives an overview about the SHA-2 support for the different major Windows desktop
versions. This table and everything said below also applies for the respective server versions.

OS Windows XP Windows Vista Windows 7 Windows 8 Windows 10/11

User Mode Yes Yes Yes Yes Yes

Kernel Mode No No Yes Yes Yes

Table 12: Windows Support for SHA-2 Code Signing Certificates

 Note:
SHA-2 user mode code signing support for Windows XP requires the installation of
SP3. Windows 7 requires the KB3033929 update to be installed for SHA-2 signed
kernel driver support. SHA-2 signed kernel driver support is not published by
Microsoft for earlier versions of Windows.

Windows®

Page 58 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Before Windows 10, device driver packages are signed with a code signing certificate and the cross-
certificate of a CA which issued the certificate used for signing. This CA must belong to the group of

CAs which are trusted by Microsoft. The mechanism of signing a device driver that way is referred
to as Cross Signing.

Starting with Windows 10, Microsoft changed it’s general policy for kernel mode code signing by
making it mandatory that all Windows kernel mode drivers must be submitted to and digitally signed
by the Windows Hardware Developer Centre Dashboard Portal instead of performing an (in-house)
cross signing. This portal only accepts (device driver) submissions with a valid EV Signing Certificate
which are, since 2016, only submitted by the CAs based on SHA-2. This mechanism of signing
device driver (which is only applicable for Windows 10 and later) is referred to as Attestation
Signing.

Windows 10 enforces the policy of Attestation Signing after a grace period which ended with the
release of Windows 10 1607 (aka Anniversary Update) and if the following two conditions are met:

➢ Fresh installation of Windows (no upgrade from a version before 1607)

➢ Secure Boot enabled

All cross-certificates trusted by Microsoft expired in July 2021 so Cross Signing device driver is no
longer possible.

For CAN device driver released by esd the Microsoft kernel mode code signing policy has the
following impact:

➢ All device drivers released before March 6, 2017 are “cross-signed” with an SHA-1
certificate issued to esd electronic system design gmbh and they should be accepted by all
versions of Windows XP and later.

➢ All device drivers released after March 6, 2017 are “cross-signed” with an SHA-2 EV
certificate issued to esd electronic system design gmbh and they should be accepted by all

versions of Windows 7 with installed KB3033929 and later. esd can no longer provide device
driver which install flawlessly on Windows versions before Vista.

➢ All device drivers released between May 29, 2019 and March 19, 2021 are “attestation-
signed” with an SHA-2 EV certificate issued to Microsoft Windows Hardware Compatibility
Publisher as well as “cross-signed” with an SHA-2 EV certificate issued to esd electronics
gmbh and should be accepted by all versions of Windows 7 with installed KB3033929 and
later.

➢ All device driver released after March 19, 2021 are “attestation-signed” with an SHA-2 EV
certificate issued to Microsoft Windows Hardware Compatibility Publisher and should be
accepted by all versions of Windows 10 and later.

 Note:
As Microsoft ended the support to allow in-house cross-signing of device driver
code, it is technically no longer possible for esd to release new or updated device
drivers for Windows versions before Windows 10.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 59 of 218

2.8.2 Driver Installation

Windows indicates an invalid signature of a driver package in the following ways:

➢ Windows rejects to install a device driver. This can occur if one of the following conditions
is met:

◦ Any 64-Bit Windows version: The operating system fails to validate the digital signature
of the driver package because for example one or more files were altered after the driver
package has been digitally signed.

◦ Windows 10 1607 (32-/64-Bit) or later: The device driver was not signed by the
Windows Hardware Developer Centre Dashboard Portal on fresh installations of the
operating system (no upgrade from a version before 1607) with enabled secure boot.

◦ Windows XP/Vista (64-Bit): Device driver released after March 6,2017 which are signed
with an SHA-2 certificate which is not supported.

➢ Windows can't verify the publisher of the device driver. This occurs if a device driver
either has no digital signature or it has been signed with a digital signature that could not
verified by a certification authority. On Windows versions before Vista during the process of
driver installation, depending on the system configuration, a dialogue box may indicate that
the Authenticode signature is invalid.

Windows versions before Windows Vista cannot validate a correct SHA-1 signature because the
trusted chain of the certificates is not completely stored in them and they accept only a signature
created by Microsoft during a WHQL certification process. In this special case you can ignore the
warning and continue with the installation.

➢ The device driver has been altered. This occurs if files in the driver package are altered on
32-bit Windows versions after it was digitally signed by esd.

Windows®

Page 60 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

On Windows Vista and later after a successful validation of the certificate a message shows the
name of esd as vendor that has signed the driver package.

You can optionally decide to add the esd certificate in the Trusted Publishers certificate store which
will prevent this dialogue for other digitally signed esd software and for device driver updates

If you get an indication about an invalid signature (with the exception described for Windows versions
before Vista) please contact esd.

 Note:
The 64 bit versions of Windows do not allow to install and use device drivers which are
not digitally signed by the vendor which means that it is also not possible to just replace
the driver .sys file with a newer version which is still possible on the 32 bit versions of
Windows.

2.8.3 Software Installation

Windows installer based software by esd is also digitally signed and on UAC enabled systems
(Windows Vista and later) you will see an UAC dialogue similar to the picture below which indicates
that the esd is the publisher of the software and the binary was not altered by third parties since it
was signed.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 61 of 218

2.8.4 Digital Signature Verification

To view digital signatures of a binary, open the context menu of the file and select Properties, then
go to the Digital Signatures tab.

The dialogue box provides information that esd is the software publisher, about the certification
authority that issued the certificate and the date the code was signed (timestamp). Finally it indicates
that the digital signature for the file is valid.

Windows®

Page 62 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

As described in chapter 2.8.1 the Windows XP SP3 with KB3033929 and Windows Vista support
SHA-2 certificates at least for user mode code but they do not support the improved cryptographic
hash functions which come with SHA-2 for the digest algorithm. For this reason, all binaries released
by esd after March 6, 2017 are dual signed with the SHA1 and the SHA256 algorithm.

The picture below shows the difference between a single signed binary with SHA-1 certificate and a
dual signed binary with SHA-2 certificate.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 63 of 218

2.9 Legacy Windows Versions

This chapter covers installation and configuration of the device driver for the older versions of
Windows operating systems (Windows 9x/ME, Windows NT, Windows 2000, Windows XP, Windows
Vista, Windows 7) which have not been maintained by Microsoft for several years (which means that
the end of the mainstream as well as the extended support according to the Microsoft product life-
cycle management has been reached).

 Attention!
Active technical support by esd and development for these versions of Windows have
stopped but the latest version of the device driver files is kept available.

2.9.1 Windows 7 / 8.x / Server 2008 R2

This chapter covers the device driver installation for Windows 7, Windows 8.x and Windows Server
2008 R2 (which is implicitly also referenced if the following text refers to the Windows desktop
versions).

Attention!

The expiration of cross-signing certificates by Microsoft in July 2021 (see 2.8.1) which
is required for (in-house) Authenticode signing makes it impossible for esd to provide
updated device drivers for all legacy Windows versions.

The installation procedure is identical for the 32-bit and the 64-bit version of these operating systems,
but different driver binaries are required. On the 64-bit version all libraries to run 32-bit NTCAN based
applications in the WoW64 subsystem are installed automatically.

 Attention!
A user which wants to install a device driver must be member of the Administrators
group.

2.9.1.1 Hardware-First Driver Installation

To initiate the device driver installation process, you have to connect the CAN module to your system.
Depending on the Hot Plugging capability of the hardware you might have to shut down Windows
for this. Please refer to the CAN module specific hardware manual for advises.

Starting with Windows 7 the presence of a new hardware does not automatically start the Found
New Hardware Wizard to locate and install a driver for the new device with user interaction as in
previous versions of Windows. To initiate the interactive device driver installation, you now must open
the Device Manager. Open the Device Manager dialogue by pressing the key combination WinKey
+ Pause/Break and type in devmgmt.msc into the search box followed by the Enter key.

Windows®

Page 64 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

In the Device Manager windows there will be a device under Other Devices with a yellow exclamation
point next to the icon to indicate that there is no device driver installed yet. The text next to the device
will depend on the CAN module attached.

Right click on the device to bring up the context menu as shown above and select the menu item
Update Driver Software... which opens the following dialogue box.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 65 of 218

Select the second option to “Browse the computer for driver software” and the following dialogue
box will appear.

Press the Browse... button to define the location of the driver files. This might either be the drive
letter of your optical driver if you want to use the CD which accompanied the delivery of your CAN
module or is the location on your hard disk where you have extracted a driver archive downloaded
from the esd website (www.esd.eu). If the driver files are located in a sub directory of the configured
path do not forget to check the “Include subfolders” option in the dialogue before you press the Next
button to start copying the files to your system which may take some time.

http://www.esd.eu/

Windows®

Page 66 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

During driver installation you will see a security message similar to in the dialogue below.

All CAN device drivers are digitally signed to give you as end user who is installing this software the
possibility to verify that esd is really the publisher of this driver package and that the binaries are not
tampered. Please refer to chapter 2.8 for more details about Digital Signatures.

 Note:
If you activate the check box “Always trust software from esd electronic system design
gmbh” you will not have to confirm this dialogue in the future during the installation of
another digitally signed driver for an esd device.

Press the Install button to continue.

When the installation is finished a completion dialogue as above is displayed and the driver is now
started automatically with every Windows start-up. The displayed device name depends on the CAN
module. Press the Close button to complete the installation.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 67 of 218

If you return to the Device Manager window you will see that the CAN module is now listed below
the new device class “CAN Interface”.

If you have installed several esd CAN modules attached to a local bus of your system you will find
all of them here. By double clicking the device you will open the Properties dialogue where you can
configure the device specific options described in chapter 2.2 via the Settings tab.

 Note:
If you just want to run NTCAN based application on the system you are done.

If you intend to develop NTCAN based applications on this system you also must install
the CAN SDK as described in chapter 2.7 which contains in addition to many tools the
required header files, library files and/or wrapper for your development environment.

2.9.1.2 Software-First Driver Installation

The process for a software-first driver installation is similar on all versions of Windows since Vista
and is covered in chapter 2.3.

2.9.1.3 Driver Lifecycle Management

The process of updating, rolling back or uninstalling a device driver package is very similar on all
Windows versions and covered in chapter 2.5.

Windows®

Page 68 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.9.2 Windows Vista® and Server 2008

This chapter covers the device driver installation for Windows Vista and Windows Server 2008 (which
is implicitly also referenced if the following text refers to Windows Vista). The installation procedure
is identical for the 32-bit and the 64-bit version of these operating systems but different driver binaries
are required. On the 64-bit version all libraries to run 32-bit NTCAN based applications in the WoW64
subsystem are installed automatically.

 Attention!
A user which wants to install a device driver must be member of the Administrators
group.

2.9.2.1 Hardware-First Driver Installation

To initiate the device driver installation process, you have to connect the CAN module to your system.
Depending on the Hot Plugging capability of the hardware you might have to shut down Windows
for this. Please refer to the CAN module specific hardware manual for advises.

After Windows Vista has detected the new hardware, it will start the interactive driver installation
process of the Found New Hardware Wizard with the dialogue below where the hardware name is
not “CANbus Controller” as in this example for all esd CAN modules.

Choose Locate and install driver software to continue.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 69 of 218

Depending on the system configuration an UAC (User Account Control) dialogue has to be confirmed
before the installation can be started as administrator privileges are required for this.

Depending on the configuration of the Windows Update Driver Settings, which can be changed via
the Hardware tab of the System Properties dialogue which is opened if you select Control
Panel/System/Advanced System Settings, Windows Vista will ask you if you want to search for a
suitable driver online. If such a dialogue appears choose Don’t search online, otherwise wait until
the online search on Windows Update is completed which may take up to one minute.

Now insert your esd CAN CD which accompanied the delivery of your CAN module and the
installation process will continue.

If you have no CD but the driver files are located on your hard disc where you have extracted a driver
archive downloaded from the esd website (www.esd.eu) choose I don’t have the disc. Show me
other options.

http://www.esd.eu/

Windows®

Page 70 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

In the following dialogue choose Browse my computer for driver software which is followed by a file
dialogue to locate the driver files.

Now the files are copied to your system which may take some time.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 71 of 218

During driver installation you will see a security message similar to in the dialogue below.

All CAN device drivers are digitally signed to give you as end user who is installing this software the
possibility to verify that esd is really the publisher of this driver package and that the binaries are not
tampered. Please refer to chapter 2.8 for more details about Digital Signatures.

 Note:
If you activate the check box “Always trust software from esd electronic system design
gmbh” you will not have to confirm this dialogue in the future during the installation of
another digitally signed driver for an esd device.

Press the Install button to continue.

When the installation is finished a completion dialogue is displayed and the driver is now started
automatically with every Windows start-up. The displayed device name depends on the CAN
module. Press the Close button to complete the installation.

Windows®

Page 72 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

If you now open the Device Manager window you will see that the CAN module is now listed below
the new device class CAN Interface.

If you have installed several esd CAN modules attached to a local bus of your system you will find
all of them here. By double clicking the device you will open the Properties dialogue where you can
configure the device specific options described in chapter 2.2 via the Settings tab.

Note:
If you just want to run NTCAN based application on the system you are done.
If you intend to develop NTCAN based applications on this system you also have to
install the CAN SDK as described in chapter 2.7 which contains in addition to many
tools the required header files, library files and/or wrapper for your development
environment.

2.9.2.2 Software-First Driver Installation

The process for a software-first driver installation is similar on all versions of Windows since Vista
and is covered in chapter 2.3.

2.9.2.3 Driver Lifecycle Management

The process of updating, rolling back or uninstalling a device driver package is very similar on all
Windows versions and covered in chapter 2.5.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 73 of 218

2.9.3 Windows XP and Server 2003

This chapter covers the device driver installation for Windows XP and Windows Server 2003 (which
is implicitly also referenced if the following text refers to Windows XP). The installation procedure is
identical for the 32-bit and the 64-bit version of these operating systems, but different driver binaries
are required. On the 64-bit version all libraries to run 32-bit NTCAN based applications in the WoW64
subsystem are installed automatically.

 Attention!
A user which wants to install a device driver must be member of the Administrators
group.

2.9.3.1 Hardware-First Driver Installation

To initiate the device driver installation process, you have to connect the CAN module to your system.
Depending on the Hot Plugging capability of the hardware you might have to shut down Windows
for this. Please refer to the CAN module specific hardware manual for advises.

 Note:
This chapter covers the installation of the device driver for Plug and Play capable CAN
modules which are connected to a local bus (PCI, USB, …) of your system. Non PnP
esd CAN modules for legacy buses (ISA, Parallel Port,...) are supported only for 32-bit
Windows XP in the same way as for Windows 2000 (see chapter 2.9.4.4 for details).

After Windows XP has detected the new hardware, it will start the interactive driver installation
process of the Found New Hardware Wizard with the dialogue below.

Select No, not this time from the available options and proceed by clicking the Next button.

Windows®

Page 74 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

In the dialogue box above choose Install from a list or specific location (Advanced) before you click
the Next button. The reported device type in this and the following dialogues depends on the CAN
module.

Select Search for the best driver in these locations and choose Search removable media if the esd
CAN CD which accompanied the delivery of your CAN module is inserted into your optical drive or
choose Include this location in the search and browse for the location of the driver files on your hard
disc where you have extracted a driver archive downloaded from the esd website (www.esd.eu)

http://www.esd.eu/

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 75 of 218

Press the Next button to continue device driver installation.

If Windows is configured to ignore file signature warnings the installation process is started and no
further dialogue will appear. If Windows is configured to warn when unsigned (non WHQL certified)
drivers are about to be installed, a Security Alert dialogue will appear. The dialogue text depends on
the Windows version (32- or 64-bit).

The complete CAN driver package is digitally signed and you will see a dialogue box, which indicates
that Windows has verified that the device driver is released by esd and hasn’t been tampered. As
both (32-bit and 64-bit) driver packages are not signed by the WHQL (Windows Hardware Quality
Labs) the Security Alert dialogue has to be confirmed with Yes to continue the driver installation. For
more details about device driver and software signing refer to chapter 2.8.

Windows®

Page 76 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

When the installation is finished a completion dialogue is displayed and the driver is now started
automatically with every Windows start-up. The displayed device name depends on the CAN
module. Press the Finish button to complete the installation.

If you now open the Device Manager window you will see that the CAN module is now listed below
the new device class CAN Interface.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 77 of 218

If you have installed several esd CAN modules attached to a local bus of your system you will find
all of them here. By double clicking the device you will open the Properties dialogue where you can
configure the device specific options described in chapter 2.2 via the Settings tab.

Note:
If you just want to run NTCAN based application on the system you are done.
If you intend to develop NTCAN based applications on this system you also have to
install the CAN SDK as described in chapter 2.7 which contains in addition to many
tools the required header files, library files and/or wrapper for your development
environment.

2.9.3.2 Software-First Driver Installation

Windows XP does not contain in-box tools to perform a software-first device driver installation. The
process can be performed with the Windows Device Console (devcon). This manual does not contain
a description of the software-first installation process for Windows XP but you can refer to this MSDN
description how to use the tool to preinstall a device driver package.

2.9.3.3 Driver Lifecycle Management

The process of updating, rolling back or uninstalling a device driver package is very similar on all
Windows versions and covered in chapter 2.5.

https://msdn.microsoft.com/de-de/library/windows/hardware/ff544707(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545861(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545861(v=vs.85).aspx

Windows®

Page 78 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.9.4 Windows 2000

This chapter covers the device driver installation for Windows 2000 and Windows Server 2000
(which is implicitly also referenced if the following text refers to Windows 2000).

 Attention!
A user which wants to install a device driver must be member of the Administrators
group.

2.9.4.1 Hardware-First Driver Installation

To initiate the device driver installation process, you have to connect the CAN module to your system.
Depending on the Hot Plugging capability of the hardware you might have to shut down Windows
for this. Please refer to the CAN module specific hardware manual for advises.

Note:
This chapter covers the installation of the device driver for Plug and Play capable CAN
modules which are connected to a local bus (PCI, USB, …) of your system. Non PnP
esd CAN modules for legacy buses (ISA, Parallel Port,...) are supported by installing
the legacy Windows NT driver which is described in chapter 2.9.4.4.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 79 of 218

After Windows 2000 has detected the new hardware it will start the interactive driver installation
process of the Found New Hardware Wizard with the dialogue below.

Choose Search for a suitable driver for my device (recommended) and click the Next button. The
reported device type (“Other PCI Bridge Device”) in this and the following dialogues depends on the
CAN module.

Windows®

Page 80 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Check the box CD-ROM drives if the esd CAN CD which accompanied the delivery of your CAN
module is inserted into your optical drive or choose Specify a location if you install a driver
downloaded from the esd website (www.esd.eu). In the latter case browse for the location of the
driver files on your hard disc where you have extracted the driver archive.

The Found New Hardware Wizard automatically selects the correct INF file, which again depends
on the CAN module. Click Next to start the installation process.

http://www.esd.eu/

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 81 of 218

If your system is configured to warn when unsigned (non WHQL certified) drivers are about to be
installed, a security alert dialogue will appear.

The complete CAN driver package is digitally signed and you will see a dialogue box, which indicates
that Windows has verified that the device driver is released by esd and hasn’t been tampered. As
the driver packages are not signed by the WHQL (Windows Hardware Quality Labs) the Security
Alert dialogue has to be confirmed with Yes to continue the driver installation. For more details about
device driver and software signing refer to chapter 2.8.

Windows®

Page 82 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

When the installation is finished a completion dialogue is displayed and the driver is now started
automatically with every Windows start-up. The displayed device name depends on the CAN
module. Press the Finish button to complete the installation.

If you now open the Device Manager window you will see that the CAN module is listed below the
new device class CAN Interface.

If you have installed several esd CAN modules attached to a local bus of your system you will find
all of them here. By double clicking the device you will open the Properties dialogue where you can
configure the device specific options described in chapter 2.2 via the Settings tab.

 Note:
If you just want to run NTCAN based application on the system you are done.
If you intend to develop NTCAN based applications on this system you also have to
install the CAN SDK as described in chapter 2.7 which contains in addition to many
tools the required header files, library files and/or wrapper for your development
environment.

2.9.4.2 Software-First Driver Installation

Windows 2000 does not contain in-box tools to perform a software-first device driver installation. The
process can be performed with the Windows Device Console (devcon). This manual does not contain
a description of the software-first installation process for Windows 2000 but you can refer to this
MSDN description how to use the tool to preinstall a device driver package.

2.9.4.3 Driver Lifecycle Management

The process of updating, rolling back or uninstalling a device driver package is very similar on all
Windows versions and covered in chapter 2.5.

https://msdn.microsoft.com/de-de/library/windows/hardware/ff544707(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545861(v=vs.85).aspx

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 83 of 218

2.9.4.4 Non-PnP hardware

There are no device driver for esd CAN modules for non PnP capable legacy buses (ISA, PC104,
Parallel Port...) which support Windows 2000 in the same way as the device driver for PnP capable
hardware.

 Note:
It is possible to use the Windows NT driver for CAN modules attached to legacy non-
PnP capable buses. Please refer to chapter 2.9.6.2 for installation instruction.

The remaining chapter describes the necessary system changes to prevent conflicts with the in-box
drivers of Windows 2000 which using the parallel port.

2.9.4.4.1 Conflicts with In-Box drivers (CAN-PCC)
The CAN-PCC module is attached to the parallel port of a system. Windows 2000 comes with a
driver which tries to enumerate hardware attached to the parallel port. This enumerator can not co-
exist with the Windows NT device driver for the CAN-PCC. For this reason the Windows driver has
to be stopped before the CAN driver is started.

Stopping this enumerator requires a change in the registry which can be accomplished via the
Programs/CAN/Disable parallel port services (Windows 2000) entry via the start menu which is
available after (Windows NT) driver installation.

 Note:
You have to restart your system before the registry change can take effect.

Re-enabling the enumerator and the original state requires to revert the described changes made in
the registry which can be accomplished via the Programs/CAN/Enable parallel port services

Windows®

Page 84 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

(Windows 2000) entry via the start menu.

 Note:
You must restart your system before the registry change can take effect. If starting the
CAN-PCC driver has been changed in the Device Manager from Manual to Automatic,
do not forget to revert this change, too.

2.9.5 Windows NT 4.0

This chapter covers the steps of device driver install, configuration, start and uninstall for Windows
NT 4.0.

 Attention!
A user which wants to install/uninstall or configure a device driver must be member of
the Administrators group.

2.9.5.1 Driver Installation

In case of an update, it is necessary to uninstall an older version before you start installing the new
one as described in section 2.9.5.4.

You will find the device drivers on the esd CAN CD which accompanied the delivery of your CAN
module in the folder \WinNT or they can be downloaded from the esd website (www.esd.eu). In the

latter case extract the content of the driver archive to your disk.

To start the installation, you have to execute the program setup.exe for you CAN module and

follow the steps of the installation program.

In the course of installation, you can choose between one of three configurations:

Configuration Description

Typical Driver, DLL, programs for firmware update and driver configuration.

Compact Driver, DLL and configuration programs.

Custom User-defined configuration.

 Note:
After the installation and before the start of the device driver, the system has to be re-
booted. Otherwise the driver will not work correctly.

After the reboot you can configure the device driver with the control panel applet CAN Control
described in the following chapter.

http://www.esd.eu/

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 85 of 218

 Note:
If you just want to run NTCAN based application on the system you are done.

If you intend to develop NTCAN based applications on this system you also have to
install the CAN SDK as described in chapter 2.7 which contains in addition to many
tools the required header files, library files and/or wrapper for your development
environment.

2.9.5.2 Driver Configuration

For the configuration of the driver the program CAN Control is installed together with the device
driver. It can be started by double clicking the icon below in the Windows NT System Control.

The picture below is an example for a configuration with four esd CAN modules (CAN-ISA/331, CAN-
PCI/331, CAN-PCI/200 and CAN-PCC). CAN Control only shows the esd CAN modules which are
installed on the system. If you have installed only one CAN module, only one configuration tab will
be visible.

 Note:
For CAN modules attached to local buses which are PnP capable (PCI, CPCI, PMC)
you just need to configure the base net for non PnP devices you have to configure a
base address and the interrupt used by the CAN module, too.

The pictures below show the configuration options for the non PnP CAN modules:

With the radio button in the Interface area you define the device instance for which the configuration
has to be applied if you want to use more than one CAN module of the same type on your system.

Define the I/O Base address and the Interrupt level according to your hardware configuration.

Windows®

Page 86 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

With Base Net a base network number is assigned to the CAN module which defines the logical net
number used by the NTCAN-API. If a module has more than one physical CAN port, the first gets
the logical network number specified in Base Net, and the following are counted up from there.

 Attention!
The user has to make sure that the base net numbers are not assigned twice or overlap
as otherwise the device driver will fail to start.

The picture below shows the configuration options for CAN modules attached to a PnP capable local
bus. Only the Base Net has to be configured for theses devices.

Complete the configuration pressing the OK button.

After the configuration you can proceed starting the driver as described in chapter 2.9.5.3.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 87 of 218

2.9.5.2.1 Conflicts with In-Box drivers (CAN-PCC)

The CAN-PCC module is attached to the parallel port of a system. In the default configuration of a
standard Windows NT 4.0 system the port is in use by the system. For an error free operation of the
CAN driver, the Windows NT driver has to be stopped before starting the CAN driver. For this, you
have to proceed as follows:

1. Select System Control Panel under Settings.

2. Here you have to double click the icon Devices. The following window will open:

3. In this window you now have to change the state of device Parport to stopped by pressing the
Stop button. The system now reports that the devices Parallel and ParVdm are also stopped.

4. To prevent having to repeat this procedure with every system start, press the Startup button,
and change the start type to Manual for the three devices Parallel, Parport and ParVdm.

Windows®

Page 88 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.9.5.3 Driver Start

To start the driver, the command net start xxxx (with xxxx as driver service name) has to be

typed in a console windows.

The table below shows the service names for the supported esd CAN modules:

CAN Module Commands for Starting the Drivers

CAN-ISA/200

net start c200i CAN-PC104/200
(SJA1000 version)

CAN-ISA/331
net start c331i

CAN-PC104/331

CAN-PCI/200

net start c200
CAN-PCI/266

CPCI-CAN/200

PMC-CAN/266

CAN-PCI/331

net start c331 CPCI-CAN/331

PMC-CAN/331

CAN-PCI/360
net start c360

CPCI-CAN/360

CAN-PCC net start cpcc

If the driver starts without errors, the start type of the driver can be changed via System
Control/Settings/Devices from Manual to Automatic, so that the driver is started automatically with
each system boot-up and can also be used by users without administrator rights.

If a problem occurs starting the driver, the error cause can be taken from the System Event Log File
of Windows NT 4.0.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 89 of 218

2.9.5.4 Driver Uninstall

The driver can be uninstalled in three steps:

 Attention!
Stopping the driver and the complete de-installation can only be done with administrator
rights on the Windows NT computer!

1. Terminate all applications using the CAN module.

2. The driver has to be stopped in dialogue control panel/devices or by entering net stop xxxx
(with xxxx as driver service name) in the command line.

CAN Module Commands for Stopping the Drivers

CAN-ISA/200

net stop c200i CAN-PC104/200
(SJA1000 version)

CAN-ISA/331
net stop c331i

CAN-PC104/331

CAN-PCI/200

net stop c200
CAN-PCI/266

CPCI-CAN/200

PMC-CAN/266

CAN-PCI/331

net stop c331 CPCI-CAN/331

PMC-CAN/331

CAN-PCI/360
net stop c360

CPCI-CAN/360

CAN-PCC net stop cpcc

3. Select entry for the CAN driver in the folder control panel in dialogue box add/remove
program properties and press icon add/remove, in order to delete all files and registry entries
of the driver.

2.9.6 Windows 9x/ME

The Windows 9x/ME device drivers support a maximum of 5 CAN modules of the same device family
within one system. The number of different CAN modules in one system is not limited.

 Note:
As Windows 95 does not come with USB support the CAN-USB/Mini module is not
supported for this platform !

Windows®

Page 90 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.9.6.1 Installation of PnP CAN modules

This chapter describes the steps to install CAN modules for PnP capable local buses (PCI, USB, ...)

1. Install the board according to the hardware installation description.

2. After bootup Windows 9x/ME detects the board and opens a dialogue. If Windows has not
found the driver (e.g. if it is the first installation), you are asked to insert the data carrier (disk
or CD-ROM) with the driver.

3. At the end of the software installation, you have to shut down the computer. Terminate all
active applications before you shut down the computer. After restart, the driver is
automatically started and in the device manager the new device type CAN Controller now
exists, which can be used to display and edit all esd CAN boards.

4. Now you can proceed with installing the SDK as described in chapter 2.7.

 Notes:
CAN-PCI/360 modules which were manufactured before 01.01.2000 report their
maximum memory upgrade of 128 Mbyte to the system during installation, even if they
have got less capacity. These boards might get into conflict with graphics boards which
act similarly. For these boards the actual memory space requirement can be configured
via the Device Manager. More about the Device Manager can be found in chapter
‘Changing the Resources Settings via the Device Manager’ on page 99.

CAN-PCI/360-modules which were manufactured after 01.01.2000 do not have this
problem anymore.

2.9.6.2 Installation of non-PnP CAN modules

This chapter describes the steps to install CAN modules for non-PnP capable local buses (ISA,
Parallel Port, …). After a successful driver installation, you can proceed with installing the SDK as
described in chapter 2.7.

 Notes:
For the installation of ISA and PC-104 CAN modules you have to find an unused I/O
base address with the help of the Windows 9x/ME system control and have to
configure this I/O base address on the hardware (please refer to your hardware
manual for details).

 Notes:
Starting with driver revision 1.2.0 you can select between a driver for 11-bit identifiers
(CAN 2.0A) and a driver which also supports 29-bit identifiers (CAN 2.0B) during the
installation of CAN-ISA/200 and CAN-PC104/200 modules. The latter driver is slightly
slower than the CAN 2.0A version, even if you only use it to transmit and receive 11-
bit-identifiers, because more I/O requests to the CAN controller are necessary.

Prerequisite for the CAN 2.0B mode is that you do not have a board with the CAN
controller Philips 82C200 (delivered until 12/1999), but a board with a Philips SJA1000
instead.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 91 of 218

2.9.6.2.1 Installation of the Device Drivers

1. Call

 The Windows-9x/ME driver of the CAN-ISA boards is installed by means of the Hardware
 Wizard. It is started in the System Control Panel window by selecting the Hardware icon:

 After that the start window of the hardware wizard has to open:

2. The following window asks if the hardware is to be searched for. Since the board is unknown
to the system (no plug-and-play), No must be selected. If Yes is selected, the computer will
search for the board for a relatively long time and then report the discovery of an unknown
board.

3. Then the window for the selection of the type of hardware to be installed appears.

Windows®

Page 92 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Here Other devices has to be selected and then Next has to be clicked. (Only if already an
esd CAN driver had been installed, the selection CAN Interface would appear. It is not shown
before or during the installation).

If you haven't already done so, you should now put the data carrier (disk or CD-ROM),
contained in the product package, into your drive.

4. In the window which opens after the hardware-type selection first Have Disk and then Next
have to be clicked.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 93 of 218

5. The following window appears. Click the btton Find.

6. Now select the file canesd.inf and click OK.

7. The following window, which displays all esd CAN drivers, has to open (this example only
shows the ISA/331 driver). Select the driver of your board and click Next.

8. (Only for CAN-ISA boards, otherwise continue with step 9) Windows 9x/ME installs the driver,
checks the system resources, compares them to the configurations possible for the CAN-ISA
board and offers a possible configuration for the board in the following window:

Windows®

Page 94 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

The Input/Output range proposed by the system control does not have to correspond to the default-
I/O range which is set on board by means of jumpers or coding switches.

 Attention!
Therefore it is absolutely necessary to compare the jumper (or coding switch)
position on the CAN-ISA board to the I/O-address space selected by the system,
and change the jumpers/coding switches, if required.

Click Next

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 95 of 218

If the system does not propose settings:

If the system says that it does not have any resources for the CAN-ISA board, the installation
has to be completed, nevertheless. In this case the resources in the system have to be
distributed again manually by means of the device manager after the installation.

9. The successful installation of the software driver is shown by the following window:

10. In order to complete the software installation, you have to shut down your computer after
terminating all applications which are still open!

Then switch off the computer and install the hardware now as described in the hardware
manual! Compare the default setting to the setting selected under point 8 and change the
jumpers (or coding switches, depending on board type), if necessary.

11. Switch on the computer again after the installation and restart Windows 95. The driver is
automatically loaded by Windows 95. The device manager now has the new device class
CAN Controller under which all esd CAN boards can be shown and configured.

Windows®

Page 96 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

2.9.6.2.2 Starting the Device Drivers

ISA-Bus Hardware

Switch on the computer again after installation and restart Windows 9x/ME. The driver is
automatically loaded and started by Windows 9x/ME. In the device manager there is now the new
device class CAN Controller, under which all esd CAN boards can be shown and configured.

CAN-PCC

Switch on the computer again after installation and restart Windows 9x/ME. The driver is
automatically loaded by Windows 9x/ME but not started. In the device manager, however, the new
device class CAN Controller exists, under which all esd CAN boards can be shown and configured.

For starting the driver, the command cpcc start has to be entered explicitly in the command line.

This is necessary to be able to share the parallel interface with other device drivers. After
successfully starting the driver, it has an exclusive access to the parallel interface until it will be
stopped again by means of cpcc stop.

Another reason for executing an explicit start command is that the driver is not being assigned with
its own resources within Windows 9x/ME, but that it uses the available resource ‘Parallel Interface’.
Therefore, no smart icon Resources (see the following chapter) exists for this driver within the device
manager. In smart icon Status the parallel interface to be used (LPT1, LPT2, LPT3) has to be entered
below port instead and the driver automatically uses the current Windows-9x/ME configuration (I/O-
address, interrupt) for this interface.

 Attention!
For the operation of the CAN-PCC under Windows 9x/ME the parallel port must be set
to operating mode Force ECP in the properties window. If the hardware does not
support this setting, the bidirectional mode has to be selected (Force Bidir.).

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 97 of 218

2.9.6.2.3 Changing the Resource Settings

Overview

 Attention!
Changing the default settings by the device manager or the registry editor can cause
conflicts so that one or more devices are not recognized by the system anymore! The
device manager and the registry editor are configuration tools for advanced users who
are familiar with the parameter configuration and know that changes can have various
effects.

The CAN-ISA boards have fixed resource settings which are either distributed by the hardware
assistant during the Windows setup or which can be configured later by the device manager.

It might occur that Windows 9x/ME is unable to configure the CAN-ISA board, because it gets into
conflict with other devices. Should this be the case the board has to be configured again.

To change the device setting manually, the Device Manager, which is called via Settings under
System Control Panel, can be used. By using the device manager errors can be prevented which
are likely to occur when editing the registry entries directly.

If you want to solve the device conflicts manually by means of the device manager, you can use
following strategies, for instance:

• If the conflicting device is a plug-and-play device, deactivate it to release its resources.

• If the conflicting device is a conventional device, deactivate it by removing the board from the
system and unloading the drivers.

• Distribute the resources which are used by other devices again in order to release resources
for the conflict device.

• Change the jumpers (or coding switches, depending on the board type) on the CAN-ISA
board to adjust the board to the new settings.

Windows®

Page 98 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Activating the Device Manager

1. Click icon of Device Manager in Settings under System Control Panel or click MyComputer
with right mouse button, click Properties in Context menu and then click the Device Manager.

2. Double clicking the desired device type in the list with the left mouse button lists all devices
of this type in the computer.

3. Select the device to be configured by double clicking. Or else mark the device and click the
Properties icon.

Windows®

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 99 of 218

Changing the Resource Settings by Means of the Device Manager

1. Select the device class CAN Controller in the device manager by double clicking. The tree
branches and shows all devices of this type available in your computer.

2. Double clicking a device opens its property window. Click the Resources icon under the
device properties.

The Conflicting Device List shows the settings of other devices which are conflicting the
current setting of the CAN-ISA board.

3. Select the setting, which is to be changed, for instance the interrupt level, under resource
type. Click the Change setting icon to keep the changed values. Changes can only be made
if the option Use automatic settings has been deactivated. The Interrupt and Input/Output-
range (address space) settings can be changed independently.

The dialogue box Input/Output range shows the various settings which are supported. An
interrupt which is marked by an asterisk (*) signifies that this interrupt is already used by

another device.

After clicking the Change setting icon an error message might appear which states that the
resource setting cannot be changed. In this case you must select other settings until the
system accepts one of the chosen settings.

4. Select settings which are not conflicting other devices and click ‘OK’.

 Note:
Remember that the I/O-range setting by jumper (or coding switches, depending
on the board type) has to comply with the selected setting!

5. Finish Windows 9x/ME, then change the hardware settings of devices which have been
configured again and restart Windows 9x/ME.

Windows®

Page 100 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Changing the Logical Network Number

1. Double click the device class CAN Controller in the device manager. The tree branches and
all devices of this type available in your computer are shown.

2. Double clicking a device opens its property window. Click the Status icon in the property
window.

3. In Physical Net Mapping logical network numbers can be assigned to the physical interfaces
of the CAN board. By means of the network numbers the CAN board can be addressed by
the software. When starting the driver for the first time, logical network numbers starting from
0 are assigned to boards supported by the driver. If more than one esd CAN board of various
types (e.g. CAN-PCI/331 and CAN-ISA/331) are used in a computer, overlapping network
numbers cannot be avoided and therefore must be set manually.

4. A change in logical network numbers remains invalid until the computer is restarted.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 101 of 218

3 Unix® Operating Systems
This chapter covers the necessary steps to install, configure and start the device drivers for esd CAN
interfaces available for UNIX® operating systems.

3.1 Linux®

 Note:
For current information on the installation please check the readme in the according
installation directory. For the changes introduced with the last service pack, please
check the release notes.

Depending on the CAN hardware NTCAN support is either realized by device driver packages
provided by esd (see chapter 3.1.2) or by the standard framework for CAN driver support in Linux
(aka SocketCAN) together with a wrapper library (see chapter 3.1.3). The EtherCAN interface family
requires a user mode driver which installation and configuration is described in chapter 3.1.4.

 Linux CAN support (aka SocketCAN) is a set of Open Source drivers and a network
stack which extends the BSD socket API in Linux by introducing the new protocol family
PF_CAN. Since version 2.6.25 this framework is part of the vanilla (mainline) Linux
kernel and can be included by compiling the kernel with CONFIG_CAN.

An introduction and overview about the Linux CAN implementation can be found in a
presentation during the International CAN Conference (iCC) 2012 with the title “The
CAN networking subsystem of the Linux kernel”.

Refer to Table 13 which esd CAN interfaces come with a native SocketCAN support.

The picture below gives an overview about using the esd NTCAN architecture compared to using
the SocketCAN architecture together with the NTCAN wrapper.

Figure 1: Native NTCAN Architecture vs. Linux CAN

http://gitorious.org/linux-can
http://www.can-cia.org/fileadmin/cia/files/icc/13/hartkopp.pdf
http://www.can-cia.org/fileadmin/cia/files/icc/13/hartkopp.pdf

Unix® Operating Systems

Page 102 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

 Using the SocketCAN NTCAN wrapper requires that the SocketCAN driver for the esd
CAN interface is working.
As this driver is maintained by the Linux (CAN) community the appropriate community
support mechanisms like mailing lists, etc. should be consulted in case of installation
problems for the SocketCAN part.
Problems with the NTCAN driver or the SocketCAN wrapper are handled by the esd
support.

The CAN drivers provided by esd are intended for the standard Linux (vanilla) kernel. Linux real-
time extensions (apart from the real-time preempt patches aka PREEMPT_RT) like RTAI, Xenomai,

etc. are not officially supported.

Xenomai is a real-time development framework cooperating with the Linux kernel, in
order to provide a pervasive, interface-agnostic, hard real-time support to user-space
applications.

Part of the framework is the RT-Socket-CAN environment which supports hard real-time
for CAN communication with esd CAN interfaces of the C200 CAN interface family.
Please refer to the project's homepage for details about installation and API.

!! There is no NTCAN API and installation support for Xenomai by esd !!

Please contact esd for options to support further CAN interface families.

http://www.xenomai.org/

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 103 of 218

3.1.1 CAN Board Support Overview

Device drivers for esd CAN interfaces are available for x86 (32-Bit) and x64 (64-Bit) target
architectures. The CAN interfaces are supported either by esd NTCAN driver or by LinuxCAN /
SocketCAN and in some cases even by both architectures. The table below gives an overview which
CAN interface family is supported by which driver architecture.

CAN Family
Driver Architecture

esd NTCAN SocketCAN

C200I  -

C331I  -

C200  

C331  -

C360  -

C400  -

C402  -

C405  -

USB1*  -

USB2*** - 

USB3† - 

U400 - -

EtherCAN  -

AMC4  -

Table 13: SocketCAN support for esd interfaces

 Attention!

If a CAN interface is supported by LinuxCAN / SocketCAN and you want to use the esd
NTCAN driver you must make sure that the device is not already used by the LinuxCAN
/ SocketCAN driver as otherwise starting the esd CAN driver will fail.

*Support ends with kernel version 2.6.24 for legal reasons.
**No support for CAN-USB/AIR2.
† Support is integrated in Linux kernel since kernel version 6.6.

Unix® Operating Systems

Page 104 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

In addition to the CAN interfaces esd also provides Linux BSPs for several embedded boards with
on-board CAN interfaces. These boards are supported by NTCAN driver architecture which is part
of the BSP. The table below gives an overview about the availability for different Linux versions and
the included CAN driver version.

Board Linux CAN Driver Version

PMC-CPU/405(-DE)/440 >=3.2.0 3.x

CPCI-CPU/750 >=2.6.36 3.x

CPCI-405/EPPC-405 >=3.2.0 3.x

EPPC-405-UC >=3.2.0 3.x

CAN-CBX-CPU52xx >=3.2.0 3.x

CPCI-CPU/5201 >=3.2.0 3.x

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 105 of 218

3.1.2 NTCAN Driver

 Note:

On most Linux installations the driver installation is only possible with superuser rights.

Please read the current README file that comes with the software!

Please note the drivers delivered on CD are most likely outdated. Increasing speed in
Linux kernel development makes it almost impossible for us to provide you with drivers
on CD, which work with all Linux versions and distributions. We rather recommend
checking our website for the latest Linux drivers. To circumvent any problems before
they occur, we advise you to visit this site before installing a driver from this CD.

The latest driver archives can be downloaded from https://www.esd.eu

Please note: Drivers released before July 2012 still come as encrypted ZIP archives.
Newer drivers are released in the more commonly used TGZ format.

http://www.esd.eu/en/software-downloads

Unix® Operating Systems

Page 106 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.1.2.1 Files of the Linux Package

The software drivers for Linux are distributed on CD-ROM or delivered as archive via e-mail. The
following files are contained:

File Description

README current notes and information

Makefile driver compilation rules

config.mk configuration file for the compile process
It may be necessary to edit this file, in order to suit any peculiarities of the
current system (mainly the KERNELPATH, see page 111)

libntcan.a static CAN-API library (located in directory ./lib)

libntcan.so dynamic CAN-API library (located in directory ./lib)

ntcan.h header of the NTCAN-API/Library (located in directory ./lib)

This is the only header that has to be include in your application. Please do not
use any defines located in any of the other headers, in order to keep your
applications working with future version of the driver!

cantest.c source code of the example-application ‘cantest’ (located in subdirectory
./example) (see /1/.)

cantest binary of example-program ‘cantest’ (located in subdirectory ./bin)

xxxx.o

xxxx.c

xxxx.h

source- and object-files (located in subdirectory ./src)

This driver is released as a combination of binary-objects (*.o) and source-

files (*.c and *.h). This way esd can provide a CAN-driver working with many

different Linux-kernels. The source files are NOT under the GPL (GNU Public
Licence)! You are not allowed to modify, redistribute or sell the files! They are
intellectual property of esd electronics gmbh.

 Attention!
Do not try to use any defines or data-structures located in these
files in your own sources. This will lead to non-working
applications in the future.

updcrd This tool is only delivered with CAN modules that are equipped with a local
processor (e.g. CAN-PCI/331). It is located in subdirectory ./bin.

This tool can be used to switch the firmware of such a card between CAN-2.0A-
firmware (used for reception of CAN-messages with 11-bit-identifier) and CAN-
2.0B-firmware (used for additional reception of CAN-messages with 29-bit
identifier).
Syntax: updcrd -tx net

Parameter: crd: CAN module ID, e.g. pci331, usb331 (see table on

 page108)
 x: ‘a’, if CAN 2.0A firmware

 ‘b’, if CAN 2.0B firmware
 net: Net number of the CAN interface in the system

 (0, 1, 2, …)

Note:
In driver archives for x86_64-Linux the path for libraries and binaries exists twice: Once
for 32-bit (./lib32 and ./bin32) and once for 64-bit (./lib64 and ./bin64).

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 107 of 218

Figure 2: Linux driver architecture

NTCAN-API

API = Application Program Interface

ABI = Application Binary Interface

Operating System

User Space

Application Program

NTCAN Library

Driver Interface
Kernel Space

OS-Layer

Shipped as Source

CAN Nucleus

Board Layer

CAN Driver

- API (changing with kernel versions)

- OS-dependent

Legend:

- API + ABI (constant over several kernel versions)

- OS-independent

- API + ABI (constant over several kernel versions)

- OS-dependent

Unix® Operating Systems

Page 108 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.1.2.2 CAN-Module-ID and Default Parameters of the Driver

CAN Module
Module ID

crd

Default Values*

major
Address

io
Interrupt
irq

AMC-CAN4 amc4 54 - -

CAN-ISA/200

isa200 53 0x1E8 7 CAN-PC104/200
(SJA1000 version)

CAN-ISA/331
CAN-PC104/331

isa331 52 0x1E0 5

CAN-PCI104/200
CAN-PCI/200
CAN-PCIe/200
CPCI-CAN/200
CAN-PCI/266
PMC-CAN/266

pci200** 54 - -

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

pci331 50 - -

CAN-PCI/360
CPCI-CAN/360

pci360 51 - -

CAN-PCI/400
CAN-PCIe/400
CPCI-CAN/400
PMC-CAN/400

esdaccbm 55 - -

CAN-PCI/405 pci405 53 - -

CPCI-405 (local driver) cpci405 53 - -

CPCI-CPU/750
(local driver)

cpci750 53 - -

CAN-USB/Mini usb331 50 - -

*The default values can be overwritten by the command insmod (see following chapter).
**Before installing the NTCAN driver for pci200 please check, that the CAN interface is not yet used by the

SocketCAN driver.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 109 of 218

3.1.2.3 Installation

Note:
It is necessary to install the kernel sources and configure them to comply with the
running kernel, before installing the CAN-driver!

Unpacking the Archive

Unpacking the TGZ archive (for drivers released after July 2012) with

crd = card-id (e.g.: pci200 or cpci405, see table in chapter 3.1.2.2)

os = host-operating-system (e.g.: linux_2.4.x)

arch = host-architecture (e.g.: x86 or x86_64)

ver = driver version (e.g.: 3.7.2)

ext = extension (applicable to certain cards only, e.g.: gcc2)

You'll end up with a directory named as the archive.

Unpacking the ZIP archive (for drivers released prior July 2012) with

crd = card-id (e.g.: pci200 or cpci405, see table chapter 3.1.2.2)

os = host-operating-system (e.g.: linux_2_4_x)

arch = host-architecture (e.g.: x86 or x86_64)

ver = driver version (e.g.: 3.7.2)

ext = extension (applicable to certain cards only, e.g.: gcc2)

 Note:
You will be prompted for a password. The password can be found in the
accompanying file README_FIRST (delivered on the CAN-CD or per e-
mail).

 Resulting file: esdcan-crd-os-arch-ver-ext.tar

tar -xzf esdcan-crd-os-arch-ver-ext.tgz

unzip esdcan-crd-os-arch-ver-ext.zip

Unix® Operating Systems

Page 110 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Untar the Driver Directory

crd = card-id (e.g.: pci200 or cpci405, see table chapter 3.1.2.2

os = host-operating-system (e.g.: linux_2_4_x)

arch = host-architecture (e.g.: x86 or x86_64)

ver = driver version (e.g.: 3.7.2)

ext = extension (applicable to certain cards only, e.g.: gcc2)

 You will end up with a directory named as the archive.

Unzip and Untar in a Single Step

Alternatively, the unzipping and untaring of the driver directory can be accomplished in a
single step with:

The unpacked files will be stored in a directory that carries the same name as the archive
file.

tar -xvf esdcan-crd-os-arch-ver-ext.tar

unzip -p esdcan-crd-os-arch-ver-ext.zip | tar -xv

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 111 of 218

Compiling the Driver

In some cases, you need to edit a configuration file for the compilation: In config.mk you

need to set the variable KERNELPATH correctly. Normally the default path should be correct.

If your Linux configuration differs from standard, correct the following line accordingly:

 KERNELPATH = <your-path-to-the-kernel-source>

Note:
For Linux kernel > 2.6.0:
On some systems you might need to be "root" to compile the driver.

 Compilation of the driver is simply started by typing:

 For some cards there are warnings like COMPILING FOR xxx. These can be ignored and

 will be removed in future versions.

 Now, you have a file called as described below, which is the actual driver-module in the
 same directory:

esdcan-crd-os-arch-kver

 Dynamically loadable driver-file with:

crd = card-id (e.g.: pci200 or cpci405, see table chapter 3.1.2.2

os = host operating system (e.g.: linux...)

arch = host architecture (e.g.: x86)

kver = target-version information (e.g.: 2.4.18)

For Linux the kernel version is coded here, because the compiled version is kernel
specific!

 Example:

 For a CAN-PCI/331 for 32-Bit-Linux on x86 with 2.4.21-99-smp kernel the driver with
 version 3.6.1 is called as following:

 esdcan-pci331-linux-x86-3.6.1-2.4.21-99-smp

 Note:
For Linux kernel > 2.6.0:
The driver file is called esdcan-crd.ko and is generated inside of the
src- subdirectory.

 Example: (for Linux kernel > 2.6.0)

 For the above mentioned CAN-PCI/331 the driver file is called:

 esdcan-pci331.ko (the file is located in ./src subdirectory)

cd ./esdcan-crd-os-arch-ver-ext

make

Unix® Operating Systems

Page 112 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

1. File Locations

 It is recommended (though not necessary) to store the driver module in the following
 directory:

 /lib/modules/kernelversion/

 The variable kernelversion has to be replaced by the according string of the system.

 The string (on kernels 2.4.x it should be equivalent to the os-string in the driver's name (see

 above)) is returned, if the following command is called:

 uname -r

 The dynamic shared library libntcan.so should be placed in the directory

 /usr/local/lib/ or an equivalent path, which is contained in the LD_LIBRARY_PATH

 environment variable.

 Note:
On 64-bit systems, there are two versions of libntcan.so. One in ./lib32
and one in ./lib64. The first belongs into /usr/local/lib on most Linux
distributions. The later should be kept together with other 64-bit libraries, e.g. in
/usr/local/lib64.

 The static version of the library libntcan.a can be kept wherever you want. Here at esd

 we prefer to keep it with the sources of a project, on the other hand, one might like to install
 it with the shared-lib at /usr/local/lib/.

 Note:
esd discourages the use of statically linked libraries. We rather recommend to
make use of the dynamically linked libraries. Your advantages will be much
easier backtracking of involved versions and much simpler update procedures.

 Installation Note:
The shared library should belong to user and group “root” with the following file
access permissions: u=rwx, g=rx, o=rx
After installation of the library, the root-user should call:
 ldconfig -n /usr/local/lib (if installed to this directory)

Afterwards there is a link libntcan.so.v --> libntcan.so.v.mv.r .
For your own convenience it is advised to generate another link in your library-
directory:
 libntcan.so --> libntcan.so.v

The static-library, if installed in /usr/local/lib/, should also belong to
user/group root, but it does not need (and should not have) the executable-
flag. Leading to the following file access permissions: u=rw, g=r, o=r

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 113 of 218

2. Load the Driver File (as Superuser)

Syntax:

insmod ./esdcan-crd-os-arch-kver [major=m]

with the following optional parameter: m = non-default major

The naming of the kernel module is equivalent to the naming of the driver archive as printed
on page 108 (exception on kernels > 2.6.x).

 Note:
With the module CAN-PCI/405 this call returns after approx. 5 seconds!

3. Make the ‘inodes’ (as Superuser)

 Note for Systems with Kernel 2.6.x:
On 2.4.x systems this step has to be executed just once. On 2.6.x
systems the inodes might vanish after reboot. If this is the case on your
system, please do the following:
Instead of /dev rather change into /lib/udev/devices directory and
create the inodes there. In this way they will be automatically recreated
on every reboot.

 cd /dev

 mknod --mode=a+rw can0 c xx 0

 mknod --mode=a+rw can1 c xx 1 ==> as many as physical CAN nets provided

 by the modules

 with
 xx = major number of the driver (see table on page 108)

 Note:
For your own convenience as soon as the driver has been loaded (Step 4
complete) there is a script in proc-filesystem (/proc/bus/can/XXX/inodes,
where XXX is a subdirectory depending on your CAN device), which relieves
you of this step. The script also has a parameter to specify the starting net
number. It will handle this step for multiple CAN devices as well.

Unix® Operating Systems

Page 114 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

6. Checking the Installation

Whether the installation has been successful or not, can be checked in the following file:

/var/log/messages

 or by calling dmesg

Here is an example for a successfully loaded driver for CAN-PCI/405:

kernel: esd CAN driver: pci405

kernel: esd CAN driver: baudrate not set

kernel: esd CAN driver: mode=0x00000000, major=53, 4 nodes on 1 cards

kernel: esd CAN driver: version 0.3.1 14:36:35 Feb 13 2003: successfully loaded

 After a successful installation, the CAN bus can be accessed by means of the NTCAN-API.
 The application has to be linked to the library libntcan.a (static) or libntcan.so

 (shared).

 Note:
esd strongly recommends usage of dynamically linked libraries (aka shared
objects)!

 If the example application cantest is called without parameters, the available CAN nets are
 displayed.

7. Unload the Driver File (as Superuser)

Kernel 2.4.x:

rmmod esdcan-crd-os-arch-kver

Kernel 2.6.x:

rmmod esdcan-crd.ko

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 115 of 218

3.1.3 Linux CAN Driver (aka SocketCAN)

3.1.3.1 Integration

The NTCAN library plugin capability is used to provide NTCAN support for esd CAN interfaces that
are supported natively with the CAN driver implementation which is part of the Linux kernel usually
referred to as SocketCAN. The plugin approach provides support for most basic features of the
NTCAN API (see chapter 3.1.3.4 for limitations and differences) so NTCAN based applications can
run in parallel with SocketCAN based applications and the hardware can be used in parallel with
other esd CAN interfaces which are supported with esd NTCAN drivers. Refer to Table 13 which
esd CAN interfaces come with a native SocketCAN support.

The following additional requirements have to be met:

1. Since version 2.6.25 the CAN support is part of the Linux kernel and can be enabled if
compiled with CONFIG_CAN. Support for previous kernel versions might be available via the

no longer updated web site of the SocketCAN project.

2. "ip"-tool supporting can
The install script tries to detected/build this automatically. If that help fails please go to
iproute2 directory and check READMEs there to build it manually.

If make is successful the file .../ip/ip should be built. Copy it to a binary path, e.g.

/usr/local/bin then. All usages of just ip here might need that path then, too. (So

/usr/local/bin/ip instead if just ip has to be typed)

3.1.3.2 Installation

1. Make sure SocketCAN is available and a device driver is loaded, etc., e.g. by
ls /sys/class/net/. When there is an entry can0 everything should be fine, else don't

try to install this NTCAN plugin before it exists.

2. Extract the archive, e.g. by
tar xvfz ntcanSckPlugin32-2.0.7-ntcan-3.3.6.tgz

3. Change into the newly created directory and run the install script, e.g. by
sudo ./install.sh

http://developer.berlios.de/projects/socketcan

Unix® Operating Systems

Page 116 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.1.3.3 Configuration

The configuration is done with the file /etc/esd-plugin

By default 3 nets are configured: SocketCAN device can0 is configured as NTCAN net 60, can1 is

configured as NTCAN net 61 and so on.

To change the logical net numbers just edit the corresponding lines in the file:

• libntcanSckPlugin.0.Net=60

• libntcanSckPlugin.1.Net=61

• libntcanSckPlugin.2.Net=62

Other settings in that file:

• Verbosity level (Text output in the console):
◦ libntcanSckPlugin.verbose=0 Prints nothing

◦ libntcanSckPlugin.verbose=1 Only errors

◦ libntcanSckPlugin.verbose=2 Errors and warnings

◦ libntcanSckPlugin.verbose=3 Errors, warnings and Infos

• Automatically adapting Socket-CAN settings:

◦ libntcanSckPlugin.noscc=1 To disable that

Use the cantest application described in /1/.which binary is extracted to the sub folder cantest to

verify the correct installation. Run it without parameters to see a short help and a list of available
CAN nets.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 117 of 218

3.1.3.4 Restrictions

Due to the different driver architecture the SocketCAN wrapper can not map all capabilities of the
NTCAN API because this feature is either not supported (e.g. error injection) or is implemented in a
way that it can not be easily mapped (e.g. count of lost frames). This chapter contains (a maybe
incomplete) list of differences between the SocketCAN wrapper and native NTCAN drivers. The
NTCAN API is described in /1/.

• Lost counter in CMSG/CMSG_T structs is not used (always zero).

Use e.g. sys/class/net/can0/statistics for information about lost frames.

• Events: NTCAN_EV_CAN_ERROR is the only event supported. And within that event's data

byte one (error) is the only supported byte.

• Only these I/O controls are supported (See NTCAN docs canIoctl):
◦ NTCAN_IOCTL_GET_BAUDRATE
◦ NTCAN_IOCTL_SET_BAUDRATE
◦ NTCAN_IOCTL_FLUSH_RX_FIFO
◦ NTCAN_IOCTL_SET_20B_HND_FILTER
◦ NTCAN_IOCTL_GET_TIMESTAMP
◦ NTCAN_IOCTL_GET_TIMESTAMP_FREQ
◦ NTCAN_IOCTL_GET_RX_TIMEOUT
◦ NTCAN_IOCTL_GET_TX_TIMEOUT
◦ NTCAN_IOCTL_SET_TX_TIMEOUT
◦ NTCAN_IOCTL_SET_RX_TIMEOUT (While TX_TIMEOUT is ignored, see canWrite())

• Bus-OFF handling

Current CAN's default is to stay off bus then. The application is usually helpless in that case.
To avoid this, set Socket-CAN to automatically restart the device then. Currently this can be
done with the ip command:

e.g.:
ip link set can0 type can restart-ms 1000

(Manual restart possible by ip link set can0 type can restart)

This is also done automatically. See chapter 3.1.3.3 for infos about how to avoid that.

• canStatus()
Resulting CAN_IF_STATUS struct members:
◦ hardware and firmware as described or 0 when they could not be determined.
◦ driver is the wrapper plugin version number.
◦ dll is set by NTCAN library.
◦ boardstatus is one of enum can_state defined in netlink.h (or 0xffffffff if it

could not be determined)
◦ boardid is “SocketCAN".
◦ features is NTCAN_FEATURE_BASIC_20B | NTCAN_FEATURE_TIMESTAMP

Where it is not guaranteed that the underlying hardware really supports CAN 2.0B or
hardware timestamps. (Else timestamps will be set by software.)

Unix® Operating Systems

Page 118 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

• canOpen()

The flags, txqueuesize and txtout parameters are ignored. Socket-CAN's TX queue size
can be set with the ip tool, e.g.:

ip link set can0 txqueuelen 1000

The receive buffer size depends on the given rxqueuesize value. But does not match
exactly that number of frames. Also it is limited by rmem_max value, which can be
increased with e.g.
echo 1048576 >/proc/sys/net/core/rmem_max

These example values are also written automatically. See chapter “3.1.3.3 Configuration“
for infos about how to avoid that.

• canSetBaudrate()

Only Pre-defined bit rate table and User Bit Rate Numerical are allowed. Usually only
possible as "superuser". (e.g. when application is started with sudo) Also (re)starts the

SocketCAN net interface if it was down or controller was Bus-OFF.
Stops the Socket-CAN net interface with baud param NTCAN_NO_BAUDRATE.

• canGetBaudrate()

Returns NTCAN_NO_BAUDRATE when controller is Bus-OFF or Socket-CAN net interface
is down.

• canRead()/canReadT()

When function is waiting for a message, it is not interrupted when another thread closes the
same NTCAN handle.

• canWrite()/canWriteT()

The TX timeout is ignored. It is blocking until message is written to socket. While this is fine
for safely sending more messages than buffer could hold, it is still no guarantee they really
went on the bus. (As we're only waiting till they're in the buffer/queue)

Does not return NTCAN_CONTR_OFF_BUS/NTCAN_CONTR_WARN. It will return
NTCAN_SUCCESS even when controller is Bus-OFF! To avoid this use the error events
and stop sending when controller goes off bus.

• CAN frame data length counter > 8

SocketCAN does not allow this, so when CMSG/CMSG_T member len is set to a value
between 9 and 15 it is treated as 8.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 119 of 218

3.1.4 EtherCAN and EtherCAN/2

In comparison to CAN interfaces connected to a local PC bus (PCI, USB, …) supported with a Linux
kernel mode device driver the EtherCAN and EtherCAN/2 interfaces are supported with a user mode
device driver which integrates this remote CAN hardware into the NTCAN architecture in the same
way as a local interface. This user mode device driver supports the EtherCAN/2 as well as the legacy
EtherCAN hardware but for reasons of simplicity this chapter only refers to the EtherCAN/2.

The EtherCAN/2 software package is available for Linux (x86/x64) and contains the following files:

File Description

README.x.x Current notes and information

cantest.c Source code of the example-application ‘cantest’ (located in

subdirectory ./example) (see /1/.)

cantest Binary of program ‘cantest’ (located in subdirectory ./bin)

makefile.ethercan Example makefile for compiling the file cantest.c

installEthercanLibs Bash script for installation of libraries and include files

etc/esd-plugin Example config file for ntcanEthPlugin
(to be stored as /etc/esd-plugin)

pdf/*.pdf NTCAN API documentation (Part 1) and Installation (Part 2) and
documentation of esd system abstraction layer API

include/ntcan.h Header of the NTCAN API (to be stored e.g. at
/usr/local/include). This is the only header that has to be

include in the application. Please do not use any defines located in
any of the other headers, in order to keep your applications working
with future version of the driver!

lib/libntcan.so.x.x.x Shared library containing the NTCAN-API (to be stored e.g. at
/usr/local/lib)

lib/ntcanEthPlugin.so.x.x.x Dynamically loadable plugin for libntcan.a or libntcan.so (to be stored
at e.g. /usr/local/lib)

psys_linux/include/psys.h
psys_linux/include/
psyslinux.h

Psys header files, esd System Abstraction Layer API (to be stored
e.g. at. /usr/local/include)

psys_linux/lib32/

libpsys.so.x.y.z
32-bit shared library, containing esd System Abstraction Layer (to be
stored at e.g. under /usr/local/lib)

psys_linux/lib64/

libpsys.so.x.y.z
64-bit shared library, containing esd System Abstraction Layer (to be
stored e.g. at /usr/local/lib64)

psys_linux/src/psysdrv.c Source of the psys-driver

psys_linux/src/psysdrv.h Psys-driver header

psys_linux/src/Makefile KBuild-Makefile needed for the module generation with kernel 2.6.x

psys_linux/Makefie makefile for PSYS-driver for kernel 2.4.x or 2.6.x

psys_linux/README Release notes and installation hints for psys / psys-driver

psys_linux/LICENSE License covering PSYS driver and library

Unix® Operating Systems

Page 120 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.1.4.1 Installation

 Note:
The installation is only possible with superuser rights (user: root). Please read the
current README file that comes with the software!

1. Unpacking the Archive

In order to unpack the zipped tar-archive file the following command has to be called:

tar xvfz ethercan-lx-2.0.10-ntcan-3.0.6- psys-1.3.0-gcc-3.3.1-glibc-2.3.2.tgz

The unpacked files will be stored in a directory that carries the same name as the archive
file.

2. Compile and Load Psys-Driver

Therefore follow the installation instructions in psys_linux/README.

3. Installing the Libraries and Header Files

In order to install the libraries and header files the following command has to be called (with
supervisor rights):

./installEthercanLibs

All library files will be stored in /usr/local/lib

and all include files will be stored in /usr/local/include.

4. Adapt /etc/esd-plugin

See chapter “3.1.4.2Configuration”.

5. Compiling the Example Program ‘cantest’

With the call

make -f makefile.ethercan

the test- and example program cantest will be compiled.

After successful installation you can access the CAN-Bus via the esd NTCAN API (link libntcan

with your application). For a complete NTCAN API documentation refer to /1/.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 121 of 218

3.1.4.2 Configuration

All user configurable stuff concerning EtherCAN can be found in the file /etc/esd-plugin.

List of available keywords in /etc/esd-plugin (with 0 < x < 4):

Keyword Description Default Value

PeerName[x] host name or IP-address of EtherCAN server -

Net[x] CAN net number assigned to EtherCAN server with above
PeerName[x]

50 + x

ConnTimeout[x] Time to wait until connection to the EtherCAN server is
established. If timeout exceeds, canOpen() returns
NTCAN_SOCK_CONN_TIMEOUT.

2500 ms

CmdTimeout[x] Timeout for special commands send from client to
EtherCAN-server.

2500 ms

KeepAliveTime[x] If there is no CAN traffic, client sends a keep-alive
message to server. If sending the keep-alive message
fails, the connection to the server is disconnected and the
EtherCAN client will try to reconnect the server.

2500 ms

TCPNoDelay[x] 0: Nagle algorithm active (i.e.: Coalesce a number
 of TCP messages and send them all at once)
1: Nagle algorithm off (i.e.: Immediately send TCP
 messages without any inhibit)

1

Example 1: EtherCAN configured as CAN net 30 and all other parameters in default setting.

PeerName[1]= "10.0.16.58"
Net[1]= 30

Example 2: EtherCAN configured as CAN net 20 and, with increased timeouts, because it is located
outside the company network.

PeerName[0]= "134.66.177.1"
Net[0]= 20
KeepAliveTime[0]= 10000 # increase keep-alive timeout
ConnTimeout[0]= 25000 # increase connection timeout
CmdTimeout[0]= 5000 # increase command timeout

Unix® Operating Systems

Page 122 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.1.4.3 Miscellaneous

This chapter covers several topics which should preclude problems using the EtherCAN/2 on Linux
in your applications.

3.1.4.3.1 Linking Against libntcan (gcc-Option -rdynamic)

 Attention!
It is mandatory to use the option -rdynamic when linking against libntcan, because
the dynamically loaded library ntcanEthPlugin.so (beside delivering some new
functionality) itself needs some symbols from within libntcan. Without -rdynamic
this does not work!

If your application (on runtime) complains about ‘ntcanEthPlugin.so:

undefined symbol: openRegistryCanIf Ether’ the option -rdynamic is still
missing in your makefile.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 123 of 218

3.2 Legacy UNIX Versions

 Attention!
As the release date of all UNIX versions covered in this chapter was more than 20 years
ago, technical support and maintenance by esd for these drivers is terminated.

3.2.1 PowerMAX OS Installation

 Note:
The ‘object mode’ of the CAN-API is not supported by PowerMAX OS.

3.2.1.1 Files of the PowerMAX OS Package

The software drivers for PowerMAX OS are on a CD-ROM, which contains the following files:

File Description

README.ican4 current notes and
information

The letter combination ‘ican4’ signifies the

files of the module VME-CAN4. For other
modules these letters are changed as
follows:

e.g.
ican4

dynamically loadable driver

 CAN Module File Name

 VME-CAN2 ican2

 VME-CAN4 ican4

libntcan.o ntcan-API

ntcan.h header for ntcan-API

cantest.c source code of example program ‘cantest’ (see /1/)

cantest binary file of example program ‘cantest’

Unix® Operating Systems

Page 124 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.2.1.2 Sequence of Installation Under PowerMAX OS

1. Copy the tar-Archive vmecan4_v1.2.tar in the Home Directory

2. Unpacking the Archive

In order to unpack the tar-archive the following command has to be called:

tar xvf vmecan4_v1.2/ican4

 ‘ican4’ has to be entered for the VME-CAN4 module. For other modules the character
 combination shown in the following table has to be entered. The same applies to the
 following commands.

 Input syntax for unpack the archive:

CAN Module Entry Syntax

VME-CAN2 ican2

VME-CAN4 ican4

3. Generating the ‘inodes’ (as Superuser)

 cd 4_2/vmecan4_v1.2/ican4/

 or
 cd 4_3/vmecan4_v1.2/ican4/

4. Only at the First Installation: Add Adapter Definition

At the first installation of the CAN modules the following lines hat to be added to the file
/usr/include/sys/adapt3er_vme.h/ :

 #define ADAPTER_ICAN2 (AVB+0x12) /* 0x212 - esd ican2 */
 #define ADAPTER_ICAN4 (AVB+0x13) /* 0x213 - esd ican4 */

5. Only if an Existing Driver is Updated:

If an existing driver should be updated, the following line is necessary:

modadmin -U ican4

6. Installation

- in case of first installation:

./install -f

with following reboot

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 125 of 218

7. Change Directory:

change to

~/4_2/vmecan4_v1.2 for PowerMAX OS 4.2

or ~/4_3/vmecan4_v1.2 for PowerMAX OS 4.3

8. Start Driver:

After calling

modadmin -l ican4

the driver displays his start message.

9. Starting cantest:

After starting cantest with

./cantest

the program shows four accessible CAN nets (net 0...3)

After a successful installation, the CAN bus can be accessed by means of the NTCAN-API
(integration of ‘libntcan.o’ into the application).

Unix® Operating Systems

Page 126 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.2.2 Solaris™ Installation

 Note:
The ‘object mode’ of the CAN-API is not supported by Solaris.

3.2.2.1 Files of the Solaris Package

The software drivers for Solaris are contained on a CD-ROM. This CD contains the following files:

File Description

install script for installation of driver

README.c331 current notes and information The character combination ‘c331’ signifies

the files of the CAN-PCI/331 module. For
other modules the characters change as
follows:

c331 dynamically loadable driver

c331.conf

parameter file for driver
(is read at installation and
deinstallation) CAN Module File Name

 CAN-ISA/331
CAN-PC104/331

c331i

 CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

 VME-CAN4 ican4

ntcan.o ntcan-API

ntcan.h header for ntcan-API

canupd program for firmware update

cantest.c source code of example program ‘cantest’ (see /1/.)

cantest binary file of example program ‘cantest’

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 127 of 218

3.2.2.2 Sequence of Installation Under Solaris

1. Unpacking the Archive

In order to unpack the tar-archive you have to call the following command:

tar -xvf c331-solaris-vx.x.x.tar

(x.x.x = driver version number)

 The entry ‘c331’ has to be made for the CAN-PCI/331 module. Please specify the
 corresponding letter combination shown in the table below for other modules:

 Entry syntax when unpacking the archive:

CAN Module Entry Syntax

CAN-ISA/331
CAN-PC104/331

c331i

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

VME-CAN4 ican4

2. Preparing the System to Dynamically Create ‘inodes’:

To make sure that during the driver installation ‘inodes’ are automatically created under the
/dev directory, it is necessary to conform the file /etc/devlink.tab. This has to be made

with superuser rights. It is recommendable to make a backup of this file before starting. The
following line has to be added to the file:

type=can; \M0

 When installing the driver for the first time, the files /dev/canx should be automatically

 created now, x indicating the (hexadecimal) network number.

Unix® Operating Systems

Page 128 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3. Conforming the Configuration File

1. Conforming the Configuration File for CAN-ISA Modules:

Before the driver is installed for the first time, its driver configuration file has to be conformed
to the hardware configuration. The following properties have to be available in
driver.conf, where driver has to be substituted by the according driver name. Only the

properties printed in italics have to be conformed. For a summarizing overview of the (bus-
specific) properties) please consult the according manual pages (driver.conf, sysbus,

pci).

Name Parameter Meaning

name String Driver name

class String Bus type

interrupts Numeric Interrupt vector

interrupt-

priorities
Numeric Interrupt priority level (IPL)

reg Numeric Three values, separated by commas. The second
corresponds to the CAN interface basis address and the
third describes the size of the I/O area in bytes.

The value given in reg has to correspond to the basis address configured in the hardware by
means of jumpers or coding switches. The IPL level has to be assigned to a high-level
interrupt and the interrupt vector must not have been assigned by another hardware
component.

Below an example configuration file for a CAN-ISA/331 is shown. Its basis address has been
configured at 0x1E0 and it is to use the interrupt vector 7 with an IPL of 11:

 # Copyright (c) 1998, by esd gmbh.
 #
 name="isa331" class="sysbus" interrupts=7 interrupt-priorities=11 reg=1,0x1e0,8;

2. Conforming the Configuration File for CAN-PCI Modules:

 Since PCI devices report themselves, the configuration and assignment of resource is
 automatically when the system is started (Plug & Play). The device driver
 automatically adopts the assigned resource so that it does not have to be manually
 assigned in the driver configuration file. The only parameter which can be set is the
 interrupt priority to be used by the IPL driver (see also example c331.conf).

 # Copyright (c) 1999-2000 electronic system design gmbh
 #

 # do not remove the next line
 interrupt-priorities=9;

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 129 of 218

3. Conforming the Configuration File for the VME-CAN4 Module:

Before the driver is installed for the first time, its driver configuration file has to be conformed
to the hardware configuration. The following properties have to be available in
driver.conf, where driver has to be substituted by the according driver name. Only the

properties printed in italics have to be conformed. For a summarizing overview of the (bus-
specific) properties) please consult the according manual pages (driver.conf,sysbus,

pci).

Name Parameter Meaning

name String Driver name, here always: ican4

class String Bus type here always: vme

interrupts Numeric Interrupt level and vector
Four interrupts at the same interrupt level with interrupt vectors with
the offset of 1, 4 and 5 have to be defined (see following example).

 Note:
The hardware of the VME-CAN4 supports up to 8
interrupt vectors. Because of the compatibility to the
VME-CAN2 the vectors 1, 2, 5 and 6 are used
(according entries: 0x80, 0x81, 0x84, 0x85).

 Attention:
The interrupt level has to carefully selected to
obviate conflicts with existing interrupts of the
system!

reg Numeric Contains six values separated by commas, that define the
address range of the VME-CAN4:

• The first value defines the 1. address range: 0xad => A16

• The second value defines the board address within the
1. address range that is used to initialize the address registers of
the VME-CAN4:
 0xe000 + (coding_switch_setting • 0x100)

 (only, if the geographical addressing is inactive, please
 refer hardware manual of VME-CAN4)

• The third value defines the size of the 1. address range in bytes
and thus the offset to the next board within the A16-address range
of the system: always 0x100

• The fourth value defines the 2. address range: 0x4d => A32

• The fifth value defines the A32-address of the VME-CAN4
board: e.g. 0x10000000

• The sixth value defines the size of the 2. address range in
bytes: always 0x00100000

 Note:
Due to reasons of the address coding the offset to
the next board within the A32-address range in the
system is 0x00200000!

Unix® Operating Systems

Page 130 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

 Below an example configuration file for the VME-CAN4:

 name="ican4"
 class="vme"
 interrupts=6,0x80,6,0x81,6,0x84,6,0x85
 reg=0xad,0xe100,0x100,0x4d,0x10000000,0x00100000;

4. Installing the CAN Driver

In order to install the driver the script install has to be executed as superuser. It copies the
driver files into the target directory, installs and starts the driver. From now on the driver will
be automatically loaded and started with every system start.

After it has been successfully installed, you can access the CAN bus via the NTCAN-API
(including ‘ntcan.o’ into the application).

5. Checking the Installation

1. For CAN-PCI Modules Only:

If the installation script has been executed correctly, the driver is started and automatically
loaded with every system start.

By entering "modinfo | grep d3x" into the root you can check whether the driver is

loaded or not. An output similar to the following has to appear:

205 f5d11000 34d9 132 1 c331 (CAN-PCI/331 driver v1.3.3)

2. For All Modules:

You can check whether the installation was successful by reading the driver boot message
in the following file:

/var/adm/messages

6. Unloading the CAN driver

Unloading the CAN driver is. For example, necessary after an update of the local firmware
for resetting the processor. For the CAN-ISA/331 module this can be achieved by the
following command, which has to be executed as a superuser:

rem_drv c331i

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 131 of 218

3.2.3 SGI-IRIX6.5 Installation

 Note:
The ‘object mode’ of the CAN-API is not supported by SGI-IRIX6.5 .

3.2.3.1 Files of the SGI-IRIX6.5-Package

The software drivers for SGI-IRIX6.5 are shipped on a CD-ROM. The CD contains the following files:

File Description

c331 CAN driver (object code) The letter combination ‘c331’ indicates

the files of module CAN-PCI/331. For
other modules these letters will be
substituted as follows:

c331.master driver configuration file

c331.sm driver configuration file CAN Module File Name

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

 CAN-PCI/405 pci405

makefile makefile for installing and loading the driver

ntcan.o ntcan-API

ntcan64.o ntcan-API / 64-bit version

ntcan.h Header for the ntcan-API

cantest.c source code of the example program ‘cantest’ (see /1/)

cantest binary file of the example program ‘cantest’

Unix® Operating Systems

Page 132 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.2.3.2 Sequence of Installation Under SGI-IRIX6.5

1. Login as Root

2. Unpacking the Archive

In order to unpack the tar-archive of the CAN modules CAN-PCI/331, CPCI-CAN/331 and
PMC-CAN/331 you have to call the following command:

tar -xvf c331-IPyy-vx.x.x.tar

with

 x.x.x = software driver version (e.g. 2.1.0)

 yy = processor identification (e.g. ‘32’ for SGI-O2)

 In order to unpack the tar-archive of the CAN module CAN-PCI/405 you have to call the
 following command:

 tar -xvf esdcan-pci405-irix-mips-x.x.x-IPyy-z.z

 with

 x.x.x = software driver version (e.g. 0.3.2)

 yy = processor identification (e.g. ‘27’)

 z.z = operating system version (e.g. ‘6.5’)

3. Change Directory (e.g. CAN-PCI/331, CPCI-CAN/331 and PMC-CAN/331)

cd c331-IPXX-v2.1.0

4. Install Driver Data

smake install

5. Load Driver

smake load If the driver has been installed and loaded correctly, a message of the

 driver has to appear on the screen now.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 133 of 218

3.2.4 AIX Installation

3.2.4.1 Special Features of the AIX Implementation

• The CAN driver has been designed for operating system version AIX 4.2.1

• Hardware platform: PowerPC

• Implemented esd CAN modules: CAN-PCI/331, CPCI-CAN/331, PMC-CAN/331

• 29-bit identifiers are not yet being supported

• The ‘object mode’ of the CAN-API is not supported by AIX

3.2.4.2 Files of the AIX Package

The software drivers for AIX are contained on a CD-ROM. The CD contains a tar-archive.

File Description

README.c331 current notes and information The character combination ‘c331’ signifies

the files of the following modules:

c331 dynamically loadable driver CAN Module File Name

 CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

ntcan.o ntcan-API

ntcan.h header for ntcan-API

nttest.c source code of example program ‘cantest’

Unix® Operating Systems

Page 134 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

3.2.4.3 Installation Sequence under AIX

1. Login as Root

2. Unpacking the Archive

In order to unpack the tar-archive the following command has to be called:

tar -xvf c331-ppc-vx.y.z.tar

(x.y.z = driver version number)

3. Copying the Files

At unpacking the directory /c331-ppc-vx.y.z is created.

Copy the files cfg_pci331 and ucfg_pci331 from this directory into the directory

/usr/lib/methods/.

Copy from this directory the file c331 into the directory /usr/lib/drivers/pci/.

4. Create Entries in the Data Base

run odmadd pci331

5. Call the Configuration Manager

cfgmgr -v

6. Check the Files and Create Symbolical Links

Check whether the devices c33100 and c33101 are entered in directory /dev/. Create a

symbolical link:

 ln -s /dev/c33100 /dev/can0
 ln -s /dev/c33101 /dev/can1

The driver is now installed.

Unix® Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 135 of 218

7. Check Whether the Driver Runs With CAN tool ‘CANreal’

Make sure that the wiring and terminations are correct and make sure that at least one other
working CAN participant has been connected!

Start the monitor program CANreal:
./canreal &

Set the baud rate of your CAN network for network 0 in CANreal and click Init.

‘Init done’ appears in the window

Click Add Id to select the identifier area of 0 to 2047.

Click Start to display the messages of the CAN bus.

8. Test Program cantest

In addition to CANreal, which has got a UNIX-typical user interface, you can also use the test
program cantest under AIX. It is operated by means of command line specification (for details
see chapter ‘Test Program cantest’ in /1/).

compile cantest:
gcc -o cantest nttest.c ntcan.o

call cantest:
./cantest

Real-Time Operating Systems

Page 136 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4 Real-Time Operating Systems
This chapter covers the necessary steps to install, configure and start the device drivers for esd CAN
interfaces available for the real time operating systems described in this chapter. In comparison to
Windows or Unix operating systems, described in the previous two chapters, the application is
usually developed on a host system which is different from the (embedded) target system the device
driver and the application runs on.

In comparison to the previous chapters which described the driver installation and configuration for
esd CAN Interfaces this chapter covers esd CAN Boards (esd CAN Interfaces and embedded
systems) as well as CAN driver developed for customer hardware.

4.1 VxWorks®

 Note:
For the changes introduced with the last service release, please check the readme of
the current release.

This chapter covers the necessary steps to install, configure and start the device drivers for esd CAN
boards supporting the real time operating system Wind River VxWorks.

CAN device drivers are available for VxWorks 5.x, 6.x and 7.x for different CPU target architectures.

The architectural differences between VxWorks 5.x and VxWorks 6.x with and without VxBus support
are covered in separate chapters.

 Note:
Wind River offers the middleware component 'Wind River CAN for VxWorks 6.x' as part
of the VxWorks 6.x platforms 'Wind River Platform for Automotive Devices' and 'Wind
River Platform for Industrial Devices'. Only the esd CAN interfaces CAN-PCI/200 and
CAN-PC104/200 are supported directly by this Wind River implementation.

The esd NTCAN drivers do not rely on 'Wind River CAN' and can be used with
any VxWorks platform. These device drivers are required if you want to use the
optionally available higher layer CAN protocol stacks (CANopen, ARINC825, J1939,
etc.) by esd.

A VxWorks CAN driver package supports one or more families of esd CAN Interfaces for a certain
target architecture. The package contains a file relnotes.htm in HTML format which contains the

revision history of the drivers and late-breaking information which did not make into one of the
manuals. Please also read this file before installing the driver.

 Note:
The CAN device driver for esd embedded boards with support for VxWorks are part of
the BSP and are not deployed as a separate CAN driver package.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 137 of 218

4.1.1 CAN Board Support Overview

Device drivers for esd CAN interfaces are available for different VxWorks versions and CPU
architectures. A single device driver often supports more than one CAN interface type (refer to
chapter 1.4 for the CAN interfaces which belong to the same interface family). For VxWorks 6.x
device drivers with and without VxBus support are available.

 Note:
If a combination of CAN interface, VxWorks version and/or CPU architecture is currently
marked as not supported in the tables in this chapter please contact the esd support for
help.

All VxWorks 5.x and 6.x non-VxBus device drivers are based on the 2.x version of the esd NTCAN
driver architecture (see chapter Driver History in /1/). For VxWorks 6.x revision 6.6 or later is required.

VxWorks 5.4.x 5.5.x 6.x (UP, no VxBus)

Architecture 386/486 Pentium PPC Pentium PPC Pentium Pentium4 PPC

CAN Family

C200I  - -    - -

C331I   -  -  - -

C200   -  -   

C331  -      

C360  - - - - - - -

ICAN4 - -  -  - - 

The VxWorks VxBus-enabled CAN device driver support uniprocessor (UP) and symmetric
multiprocessor (SMP) versions of VxWorks. Minimum requirement is a VxWorks version which
supports at least VxBus 4 which was introduced with VxWorks 6.7. All drivers are based on the 3.x
version of the esd NTCAN driver architecture (see chapter Driver History in /1/).

 Attention!

For VxWorks 6.x UP the C200/C331 CAN interface family is supported by a VxBus and
a non-VxBus (legacy) driver. Make sure you never include both device driver types in
the same VxWorks image.

Real-Time Operating Systems

Page 138 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

VxWorks 6.x (UP, VxBus) 6.x (SMP, VxBus)

Architecture Pentium Pentium4 Core Nehalem PPC Pentium4 Core Nehalem

CAN Family

C200        

C331        

C400        

C405        

VxWorks 7.x (UP, VxBus) 7.x (SMP, VxBus)

Architecture Pentium Pentium4 Core Nehalem PPC Pentium4 Core Nehalem

CAN Family

C331        

C402        

In addition to the CAN interfaces esd also provides VxWorks BSPs for several embedded boards
with on-board CAN interfaces. These boards are also supported with the NTCAN driver architecture
but the CAN device driver itself is part of the BSP. The table below gives an overview about the
availability for different VxWorks versions and the included CAN driver version.

Board VxWorks BSP version CAN Driver Version

PMC-CPU/405 5.5 1.2/15 2.x

PMC-CPU/440 >= 6.8 2.0/5 2.x

CPCI-CPU/750 5.5, >= 6.7 1.2/02, 1.2/02 3.x, 3.x

EPPC-405 5.4, 5.5, >=6.5 1.2/8, 1.2/11,2.0/10 2.x, 2.x, 2.x

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 139 of 218

4.1.2 Driver Integration

This chapter describes how the esd CAN device drivers can be included into a VxWorks project. The
integration and installation of the drivers and libraries is different between VxWorks 5.x and VxWorks
6.x/7.x.

For VxWorks 5.x the driver and libraries are deployed as binaries which have to be linked to your
application or BSP together with a configuration file which has to be adapted to the target hardware.

For VxWorks 6.x/7.x the driver installation and configuration is integrated into the Wind River
Workbench.

4.1.2.1 VxWorks 5.x

The driver software for VxWorks 5.4.x and 5.5.x is deployed as Downloadable Kernel Modules (DKM)
which have to be linked to the VxWorks image or can be loaded on application startup. An integration
into Tornado is not supported. The driver comes as a CAN Interface specific package with the
directory structure /VW5x/CPU-Architecture/.

A CAN device device driver package for VxWorks 5.x contains the following files where <drvname>

is the device family specific driver name following driver naming convention I (see chapter 1.4).

File Description

Ldcan Script to load driver and NTCAN library.

<drvname>.sys CAN driver (binary).

<drvname>ini CAN driver configuration and start code (binary)

caninit.c CAN driver configuration and start code (source of <drvname>ini binary)

ntcan.o NTCAN library (binary)

ntcan.h Header of the NTCAN-API for application development

cantest.c Source code of example program canTest

cantest Binary file of example program canTest

Depending on the released version of the driver there may be some postfixes on the CPU-

Architecture part of directory names that denote build variants of the same driver for a certain

CPU-Architecture. Here are some examples:

– _SHRD: The driver was built to use pciIntConnect() instead of intConnect(). An example is

PENTIUM_SHRD. The other version that uses intConnect() will be named PENTIUM. This is

valid only if both variants for one CPU-Architecture exist. In any other cases the default

value for the architecture is used.
– _LONG: The driver was built with the “-mlongcall” option for the C-Compiler that circumvents

the 32MB branch distance limitation on the PowerPC architecture. An example is
PPC604_LONG.

Real-Time Operating Systems

Page 140 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.2.2 VxWorks 6.x

The driver software for VxWorks 6.x with and without VxBus support comes as a package for all
supported host CPU architectures and CAN hardware with the following directory layout structure:

Directory Description

doc\ Documentation of driver installation and NTCAN-API

src\ Example code (cantest.c) also included in binary format which can be optionally

added to your project.

target\ This directory contains all necessary files to integrate and configure the driver. For
driver installation and integration in the Wind River Workbench the complete
folder has to be copied into the target directory of your VxWorks 6.x installation
keeping the directory hierarchy.

The support to integrate the CAN driver in the VxWorks image will be available with the next start of
the Workbench in the 'Kernel Configuration' view below the new category 'esd gmbh Driver, Protocol
Stacks and Software'.

 Note:
Some versions of the Wind River Workbench do not update their Components with
each restart. To solve this issue it might help to remove the CDF cache file

\target\config\comps\vxWorks\CxrCat.txt

before restarting the Workbench.

To uninstall the driver package you just have to remove all files copied into the target architecture of
your VxWorks installation.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 141 of 218

4.1.2.3 VxWorks 7.x

The driver software for VxWorks 7.x with VxBus GEN2 support comes as a package for all supported
host CPU architectures and CAN hardware. Once the RPM files are copied onto the directory
<local_dir> on the host, the following commands are used to integrate the software to be used with
the Workbench (the version numbers of the RPM files depends on the current distribution):

Linux:

<vw7_install_dir>/maintenance/wrInstaller/x86-linux2/wrInstaller -silent -nosplash -yum localinstall
<local_dir>esd_CAN_PCI331-4.0.0.0-1.noarch.rpm -y

<vw7_install_dir>/maintenance/wrInstaller/x86-linux2/wrInstaller -silent -nosplash -yum localinstall
<local_dir>esd_CAN_NTCAN-3.7.4.0-1.noarch.rpm -y

Windows:

<installation>\maintenance\wrInstaller\x86-win32\wrInstallerc.exe -silent -nosplash -yum localinstall
<local_dir>\esd_CAN_PCI331-4.0.0.0-1.noarch.rpm -y

<installation>\maintenance\wrInstaller\x86-win32\wrInstallerc.exe -silent -nosplash -yum localinstall
<local_dir>\esd_CAN_NTCAN-3.7.4.0-1.noarch.rpm -y

The following output should be seen (e.g. when installing the PCI331 driver):

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository Size

Installing:

esd_CAN_PCI331 noarch 4.0.0.0-1 local rpms 1009.9 KB

Transaction Summary

Install 1 Package(s) (+0 Dependent packages)

Total download size: 1009.9 KB

Is this ok [y/N]: y

Downloading packages:

esd_CAN_PCI331-4.0.0.0-1.rpm | 1009.9 KB < 1 min

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Installing : esd_CAN_PCI331-4.0.0.0-1.noarch 1/1

Configuring installation...

Installed:

esd_CAN_PCI331.noarch 4.0.0.0-1

Complete!

When starting the Worksbench the CAN driver, the NTCAN library and the cantest utility is available
and integrated by default.

To uninstall the driver package, just start the wrInstaller, click on "Remove" and select the package
to remove: esd_can.

Real-Time Operating Systems

Page 142 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 143 of 218

4.1.3 Driver Configuration

This chapter describes the CAN device driver configuration for the various versions of VxWorks.

4.1.3.1 VxWorks 5.x

Driver for VxWorks 5.x are configured calling the driver start routine <drvname>_install() with a
pointer to an initialized array of structures of the type <drvsig>_CAN_INFO (one array entry for each

CAN interface). This can either be performed by modifying the code of the example start-up file
caninit.c (recommended) or by calling the driver start routine <drvname>_install() from within

your own application. In either case please take a look into the caninit.c to see configuration

examples for several target architectures.

The varying name parts <drvname> and <drvsig> can be derived from Table 2 in chapter 1.4 where

<drvname> is the device family specific driver name following driver naming convention I and

<drvsig> is the signature.

The following section shows the members of a configuration structure, which is valid for most of the
CAN Interface Families but NOT for all. To be confident about the structure's layout refer to the
caninit.c source from the driver package.

struct <drvsig>_CAN_INFO
{

 unsigned long base;

 unsigned char net[4];

 unsigned char prio;

 unsigned char irq;

 unsigned long timestampFreq;

 unsigned char flags;

 unsigned char reserved;

};

The table below describes the members of the configuration structure:

Member Description

base ISA and PC104 CAN Interfaces:

I/O base address of the module. base has to be set to the value configured on

the hardware via jumpers or coding switches. If base is set to ‘0’, the driver

terminates the search for further CAN interfaces.

PCI, CPCI, PMC and PCIe CAN Interfaces:

For x86 architectures the PCI resources of the CAN hardware are configured
usually by a kind of boot loader (usually the PC BIOS). In order to tell the device
driver to use these addresses you have to set the parameter base to

0xFFFFFFFF. You have to make sure that your BSP has got enough available
entries in the MMU Memory Descriptor table (dummy entries) to register the PCI
addresses of the CAN interface.

Real-Time Operating Systems

Page 144 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Member Description

For PPC architectures where the BSP or a boot loader performs the PCI bus
enumeration and configuration you have to set the parameter base to
0xFFFFFFFF.

For PPC architectures without any kind of boot loader you have to find an unused
physical PCI address room (at least 3 MB, page aligned) which is used by the
driver if configured in the parameter base.

For debug level information about the correct setup of base have a look into the

troubleshooting chapter 4.1.6.4.2.

net[0] The parameter net[0] is the logical base net number that should be assigned to
the first physical CAN port on the CAN board. If the hardware has more than one
physical CAN port these ports will get consecutive logical net numbers starting
with the base number. The values in net[1] to net[3] are ignored by the driver.
The user has to make sure that all assigned logical net numbers are unique
(especially if more than one esd CAN driver is active) as driver initialization
otherwise will fail.

prio Priority of back end task(s) which handle post processing of CAN messages.
This back end task is responsible for the distribution of received CAN messages
to all open handles. Therefore its priority must be better than the priority of all
tasks that are doing CAN I/O via the driver to make it all work as expected.

irq ISA and PC104 CAN Interfaces:
Interrupt vector which should be configured and used by this CAN interface. You
have to make sure that this interrupt is not used by any other hardware.

PCI, CPCI, PMC and PCIe CAN Interfaces:

For x86 architectures the PCI resources of the CAN hardware are configured
usually by a kind of boot loader (usually the PC BIOS). In order to tell the device
driver to use the configured resources you have to set the parameter irq to

0xFF. In this case the IRQ value configured in the configuration space of the PCI
bridge is used and the default offset of 0x20 for a PIC system is added.

For PPC architectures where the BSP or a boot loader performs the PCI bus
enumeration and configuration you have to set the parameter irq to 0xFF.

For PPC architectures without any kind of boot loader you have to find out the
interrupt used by your target for the PCI slot in your hardware manual and set
the parameter irq to this value regarding any BSP specific interrupt vector

offsets. This manual setup may also be used to overcome issues that arise from
wrong IRQ number translation, see chapter 4.1.6.5.2.

timestampFreq The parameter timestampFreq defines the frequency of the timestamp in kHz for
CAN drivers supporting software timestamps which are derived by a high
resolution timer of the target CPU. If this parameter is set to 0 the driver probes
this frequency, which causes a delay of driver startup where all interrupts and
the scheduler are disabled.
For x86 architectures the high resolution timestamp runs at processor frequency
for most PPC targets it runs at 1/4 processor frequency. If a driver or the
hardware does not support software timestamps the parameter should be set to
0.
Note: This structure member does not exist for the VME-CAN4 driver. Instead
the driver exports can4_tickFreq because of parameter structure size
restrictions.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 145 of 218

Member Description

flags The parameter flags defines device flags supported by the driver:

0x01 Suppress driver start-up banner.

0x02 Devices of the C331 and C200 family (Driver rev. 2.5.8 and later):
Enable 'Delayed Read' support as specified in PCI specification v2.1

0x04 Devices of the C331 and C200 family (Driver rev. 2.7.0 and later):
Use alternate connection method to attach the interrupt handler.
x86 architecture:Use intConnect() instead of pciIntConnect().
PPC architecture: Use pciIntConnect() instead of intConnect().

Note: This structure member does not exist for the VME-CAN4 driver. Instead
the driver exports can4_flags because of parameter structure size restrictions.

reserved Reserved for future use. Set to 0.

Real-Time Operating Systems

Page 146 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.3.2 VxWorks 6.x (Non-VxBus)

The integration of the VxBus CAN device driver into your VxWorks image and the configuration of
the driver parameter is done in the Wind River Workbench via the Kernel Configuration. After the
driver installation described in the previous chapter you will have a new node in your Workbench
VxWorks kernel parameter tree with the name esd gmbh Driver, Protocol Stacks and Software.

To integrate the device driver for your CAN Interface include the device driver for this CAN Interface
Family (see chapter 1.4) by opening the context menu and choose the option Include as shown in
the picture below for the C331 Family device driver.

In the next step you will have the opportunity to configure how many boards you want to use.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 147 of 218

In the following dialogue box, you have to define the number of CAN Interfaces of this CAN Interface
Family you want to support before you click Next.

Complete the integration of the CAN device driver by clicking Finish in the next dialogue.

Real-Time Operating Systems

Page 148 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Continue configuring some additional options.

Optionally you can adapt the Backend priority of driver option (2) which defines the priority of the
task for CAN messages post processing to your requirements. Refer to the description of the
parameter prio in chapter 4.1.3.1 for more details.

Adapt the logical base net of the CAN interface with the option Base net of board x (1) to your
requirements. If you use just the device driver for one CAN Interface Family leave the default values.

Usually you can leave the PCI IRQ Vector (3) set to the default of 0xFF and the PCI memory base
address set to the default of 0xFFFFFFFF (4). Refer to the description of the parameter irq and base
in chapter 4.1.3.1 for more details.

Set the Autostart behaviour of driver option (5) to FALSE for a first test and start the driver manually

as described in the next chapter. If everything works you can change this parameter to TRUE to start

the driver with your VxWorks.

Reset bit 0 of the Driver Flags option (6) for a first test to start the driver with a start-up banner. If
everything works you can set this bit to suppress this banner. Refer to the Synopsis box for further
driver specific flags.

CAN Interfaces with software timestamp support have the additional option Target timestamp

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 149 of 218

counter frequency (7) which defines the frequency of the counter used for software timestamping in
kHz. If this parameter is set to 0 the driver probes this frequency (which causes a delay of driver
initialization where all interrupts and the scheduler are disabled) otherwise it uses the configured
value. For x86 architectures the high resolution timestamp used runs at processor frequency for
most PPC targets it runs at 1/4 of the processor frequency.

Include NTCAN-API support component (12) as this is the common API /1/ for all device drivers you
use by your application. This component is automatically included if you include the Basic CAN Test
Application component (13) which is the canTest application described in chapter 4.1.5.3.

Now you can rebuild your VxWorks image.

Real-Time Operating Systems

Page 150 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.3.3 VxWorks 6.x (VxBus)

The integration of the VxBus CAN device driver into your VxWorks image and the configuration of
the driver parameter is done in the Wind River Workbench via the Kernel Configuration. After the
driver installation described in the previous chapter you will have a new node in your Workbench
VxWorks kernel parameter tree with the name esd gmbh Driver, Protocol Stacks and Software.

To integrate the device driver for your CAN Interface include the device driver for this CAN Interface
Family (see chapter 1.4) by opening the context menu and choose the option Include as shown in
the picture below for the C400 Family VxBus device driver.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 151 of 218

In the following dialogue box you have to define the number of CAN Interfaces of this CAN Interface
Family you want to support before you click Next.

Complete the integration of the CAN device driver by clicking Finish in the next dialogue.

Real-Time Operating Systems

Page 152 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Continue configuring some additional options.

Adapt the logical base net of the CAN interface with the option Base net of board x (1) to your
requirements. If you use just the device driver for one CAN Interface Family leave the default values.

Set the Autostart behaviour of driver option (2) to FALSE for a first test and start the driver manually

as described in the next chapter. If everything works you can change this parameter to TRUE to start

the driver with your VxWorks.

Optionally you can adapt the Backend priority of driver option (3) which defines the priority of the
task for CAN messages post processing to your requirements. Refer to the description of the
parameter prio in chapter 4.1.3.1 for more details.

Reset bit 0 of the Driver Flags option (4) for a first test to start the driver with a start-up banner. If
everything works you can set this bit to suppress this banner. Refer to the Synopsis box for further
driver specific flags.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 153 of 218

CAN Interfaces with software timestamp support have the additional option Target timestamp
counter frequency (not in the picture above) which defines the frequency of the counter used for
software timestamping in kHz. If this parameter is set to 0 the driver probes this frequency (which
causes a delay of driver initialization where all interrupts and the scheduler are disabled) otherwise
it uses the configured value. For x86 architectures the high resolution timestamp used runs at
processor frequency for most PPC targets it runs at 1/4 of the processor frequency.

Include NTCAN-API support component (6) as this is the common API /1/ for all device drivers you
use by your application. This component is automatically included if you include the Basic CAN Test
Application component (5) which is the canTest application described in chapter 4.1.5.3.

Now you can rebuild your VxWorks image.

4.1.3.4 VxWorks 7.x (VxBus GEN2)

The integration of the VxBus CAN device driver and related software into your VxWorks image and
the configuration of the driver parameter is done in the Wind River Workbench. After the driver
installation described in the previous chapter you will have new nodes showing up when building a
Source Build. By default al nodes are enabled which a reasonable starting poing. Eventually the
cantest utility can be removed, unless required.

There are a number of combinations the supported by the driver with the appropriate
combination (e.g. NEHALEM, SMP, LP64) selected automatically. Don´t be confused by the
name "...bin_ATOM_..." as the layer base name which is generated during the driver build
stage. Only the choosen version (...PENTIUM4gnu_smp in the sample above) is of any
meaning at this point!

Based on that source build, a VxWorks Image can be build. When opening the Kernel Configuration,
you can search for the can driver, library or tools:

Real-Time Operating Systems

Page 154 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

By default, the driver and software is not included in the kernel image. Choose "include" on the
driver, library and the test application to be able to test the installation.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 155 of 218

Once all components have been included the configuration should look like this:

You can modify the parameter as described for VxWorks 6.x (see chapter 4.1.3.3).

Real-Time Operating Systems

Page 156 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.4 Driver Start

This chapter describes the CAN device driver start for the various versions of VxWorks after the CAN
driver is integrated into the VxWorks image and configured.

4.1.4.1 VxWorks 5.x

If you need a specific configuration we recommend to use caninit.c as a template, change the

source code according to your needs, compile and load it after the driver binary.

If you use a modified caninit.c to start your driver you should call xxxStart() otherwise you have

to call the xxx_install() routine which is exported by the driver with an array of initialized
XXX_CAN_INFO structures. In both cases 'xxx' is the CAN Family device driver specific prefix as

described in chapter 1.4. In case of a CAN device driver which comes as part of a VxWorks BSP

 for an esd embedded board, the driver is usually started just with canStart().

If the driver start-up banner is enabled you will see some informations to the hardware/software
environment similar to the example below:

C200: "CAN_PCI266" with 2 Nets identified
C200: Hardware-Version = 1.0.00
C200: Firmware-Version = 0.0.00
C200: Driver-Version = 2.5.08
C200: Net 0 successfully created on card 0
C200: Net 1 successfully created on card 0

In the example above it is the start of a CAN-PCI/266 CAN Interface which belongs to the C200
Family. Refer to chapter 1.4 for the prefix overview of other device drivers.

4.1.4.2 VxWorks 6.x (Non-VxBus)

For a first test you should configure the Autostart behaviour of driver option in the Wind River
Workbench to FALSE so you can start the driver manually on the target shell with xxxStart() where

'xxx' is the CAN Family device driver specific prefix as described in chapter 1.4. In case of a CAN

device driver which comes as part of a VxWorks BSP for an esd embedded board, the driver is
usually started just with canStart().

If the driver start-up banner is enabled via the Driver Flags option in the Wind River Workbench you
will see some informations to the hardware/software environment similar to the example below:

C331: Using IRQ/Vector* (0x0b/0x158) shared for card 0
C331: "CAN_PCI331" with 2 Nets identified
C331: Hardware-Version = 1.1.00
C331: Firmware-Version = 0.c.1e
C331: Driver-Version = 2.7.00
C331: Timestamp frequency is 1476535544 Hz (Software)
C331: Net 0 successfully created on card 0
C331: Net 1 successfully created on card 0
C331: CAN 2.0A firmware active
C331: PCI delayed read: Disabled (CNTRL: 0x18780fd7)

In the example above it is the start of a CAN-PCI/331 CAN Interface which belongs to the C331
Family. Refer to chapter 1.4 for the prefix overview of other device drivers.

If there are no problems you can configure the Autostart behaviour of driver option in the Wind River
Workbench to TRUE so the driver is started automatically every time the VxWorks image is booted.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 157 of 218

4.1.4.3 VxWorks 6.x/7.x (VxBus)

For a first test you should configure the Autostart behaviour of driver option in the Wind River
Workbench to FALSE so you can start the driver manually on the target shell with xxxStart() where

'xxx' is the CAN Family device driver specific prefix as described in chapter 1.4. In case of a CAN

device driver which comes as part of a VxWorks BSP for an esd embedded board, the driver is
usually started just with canStart().

If the driver start-up banner is enabled via the Driver Flags option in the Wind River Workbench you
will see some informations to the hardware/software environment similar to the example below:

C405: "CAN_PCI405" with 4 Nets identified

C405: Hardware-Version = 1.3.01

C405: Firmware-Version = 3.8.16

C405: Driver-Version = 3.9.00 (SMP / VxBus Rev. 4)

C405: Net 0 successfully created on card 0

C405: Net 1 successfully created on card 0

C405: Net 2 successfully created on card 0

C405: Net 3 successfully created on card 0

In the example above it is the start of a CAN-PCI/405 CAN Interface which belongs to the C405
Family. Refer to chapter 1.4 for the prefix overview of other device drivers.

If there are no problems, you can configure the Autostart behaviour of driver option in the Wind River
Workbench to TRUE so the driver is started automatically every time the VxWorks image is booted.

Real-Time Operating Systems

Page 158 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.5 Miscellaneous

This chapter covers several topics which should preclude problems building the VxWorks image and
using the NTCAN architecture on VxWorks.

4.1.5.1 Unresolved Symbols Building the VxWorks Image

Using the NTCAN library the linker might fail with unresolved symbols like __udivdi3 or __umodi3.
The reason for this is that in order to support 64 bit arithmetic (for the NTCAN timestamps) on a 32
bit CPU the GCC compiler requires some helper functions which are part of the GNU GCC run-time
libraries which is not included in any case. To prevent error messages about unresolved symbols
you have to include the GNU GCC run-time libraries in your VxWorks image by defining
INCLUDE_GNU_INTRINSICS. Please refer to the VxWorks Kernel Programmer's Guide for more

details.

4.1.5.2 Number of Available NTCAN Handles

A CAN driver supports up to 1024 individual CAN handles but the maximum number is also limited
by the maximum number of open handles of the VxWorks system. The related VxWorks configuration
parameter is NUM_FILES with a default value of 50. Changing the value of NUM_FILES can have

some other undesirable effects on the system if certain limits are not observed. In VxWorks 5.4.x
setting NUM_FILES to a value greater than 256 could cause problems for code that use the select()

function. The FD_SETSIZE was limited to 256 in this version. Starting with VxWorks 5.5 this limitation

was removed but you might still adapt the value of FD_SETSIZE if opening a NTCAN handle failed

with a resource error.

4.1.5.3 Test Program 'canTest'

The driver package comes with the test program canTest which can be either optionally configured
into your VxWorks image via the Workbench (VxWorks 6.x) or can be loaded with the VxWorks target
shell (VxWorks 5.x). With the help of this program you can do basic functionality checks of the CAN
interface. The program and its parameters are described in more detail in /1/.

Note:
As VxWorks allows less parameters in the command line as required by canTest, the
parameters have to be provided separated by spaces as a single string in quote signs.

4.1.5.4 Unexpected Behaviour of Software Timestamps

With some VxWorks versions and BSPs the driver may show unexpected behaviour with software
timestamps. In this case the measured timestamp frequency as shown in the driver's startup banner
may be negative or far beyond the expected value. Or the time differences calculated between to
received CAN frames have surprising values.

The reason for that behaviour can be for instance on the x86 architecture that the high resolution
time stamp counter (TSC) is reset every timer tick. This is done in some BSPs because WindView
needs that behaviour. For further information refer to this website:

http://borkhuis.home.xs4all.nl/vxworks/pc-bsp.html#pc-bsp.5

http://borkhuis.home.xs4all.nl/vxworks/pc-bsp.html#pc-bsp.5

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 159 of 218

4.1.5.5 Correct Interpretation of Error Codes Returned by the Driver

The interpretation of error codes returned by the driver is guided by a multi level approach. The first
resource where you should search for a specific error code is the header file ntcan.h that is

delivered in the driver package. This file contains definitions of macros for the NTCAN error codes
for example:

#define NTCAN_SUCCESS 0

#define NTCAN_RX_TIMEOUT 0x00001001

Please observe that the upper word of all defined errors is zero. In ntcan.h you can search for a

certain error code value and map it to the macro name.The meaning of these macro names are
described in chapter ‘Return Codes’ in /1/.

If you did not find the macro name for the specific error code you want to look up then consider the
error numbers the NTCAN API borrows from the system via the errno.h file, for example:

#define NTCAN_INVALID_PARAMETER EINVAL

#define NTCAN_INVALID_HANDLE EBADF

Therefore on the second level you have to lookup that error code in the VxWorks errno.h that is

installed in the target tree of your VxWorks installation at target/h/errno.h. This way a return code

of 0x00000016 maps to EINVAL and therefore in turn to NTCAN_INVALID_PARAMETER.

Another kind of error code could occur with the upper word of the unsigned error code not being
zero. To decode the VxWorks error code of 0x000d0003 you should refer additionally to the file

vwModNum.h also being in the target/h directory.

From <vwModNum.h>:

#define M_iosLib (13 << 16)

From <errno.h>:

#define ESRCH 3 /* No such process */

This means that the VxWorks iosLib wants to tell us that there is "no such process". Our driver code
seems not to be reached since already the iosLib returns an error code. From this we may deduce
that something is wrong with the handle itself.

The most common error code returned by the <drvname>_install() routine is 19 i. e. ENODEV. That

means that the install routine did not find all boards that were requested to initialize by the
<drvsig>_CAN_INFO structure array.

The described method applies if you need to translate NTCAN error codes by manually. Since
revision 3.3.0 the NTCAN library provides the function canFormatError() that should be used by an
application to translate error codes into error strings.

Real-Time Operating Systems

Page 160 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.5.6 Support of the CAN Extended Frame Format

All CAN Interfaces support the Extended Frame Format (29 Bit CAN-IDs) according to the CAN 2.0B
specification /2/. The active CAN Interfaces which belong to the C331-, C360-, C331I- and ICAN4-
Family (see chapter 1.4) are usually configured in a 29-Bit passive mode which means that CAN
messages in the Extended Fame Format are tolerated but can not be received or transmitted by an
application.

Starting with firmware revision 0.C.09 of these active CAN Interfaces the firmware can be switched
between this 11 bit active/29 bit passive factory mode and the 11/29 bit active mode.

The firmware operation mode is indicated in the start-up banner and can be queried at runtime on
the target shell with

xxx_switch(0, net)

where 'xxx' is the driver specific prefix defined in chapter 1.4 and net is a logical net number assigned
to one of the CAN Interface's ports.

You can toggle between the two modes of operation while the driver is running with the same
command changing the first parameter.

xxx_switch(1, net)

Note:
After the operation mode is toggled you have to reboot your target to make the new
configuration active.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 161 of 218

4.1.6 Troubleshooting Hints

The following paragraphs will detail some common problems that may get in the way of a successful
driver start. Also here you should find some advice to diagnose the problem and information about
the internal working of the driver as far as installation is concerned.

Unfortunately the hardware abstraction under VxWorks is in a state of flow where the way the things
are done is very dependent on the VxWorks version, the CPU-Architecture and even the BSP of
your board. This is the reason why it is advisable to provide the exact platform you will be working
with (VxWorks version, CPU-Architecture, BSP type and version, SMP requirements) when you
order a CAN driver.

The first thing you must be sure of is to use the right driver binary for your architecture. If this is
guaranteed the reason for the driver not working should only be a configuration problem.

If you have a driver that is installed in the VxWorks target tree and configured via the Workbench it
should show up and be selectable in the components tab of the kernel configuration pane. If that is
not the case you may use an CPU architecture for your kernel that the driver doesn't support. Look
for libesdCAN.a in the target tree of your VxWorks installation. There must be one for your target

architecture or the Workbench won't show the driver as selectable. Review chapter 4.1.2.2 for
installation information.

The CAN driver needs to be able to access the board's registers and / or memory spaces. Also the
driver tries to connect an interrupt service routine to handle the interrupts generated by the board.
The chapter 4.1.6.4 deals with problems related to board access and the chapter 4.1.6.5 deals with
problems with the interrupt handling.

In the case of the driver not starting successfully (<drvname>Start() calling <drvname>_install()
failed) or not working properly there may be either issues with the access to the board or with the
interrupt connection. Depending on the kind of CAN board the behaviour is a little bit different.

For passive boards (no local CPU) like the C200 family boards the driver start may seem to be
successful. But the IRQ is not exercised while starting the driver. Therefore an error or crash may
appear later when for example canWrite() is called the first time. This is the reason you should test
a successful execution of canWrite() or canRead() for passive boards immediately with canTest
from the target shell.

As a rule of thumb you can deduce that it is an address translation / board access issue if the driver
start fails immediately. If the problems occur later (i. e. single CAN transfer successful) or crash it is
more probably an IRQ connection issue.

For active boards (with local CPU or FPGA) like the C331 family boards the IRQ is exercised during
installation. At first the driver needs access to the registers or dual-ported RAM areas of the boards
then it connects the IRQ handler. The driver start should fail if anything goes wrong.

Real-Time Operating Systems

Page 162 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.6.1 Where to Implement Needed Configuration Changes

A 2.x version driver consists of two parts. One part is the prebuilt <drvname>.sys binary-object (the

driver core), the other part is the caninit.c source file that should be compiled as Downloadable

Kernel Module (DKM). This is a wrapper around the driver core that provides configuration
information to the driver and a simple <drvname>Start() function. We deliver for convenience a
precompiled default version of caninit.c named <drvname>ini.

Both should be loaded into your VxWorks target with ld(). An example load script is delivered as
ldcan. Then you can use <drvname>Start() to get the driver running. If the default configuration

fails you should end up here in the troubleshooting chapter.

Now you can try to add any changes in the configuration mentioned in the following paragraphs to
the caninit.c file and compile this file yourself in your build environment. Then try the start of the

driver again with the prebuilt <drvname>.sys and your self-built caninit.o.

If you have a 2.x version driver that is configured using the Workbench you can change all
parameters by setting macros from the Workbench GUI. The VxWorks kernel build will integrate the
prebuilt driver core <drvname>.o from the libesdCAN.a into the kernel image. Also a source file

caninit_<drvname>.c (called a configlette) from the target tree is compiled using the macros

defined via the GUI to change the configuration. It works the same way as the caninit.c. As a last

resort you may edit the caninit_<drvname>.c file directly (perhaps adding a BSP specific IRQ

vector translation routine via the <drvname>GetIrqVector function pointer?).

The 3.x version drivers are always configured via the VxWorks Workbench. But there are two build
variants of the driver for a supported hardware. One variant is configured using a configlette like it is
described for a 2.x version driver in the previous chapter. This kind of driver is included using macros
named like “*_ESD_CAN_*“.

The other variant relies completely on the VxBus Hardware Abstraction Layer and is included using
macros named like “*_ESD_VXBCAN_*”. Therefore, the VxBus implementation of your board must

work correctly to make the driver work, i. e. if the driver doesn't work you need to fix the VxBus
implementation of your BSP to provide the correct information to the driver. VxBus related issues are
discussed in chapter 4.1.6.6.

4.1.6.2 Public Interface of the Version 2.x Driver Core

The following table shows the functions and variables that comprise the public API of the version 2.x
driver core for the driver families C331I, C331, C200 and C200I as examples. The API for other
board families can be deduced from that table. The next chapters will refer to some of these functions
and variables and explain their usage.

c331i_install() c331_install() c200_install() c200i_install()

c331i_uninstall() c331_uninstall() c200_uninstall() c200i_uninstall()

c331i_switch() c331_switch()

 c331PciOffset c200PciOffset

c331iIrqOffset c331IrqOffset c200IrqOffset

c331iGetIrqVector c331GetIrqVector c200GetIrqVector c200iGetIrqVector

c331iAttachIrqHandler c331AttachIrqHandler c200AttachIrqHandler c200iAttachIrqHandler

c331iDetachIrqHandler c331DetachIrqHandler c200DetachIrqHandler c200iDetachIrqHandler

Notes:

– The <drvname>_switch() function is only provided for active boards with onboard
microcontroller.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 163 of 218

– The <drvname>PciOffset variable is only present for boards on the PCI bus.

– The <drvname>*IrqHandler and <drvname>GetIrqVector variables are present since version
2.7.x.

4.1.6.3 Public Interface of the VME-CAN4 Driver Core

The public interface of the VME-CAN4 driver core differs from the previous table and is detailed in
the following table.

can4_install() install routine

can4_uninstall() uninstall routine

can4_switch() switch CAN-2.0A / CAN-2.0B (see 4.1.5.6)

can4_flags driver flags (see 4.1.3.1)

can4_tickFreq timestamp frequency (see 4.1.3.1)

can4_irqNumOffset like <drvname>IrqOffset

can4_pfIntVectorGet like <drvname>GetIrqVector

can4_irqConnectMode select the used interrupt connect routine

can4_pfIntConnect pointer to a user provided interrupt connect routine

can4_irqDisconnectMode select the used interrupt disconnect routine

can4_pfIntDisconnect pointer to a user provided interrupt disconnect routine

The variables can4_flags and can4_tickFreq are implemented as global variables because they don't
need to be specified per board but only for the whole driver. Also there was no space left in the per
board parameter structure.

For further information refer to the comments in the caninit.c / caninit_ican4.c files.

4.1.6.4 Address Translation and Board Access Issues

All addresses that you specify in the base member of the <drvsig>_CAN_INFO structure are always

bus addresses. I. e. depending on the bus type the board is attached to these addresses will be ISA-
Bus addresses for ISA-Boards, PCI-Bus addresses for PCI-Boards and VME-Bus addresses for
VME-boards.

4.1.6.4.1 ISA-Bus Address Translation

The driver binary <drvname>.sys uses the following functions to access the board on the ISA Bus:

– sysOutWord()

– sysOutByte()

– sysInWord()

– sysInByte()

Any special accesses or address translation must be handled by these functions provided by your
BSP. I. e. calling sysInWord() with a parameter 0x1e8 should generate an ISA-Bus word (16 bit)

read to address 0x1e8. Please refer to the board's hardware manual for the required number of I/O

addresses and make shure that no ISA address ranges overlap with other devices.

Real-Time Operating Systems

Page 164 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.6.4.2 PCI Bus Access Issues

The driver must be able to access the board on the PCI Bus. To test the accessibility you can find
the board manually from the target shell and try to access it with the memory dump command d().

Attention:
To have the PCI show functions used below included in your kernel image you need to
include different modules into your kernel image build depending on the VxWorks version
and bus configuration:

– For VxWorks versions before VxWorks 6.x or kernel images without VxBus
support you must include INCLUDE_PCI_CFGSHOW.

– For VxWorks versions from VxWorks 6.x and later if you have VxBus enabled
(INCLUDE_VXBUS) you must include INCLUDE_VXBUS_SHOW and
INCLUDE_PCI_BUS_SHOW. Be aware that having VxBus enabled breaks the old
PCI show module enabled with INCLUDE_PCI_CFGSHOW.

Use pciConfigTopoShow() to display all PCI devices VxWorks is aware of. This will also show you
if all PCI buses have been detected that are implemented on your host board.

 Watch out for PCI bridges that may need to be explicitly enabled when configuring your
VxWorks kernel.

An example is the PCI-PCI bridge located on the PMCSPAN extension board for
Emerson (former Motorola) MVME boards (i. e. MVME5110) that has to be explicitly
included in the PCI Autoconfiguration run for that BSP.

After you checked that all expected PCI buses are present you may use pciDeviceShow() with a
bus number parameter to look for esd CAN interface boards. Refer to chapter 1.5.1 to find the PCI
IDs you have to look for. pciDeviceShow() only shows the PCI Vendor ID and the PCI Device ID.
To fully identify the board you need to display also the PCI Subsystem Vendor ID and the PCI
Subsystem Device ID.

Here follows some example output of a successful search for a CAN-PCI/331 board. The data used
for the identification is marked red there:

-> pciConfigTopoShow

[0,1,0] type=P2P BRIDGE to [1,0,0]

 base/limit:

 mem= 0xe8000000/0xefffffff

 preMem=0xfff00000/0x000fffff

 I/O= 0xd000/0xdfff

 status=0x2220 (66MHZ DEVSEL=1 MSTR_ABORT_RCV)

 command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE)

[1,0,0] type=DISP_CNTLR

 status=0x0210 (CAP DEVSEL=1)

 command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE)

 bar0 in 32-bit mem space @ 0xe8000000

[0,18,0] type=NET_CNTLR

 status=0x0210 (CAP DEVSEL=1)

 command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE)

 bar0 in I/O space @ 0x0000e800

 bar1 in 32-bit mem space @ 0xf5202000

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 165 of 218

[0,19,0] type=UNKNOWN (0x80) BRIDGE

 status=0x0280 (FBTB DEVSEL=1)

 command=0x0003 (IO_ENABLE MEM_ENABLE)

 bar0 in 32-bit mem space @ 0xf5200000

 bar1 in I/O space @ 0x0000ec00

 bar2 in 32-bit mem space @ 0xf5100000

 bar3 in 32-bit mem space @ 0xf5000000

 bar4 in 32-bit mem space @ 0xf5201000

value = 0 = 0x0

-> pciDeviceShow 0

Scanning functions of each PCI device on bus 0

bus device function vendorID deviceID class/rev

 0 0 0 0x1106 0x0598 0x06000004

 0 1 0 0x1106 0x8598 0x06040000

 0 18 0 0x10b7 0x9200 0x02000078

 0 19 0 0x10b5 0x9050 0x06800001

value = 0 = 0x0

-> pciHeaderShow 0,19,0

vendor ID = 0x10b5

device ID = 0x9050

command register = 0x0003

status register = 0x0280

revision ID = 0x01

class code = 0x06

sub class code = 0x80

programming interface = 0x00

cache line = 0x08

latency time = 0x00

header type = 0x00

BIST = 0x00

base address 0 = 0xf5200000

base address 1 = 0x0000ec01

base address 2 = 0xf5100000

base address 3 = 0xf5000000 <- BAR3 base needed in 166

base address 4 = 0xf5201000

base address 5 = 0x00000000

cardBus CIS pointer = 0x00000000

sub system vendor ID = 0x12fe

sub system ID = 0x0001

expansion ROM base address = 0x00000000

interrupt line = 0x09

interrupt pin = 0x01

min Grant = 0x00

max Latency = 0x00

value = 0 = 0x0

This dump shows the conditions after a PCI PnP (Plug-and-play) run has successfully configured
device addresses.

After you have found the device in the PCI config space you could try to access the device using the
d() command from the target shell. Before trying that the next chapter will explain if an address
translation is needed and then show how to access the device.

Real-Time Operating Systems

Page 166 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.6.4.3 PCI Bus Address Translation

In most cases for a x86 PC-style motherboard the CPU address (cpuAdrs) to access the PCI board
at its configured PCI address (pciAdrs) is the same. But on some (often PowerPC based) host boards
the cpuAdrs differs from the pciAdrs and the following equation needs to be applied:

cpuAdrs = pciAdrs + pciOffset

Therefore the driver reads the pciAdrs from the BARx registers of the PCI device on the CAN
interface board and calculates the cpuAdrs it will use to access the device by adding pciOffset.

Our driver binary <drvname>.sys exports a variable <drvname>PciOffset that is used by the driver

in this calculation. Therefore you need to set up that variable to a value that fits to your BSP. This is
normally done in the caninit.c file before the <drvname>_install() function is called.

 For a non-VxBus driver configured from the VxWorks Workbench you should enable
the INCLUDE_ESD_CAN_BSP_PNP_QUIRK which will allow you to set the offset

<drvname>PciOffset using the macro ESD_CAN_PCI_ADR_OFFSET in the configlette

caninit_<drvname>.c located in the target tree.

To find the right value for the <drvname>PciOffset you should refer to the documentation of your
target BSP. To test the validity of that value you could test the access from the VxWorks target shell.

CAN-PCI/331 Access Test Example

The following example is for the CAN-PCI/331 board. It is also valid for all boards of the C331 family
(consider the different PCI IDs for the other boards of that family). You could verify the c331PciOffset
by first extracting the BAR3 value from the output of pciHeaderShow() (how to find the device and
get that value is described in 4.1.6.4.2), then calculate the resulting cpuAddr for that area to use the
d() command to look into the board's memory. From section 4.1.6.4.2 we find the pciAddr for BAR3
being 0xf5000000. With a c331PciOffset of zero in this case we get also 0xf5000000 for the cpuAddr

here.

-> d 0xf5000000

NOTE: memory values are displayed in hexadecimal.

0xf5000000: 4000 fe07 0000 1800 1000 4f43 444c 2020 *.@........COLD *

0xf5000010: 0000 0000 0000 4f4e f945 ff00 00fa 7c35 *......NOE.....5|*

0xf5000020: 8f7f 0400 0070 0053 fc66 7c35 4100 0000 *....p.S.f.5|.A..*

0xf5000030: 7c35 0400 2000 0970 fa41 6e00 ea43 4c00 *5|... p.A..nC..L*

0xf5000040: d832 d832 c851 faff 0f70 f941 4000 000f *2.2.Q...p.A..@..*

0xf5000050: fa43 7e00 d910 c851 fcff b94e 4000 000f *C..~..Q...N..@..*

0xf5000060: 7c35 0700 5c00 7c35 0700 6000 fc23 aaaa *5|...\5|...`#...*

0xf5000070: aaaa 0f00 f0ff fc23 5555 5555 0300 f0ff *......#.UUUU....*

0xf5000080: b90c aaaa aaaa 0f00 f0ff 0c67 7c35 0500 *..........g.5|..*

0xf5000090: 5c00 7c35 0500 6000 7c35 0000 1c00 7c35 *.\5|...`5|....5|*

0xf50000a0: 4200 1e00 fa4e 5200 0000 0000 0000 0000 *.B..N..R........*

0xf50000b0: 0000 0000 0080 f07f 0740 303c 0740 305c *........@.<0@.\0*

0xf50000c0: 0000 0000 0090 307c 0091 307c 0092 307c *......|0..|0..|0*

0xf50000d0: 7c25 07c0 b078 4800 2f00 c000 0100 754e *%|..x..H./....Nu*

0xf50000e0: 0d00 60af 0d00 8686 1000 754e 3763 352e *...`......Nuc7.5*

0xf50000f0: 0000 0008 8827 4f4e 0060 e200 0060 b419 *....'.NO`...`...*

value = 0 = 0x0

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 167 of 218

The values marked in red in the dump before are some kind of magic numbers that you can find in
the BAR3 area of a C331 board. This way you can verify the c331PciOffset needed to be zero in this
case.

CAN-PCI/200 Access Test Example

The following example is for the CAN-PC/200 board. It is also valid for all boards of the C200 family
(consider the different PCI IDs for the other boards of that family). You could verify the c200PciOffset
by first extracting the BAR2 value from the output of pciHeaderShow(), then calculate the resulting
cpuAddr for that area to use the d() command to look into the board's memory. From the output
below we find the pciAddr for BAR2 being 0xf5201000. With a c200PciOffset of zero in this case we

get also 0xf5201000 for the cpuAddr here.

-> pciHeaderShow 0,17,0

vendor ID = 0x10b5

device ID = 0x9050

command register = 0x0003

status register = 0x0280

revision ID = 0x02

class code = 0x0c

sub class code = 0x09

programming interface = 0x00

cache line = 0x08

latency time = 0x00

header type = 0x00

BIST = 0x00

base address 0 = 0xf5204000

base address 1 = 0x0000d801

base address 2 = 0xf5201000 <- BAR2 needed for access test

base address 3 = 0x00000000

base address 4 = 0x00000000

base address 5 = 0x00000000

cardBus CIS pointer = 0x00000000

sub system vendor ID = 0x12fe

sub system ID = 0x0004

expansion ROM base address = 0x00000000

interrupt line = 0x0b

interrupt pin = 0x01

min Grant = 0x00

max Latency = 0x00

value = 0 = 0x0

-> d 0xf5201000,0x20

NOTE: memory values are displayed in hexadecimal.

0xf5201000: ff21 e00c 0000 0000 0000 ffff ffff ffff *!...............*

0xf5201010: ffff ffff ffff fbff 0900 0900 fffe 00ff *................*

0xf5201020: ff21 e00c 0000 0000 0000 ffff ffff ffff *!...............*

0xf5201030: ffff ffff ffff fbff 0900 0900 fffe 00ff *................*

value = 0 = 0x0

The hex values 0x21 in the dump before show that you have found the CAN-PCI/200 (these values
can only be seen after a power on reset). This way you can verify the c200PciOffset needed to be
zero in this case.

Real-Time Operating Systems

Page 168 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.6.4.4 Manual Configuration of PCI Addresses

If you have the case of a host board / VxWorks BSP without a PCI PnP run you need to setup the
PCI stuff by hand. To do that you enter in the base member of your driver parameter structure a
value different from 0xFFFFFFFF. Then the driver will write PCI addresses into the PCI device bridges

of our esd CAN boards. See the readme files from the driver packages how much memory space is

needed for that specific board.

It is your responsibility to administer available memory ranges. Check all PCI-PCI bridges for being
transparent at the right addresses. Verify that the PCI command register enables PCI device's
memory spaces. After that you can check the accessibility via the d() command as described before.

4.1.6.4.5 VME Bus Access Issues (VME-CAN4)

In the base member of the driver parameter structure you specify the VME bus address you want to
use. The driver uses the BSP specific sysBusToLocalAdrs() function to translate the configured
VME address to the CPU address needed to access the VME-CAN4 board. Because the VME-CAN4
can be configured to appear either in the VME-A24 address space or in the VME-A32 address space
you need to select the desired address space using the vmeSpace member of the configuration
structure. The possible values defined in the provided caninit.c file for that variable refer to

definitions from VxWorks' vme.h:

#define VME_A16 VME_AM_SUP_SHORT_IO /* 0x2d */

#define VME_A24 VME_AM_STD_SUP_DATA /* 0x3d */

#define VME_A32 VME_AM_EXT_SUP_DATA /* 0x0d */

Be aware of the fact that after a reset the VME-CAN4 board only appears in the VME-A16 address
space and waits for further configuration. When the driver starts it takes the desired VME addresses
from the configuration structure and programs it into the VME-CAN4 hardware. To see how to do
that refer to the VME-CAN4 hardware manual. Only after that step the VME-CAN4 responds in the
configured address space and range.

VME-CAN4 Access Test Example

In this example we assume a configuration of VME_A32 (0x0d) for vmeSpace and 0x08000000 for

sramBase in CAN4_CAN_INFO structure. After the driver started to verify that the board can be

accessed by the CPU you may do the following on the target shell:

-> adrPointerBuf=0

New symbol "adrPointerBuf" added to kernel symbol table.

adrPointerBuf = 0x17611fd0: value = 0 = 0x0

-> sysBusToLocalAdrs(0xd,0x08000000,&adrPointerBuf)

value = 0 = 0x0

-> adrPointerBuf

adrPointerBuf = 0x17611fd0: value = 536870912 = 0x20000000

-> d 0x20000000,0x10

NOTE: memory values are displayed in hexadecimal.

0x20000000: 4341 4e5f 564d 455f 3034 5f56 5f30 2e43 *CAN_VME_04_V_0.C*

0x20000010: 0001 0000 0001 0000 1500 0000 0000 0000 *................*

value = 0 = 0x0

This way you can manually verify that the driver can access the dual-ported RAM of the VME-CAN4.
After translation of the VME_A32 address 0x08000000 to a valid CPU address (here 0x20000000)

you should be able to dump the red marked string from the start of the dual-ported RAM area.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 169 of 218

4.1.6.5 Interrupt Connection Issues

The driver needs a correctly connected interrupt handler to work. There are three main categories
that interrupt issues could belong to:

– The functions to connect a C interrupt handler differ depending on CPU architecture or the
BSP of the host board. There is an assortment of functions possible that may only be provided
on a part of architectures and BSPs. Some of them are intConnect() and pciIntConnect().
Some BSPs provide neither of both routines. Also for some interrupts you may need to use
intConnect() and for others on the same board pciIntConnect().

– To connect a C interrupt handler the VxWorks routines need the interrupt vector address as
parameter. How this interrupt vector address is determined from the interrupt number
depends on CPU architecture and may also depend on the BSP and other environmental
conditions. Even the interrupt number itself may depend on the BSP. To determine the
interrupt number the BSP's documentation should be the first source.

– The driver uses the configured IRQ number to enable the interrupt utilizing sysIntEnable()
or sysIntEnablePIC() depending on the CPU architecture.

These categories lead to an unusable driver. Please check at first with your BSP's documentation if
the right functions are used for the interrupt numbers in question. Also check if the IRQ number is
correct for your BSP and board (the driver prints the used IRQ number in the start-up banner). In a
second step you may try to find out if any interrupt number translation is needed.

4.1.6.5.1 Interrupt Connection: Call of Wrong Function

Sometimes the failed interrupt connection has its cause by the driver using the wrong function to
connect the interrupt. In some cases you will not be able to load the driver object because the BSP
lacks some of the needed functions. This may for example happen if the driver is compiled to use
the pciIntConnect() function but your BSP doesn't provide one. In this case check if there is another
build variant of the driver available that uses the intConnect() call instead (see chapter 4.1.4.1 on
how to identify build variants).

In any case you could inspect the <drvname>.sys file with the nm tool on the host to see which
connect functions are utilized. The nm tool's full name changes depending on the target architecture
(e. g. nmppc, nmpentium or the like).

There are some releases of the driver that support the selection whether intConnect() or
pciIntConnect() is used to connect the interrupt. The behaviour is controlled via the flags member

of the parameter structure (see also chapter 4.1.3.1 for information). To decide which function needs
to be used you should refer to the documentation of your BSP.

 For a non-VxBus driver configured from the VxWorks Workbench you can change the
flags by adapting the ESD_CAN_<drvsig>_FLAGS macro to your needs.

To alleviate the problems arising from the use of the wrong interrupt connect or disconnect routines
recent driver versions export function pointers that can be used by the user to provide callback
functions to the driver. These callback function will be used by the driver core to connect or
disconnect the interrupt handler.

Real-Time Operating Systems

Page 170 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

User specific driver core IRQ connect function selection

Drivers that support this feature export the function pointers <drvname>AttachIrqHandler and
<drvname>DetachIrqHandler. Addresses of user specific function should be assigned to these
pointers. The driver core calls these functions via the function pointers to attach or detach the
interrupt handler. If the user specified functions return the error code ENOSYS (from errno.h) then

the driver core will execute as fallback its default connect and disconnect routines.

Please refer to the caninit.c / caninit_<drvname>.c file that belongs to your driver to see how

these function pointers can be initialized. It can be done either manually in these files or via macros
changeable via the Windriver Workbench.

VME-CAN4 Connect Function Selection

The CAN4 driver calls connect and disconnect functions using a function pointer that the user has
to initialise. The caninit.c / caninit_ican4.c file provide the means to change this initialisation.

You have to select a connection mechanism via the variable can4_irqConnectMode and provide an
entry for a connect function via the function pointer can4_pfIntConnect. The macros to change these
values from the WindRiver workbench are ESD_CAN_ICAN4_IRQ_CON_MODE and

ESD_CAN_ICAN4_IRQ_CON_FUNC. For the disconnect functions the same mechanism with other

variables is implemented. To make this more clear please refer to the source files mentioned in this
paragraph.

4.1.6.5.2 Interrupt Connection: Wrong IRQ Number to Vector Translation

The vxWorks functions to connect an interrupt take unfortunately an interrupt vector address as
parameter and not an interrupt number which would be more sound. This way the task to translate
an interrupt number to the correct interrupt vector address is imposed on the driver. Most
unfortunately the way to do this translation also involves a macro INUM_TO_IVEC() that is at least

architecture specific.

In the following paragraphs it is described how the driver does the IRQ number to IRQ vector
translation by default and how it may be tuned to fit to your BSP.

The default formula for the number to vector translation involves the value of sysVectorIRQ0 which
may be either a global variable of the BSP or a macro used at build time. The typical values of the
macro used at build time are 0x20 for the x86 architecture and 0x00 for the PPC architecture.

irqVector = INUM_TO_IVEC(irqNumber + sysVectorIRQ0)

The irqNumber mentioned in the formula is the IRQ number provided via the parameter structure
except for PCI based boards where the interrupt number is taken by default from the PCI config
space. To compensate for a wrong value of sysVectorIRQ0 or any peculiar differences of your BSP
most drivers provide an additional IRQ offset variable that can be used to tune the translation to your
needs as the formula below shows.

irqVector = INUM_TO_IVEC(irqNumber + irqOffset + sysVectorIRQ0)

Every driver that supports this variable exports this as <drvname>IrqOffset. It should be adjusted to
your needs in the caninit.c file before <drvname>_install() is called.

 For a non-VxBus driver configured from the VxWorks Workbench you should enable
the INCLUDE_ESD_CAN_BSP_PNP_QUIRK which will allow you to set the offset

<drvname>IrqOffset using the macro ESD_CAN_PCI_IRQ_OFFSET in the configlette

caninit_<drvname>.c located in the target tree.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 171 of 218

Using only this approach there are still some translation issues left that can't yet be solved:

– Still the INUM_TO_IVEC() macro is compiled into the driver binary. If this macros is BSP

specific the driver won't work.

– With a single irqOffset value the IRQ numbers can only be shifted. Some BSPs that support
virtual IRQ numbers or need a IRQ number reordering (use INT_NUM_GET()) can't be

supported.

To provide a solution more recent versions of the driver export for that reason a function pointer
variable <drvname>GetIrqVector. If that variable doesn't contain a NULL pointer then the driver calls
that function to translate the irqNumber to the irqVector. You have there the opportunity to implement
any interrupt number to interrupt vector translation formula that you need for your environment. A
sample implementation of that function that avoids the INUM_TO_IVEC() and INT_NUM_GET() issues

looks like this (for a C200I board):

/*---*/

/* Callback to return assigned IRQ vector */

/*---*/

LOCAL VOIDFUNCPTR * c200iIrqVector(int irq)

{

 VOIDFUNCPTR *irqVec;

 irqVec = INUM_TO_IVEC(INT_NUM_GET(irq));

 printf("--> BSP specific IRQ vector is 0x%x\n", irqVec);

 return(irqVec);

}

Now setup the pointer c200iGetIrqVector with the address of c200iIrqVector() and the driver will call
it to do the IRQ number to IRQ vector translation.

VME-CAN4 Interrupt Number Restrictions and Offset

Please be aware that the IRQ number you provide to the driver via the irq_num member of the

parameter structure needs to be a multiple of eight (8). This has its reason in a hardware limitation
and is described in more detail in the hardware manual of the VME-CAN4.

If you need to provide an IRQ number offset you should set the variable can4_irqNumOffset
accordingly. If you configure the driver from the VxWorks Workbench you should adapt the macro
ESD_CAN_ICAN4_IRQ_OFFSET as needed which in turn will be used to setup can4_irqNumOffset in

caninit_ican4.c.

Real-Time Operating Systems

Page 172 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.1.6.6 VxBus Driver Prerequisites

The VxBus API provides the first time something that could be called a Hardware Abstraction Layer
under VxWorks. Therefore the problems to find and claim the right resources for a driver should
become less evident. But on the other hand it is now the duty of the BSP to setup and configure the
VxBus libraries provided by WindRiver to establish the hardware abstraction. Here will follow some
hints to check whether the BSP has done its job good enough to support our VxBus drivers for PCI
interface boards.

The following things must be added to your kernel configuration to do these tests:

– INCLUDE_VXBUS adds VxBus support itself

– INCLUDE_VXBUS_SHOW adds VxBus show routines

– INCLUDE_PCI_BUS_SHOW adds PCI show routines based on the VxBus libraries

In the following paragraphs we will try to show you how to test if your BSP does not only have
simplistic support for VxBus but at least includes the VxBus PCI hardware abstraction that our driver
needs. The vxBusShow() routine will show you if the VxBus system is aware of the PCI device you
plugged in. You may also use vxbTopoShow() to get a more condensed output that shows only the
buses and devices found.

4.1.6.6.1 Example of Working VxBus Implementation

Here follows the output of a working implementation with the important parts marked in red and some
unimportant entries removed. It shows the conditions without any esd CAN driver included into the
VxWorks image but with an esd CAN board plugged in:

-> vxBusShow

Registered Bus Types:

 MII_Bus @ 0x004c52ac

 PCI_Bus @ 0x004c5840

 PLB_Bus @ 0x004c58c0

Registered Device Drivers:

 pentiumPci at 0x004c4ae0 on bus PLB_Bus, funcs @ 0x004c4b68

 i8253TimerDev at 0x004c55e0 on bus PLB_Bus, funcs @ 0x004c5660

 ns16550 at 0x004c5480 on bus PLB_Bus, funcs @ 0x004c5548

 m6845Vga at 0x004c4c20 on bus PLB_Bus, funcs @ 0x004c4c88

 i8042Kbd at 0x004c4b80 on bus PLB_Bus, funcs @ 0x004c4c00

 genericPhy at 0x004c5300 on bus MII_Bus, funcs @ 0x004c5340

 miiBus at 0x004c5260 on bus PCI_Bus, funcs @ 0x004c52c8

 elPci at 0x004c4f20 on bus PCI_Bus, funcs @ 0x004c4fb8

 plbCtlr at 0x004c5880 on bus PLB_Bus, funcs @ 0x004c5978

Busses and Devices Present:

 PLB_Bus @ 0x004fb4d8 with bridge @ 0x004c58e0

 Device Instances:

 ns16550 unit 0 on PLB_Bus @ 0x004fc498 with busInfo 0x00000000

 pentiumPci unit 0 on PLB_Bus @ 0x004fc898 with busInfo 0x004fb718

 i8042Kbd unit 0 on PLB_Bus @ 0x004fe598 with busInfo 0x00000000

 m6845Vga unit 0 on PLB_Bus @ 0x004fe798 with busInfo 0x00000000

 i8253TimerDev unit 0 on PLB_Bus @ 0x004fe898 with busInfo 0x00000000

 Orphan Devices:

 i8042Mse unit 0 on PLB_Bus @ 0x004fe698 with busInfo 0x00000000

 PCI_Bus @ 0x004fb718 with bridge @ 0x004fc898

 Device Instances:

 elPci unit 0 on PCI_Bus @ 0x004fd398 with busInfo 0x00000000

 miiBus unit 0 on PCI_Bus @ 0x004fec98 with busInfo 0x004fc218

 Orphan Devices:

 (null) unit 0 on PCI_Bus @ 0x004fd198 with busInfo 0x00000000

 (null) unit 0 on PCI_Bus @ 0x004fd298 with busInfo 0x00000000

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 173 of 218

 (null) unit 0 on PCI_Bus @ 0x004fe498 with busInfo 0x00000000

 MII_Bus @ 0x004fc218 with bridge @ 0x004fec98

 Device Instances:

 genericPhy unit 0 on MII_Bus @ 0x004fed98 with busInfo 0x00000000

 Orphan Devices:

value = 1 = 0x1

This output tells us in the “Busses and Devices Present” section that the pentiumPci device instance

is at 0x004fc898 (this is the PCI host controller). It provides access to the PCI_Bus instance at

0x004fb718 which has a backlink to the host controller instance at 0x004fc898.

The PCI_Bus itself has a list of “Device Instances” for which some device driver claims responsibility

(i. e. elPci). Also the PCI_Bus has a list of “Orphan Devices”. This list has to grow after you plugged

in the esd CAN board. You may inspect the device instance for being an esd CAN board (check PCI
IDs) by using pciDevShow(). For the current example selecting the orphaned device at 0x004fd298

you will get:

-> pciDevShow 0x004fd298

pDev @ 0x004fd298 [0,17,0]

 devID = 0x9050

 vendID = 0x10b5

value = 17 = 0x11

At least from these PCI IDs it may be an esd CAN board. To be sure you can interrogate the PCI_Bus

instance at 0x004fc898 with vxbPciHeaderShow() like this:

-> vxbPciHeaderShow 0x004fc898,0,17,0

vendor ID = 0x10b5

device ID = 0x9050

command register = 0x0003

status register = 0x0280

revision ID = 0x02

class code = 0x0c

sub class code = 0x09

programming interface = 0x00

cache line = 0x08

latency time = 0x00

header type = 0x00

BIST = 0x00

base address 0 = 0xf5204000

base address 1 = 0x0000d801

base address 2 = 0xf5201000

base address 3 = 0x00000000

base address 4 = 0x00000000

base address 5 = 0x00000000

cardBus CIS pointer = 0x00000000

sub system vendor ID = 0x12fe

sub system ID = 0x0004

expansion ROM base address = 0x00000000

interrupt line = 0x0b

interrupt pin = 0x01

min Grant = 0x00

max Latency = 0x00

value = 0 = 0x0

Judging from this output you know now that this device is a CAN-PCI/200 and that the VxBus
implementation is aware of the hardware so far. Even the interrupt assignment could now be
displayed with plbIntrShow() for the same orphaned device at 0x004fd298:

Real-Time Operating Systems

Page 174 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

-> plbIntrShow 0x004fd298,1

(null)_0:

 numVectors = 1 (defined in hwconf.c for device)

 intVecList @ 0x00000158

 intLvlList @ 0x0000000b

 intCtlrList @ 0x00000000

 pIntCtlrTable @ 0x00000000

value = 0 = 0x0

To display all this information, we used native VxBus routines to be sure that we really talk to the
VxBus implementation. If you have seen all this information on your board the VxBus driver should
work. If you only need to see some information about the PCI configuration or want to test if the
board itself is accessible you may use the functions described in chapter 4.1.6.4.2.

4.1.6.6.2 Example of not Working VxBus Implementation

In the following section is some output from an insufficient VxBus implementation shown that won't
be able to support our VxBus CAN driver. This is the condition with the CAN board plugged in but
without the esd VxBus CAN driver compiled into the VxWorks kernel image.

-> vxBusShow

 Registered Bus Types:

 MII_Bus @ 0x00311a04

 PCI_Bus @ 0x0031162c

 PLB_Bus @ 0x00311648

 Registered Device Drivers:

 mottsec at 0x003118e8 on bus PLB_Bus, funcs @ 0x003117d0

 mdio at 0x00311be0 on bus PLB_Bus, funcs @ 0x00311bac

 mv88E1x11Phy at 0x00311b00 on bus MII_Bus, funcs @ 0x00311ad0

 bcm54xxPhy at 0x00311a70 on bus MII_Bus, funcs @ 0x00311a40

 genericPhy at 0x00311b6c on bus MII_Bus, funcs @ 0x00311b60

 miiBus at 0x003119bc on bus PCI_Bus, funcs @ 0x00311960

 miiBus at 0x0031197c on bus PLB_Bus, funcs @ 0x00311960

 plbCtlr at 0x00311670 on bus PLB_Bus, funcs @ 0x00311664

 Busses and Devices Present:

 PLB_Bus @ 0x0035ae78 with bridge @ 0x003116b0

 Device Instances:

 mottsec unit 0 on PLB_Bus @ 0x0035be38 with busInfo 0x00000000

 mottsec unit 1 on PLB_Bus @ 0x0035bf38 with busInfo 0x00000000

 miiBus unit 0 on PLB_Bus @ 0x0035c238 with busInfo 0x0035b1b8

 miiBus unit 1 on PLB_Bus @ 0x0035c538 with busInfo 0x0035b1f8

 Orphan Devices:

 MII_Bus @ 0x0035b1b8 with bridge @ 0x0035c238

 Device Instances:

 genericPhy unit 0 on MII_Bus @ 0x0035c338 with busInfo 0x00000000

 Orphan Devices:

 MII_Bus @ 0x0035b1f8 with bridge @ 0x0035c538

 Device Instances:

 genericPhy unit 1 on MII_Bus @ 0x0035c638 with busInfo 0x00000000

 Orphan Devices:

 value = 1 = 0x1

At least the PCI_Bus shows up in the “Registered Bus Types” section. But in the “Buses and Devices

Present” section there is no instance of the PCI_Bus present. Therefore the VxBus layer doesn't

know anything about the PCI devices present and cannot provide any information to our VxBus PCI
driver.Instead we miss a driver for a PCI host bridge in the “Registered Device Drivers” section and
based on that driver an instance on the PLB_Bus that could serve as root bridge device for a PCI_Bus

instance.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 175 of 218

4.2 QNX
The installation on QNX® requires administrator rights on the host.

4.2.1 QNX 6 and QNX 7

4.2.1.1 Driver Package Content

The software drivers for the QNX package are shipped on CD-ROM. The CD contains the following
files:

File Description

Readme Current notes and installation information

CHANGELOG Change list / driver history

devcan-xxx-yyy CAN resource manager for a CAN device family. The character
combination devcan-xxx-yyy follows the driver naming convention
described in Table 2: Overview of the CAN Interface Families. For a
CAN-PCI/331 it would be ‘devcan-pci331-i20’.

upd-isa331
upd-pci331
upd-pci360

Programs for firmware update (shipping on request)

pciclass-pci200
pciclass-pci266
pciclass-pci331

Programs for setting the PCI-Class

libntcan.so.x dynamic CAN-API library (x... library version)

ntcan.h header of CAN-API

cantest.c source code of example program ‘cantest’
(see CAN-API manual part 1 /1/)

cantest binary file of example program ‘cantest’

Real-Time Operating Systems

Page 176 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.2.1.2 Sequence of Installation Under QNX6 and QNX7

4.2.1.2.1 Installation of ISA-Boards

First install the hardware of the module. When installing ISA boards, please make sure to set the
board address correctly. The address corresponding to the standard configuration (e.g. 0x1E8 for

CAN-ISA/200) should be set before shipping already.

Calling the Resource Manager

Log in as ‘root’.
Start the resource manager (e.g. for CAN-ISA/200):

devcan-isa200-sja1000 -v

After this call an output similar to the following is to appear on the screen:

devcan-isa200-sja1000: version 3.9.3 build 16:52:53 Mar 19 2013
(0)CAN_ISA200: Clock=0x00000000 Baud=0x7fffffff Mode=0x00000000 Nodes=can0
(0)CAN_ISA200: Hardware-version 1.0.0

Depending on the module the resource manager is called by means of different commands. The
code isa200-sja1000 in the character combination ‘devcan-isa200-sja1000’ shown in the

example above, has to be substituted for other modules as described in 4.2.1.1.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 177 of 218

Command Line of the Resource Manager for ISA Boards:

With the command

devcan-isa200-sja1000 -h

or

use devcan-isa200-sja1000

the input syntax of all available parameters (here CAN-ISA/200) is listed:

devcan-isa200-sja1000 [Options]

The resource manager can be configured by means of the parameters explained below.

Parameter Function

-b baudrate Initial baud rate (default value: module is ‘OFF Bus’)

-m mode Mode flags (default value = 0x00000000)

0x00000040: Listen-Only mode only

0x00000080: Go OFF Bus after last handle is closed

0x20000000: Do not use firmware fast mode

-n net Base net of card.
net = 0...255 (default value = 0 for first card)

-v[v...] Verbose level

-p prio Back-end handling priority (default value = 19)

-P Prio Prio of IRQ handling thread (default: No IRQ threads)

-R rxbuffer Rx-buffer of CAN node (default: 128)

-e errorinfo Extended error info (default = 1):
0=Off
1=On

-C frequency Override CAN controller clock in [Hz]

-t maxthreadpool Maximal size of threadpool (1...64) (default = 4* CAN nodes)

-h Showing a help text

-c card_options Setting of the I/O-address and the interrupts of a CAN module:
io = address (I/O-address)

irq = interrupt (An unused interrupt of the system has to be

determined and set with this parameter.)

Example for the installation of two CAN-ISA/200 boards in one system:

devcan-isa200-sja1000 -n0 -c io=0x1e8,irq=5 -n1 -c io=0x1e0,irq=7

Now you can test the communication on the CAN bus by means of the example program cantest.

Real-Time Operating Systems

Page 178 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.2.1.2.2 Installation of PCI-Boards

First install the module hardware.

Log in as ‘root’.
Start the resource manager (example CAN-PCI/331):

devcan-pci331-i20 -v

Now an output similar to the one below has to appear on the screen:

devcan-pci331-i20: version 3.9.3 build 16:52:53 Mar 19 2013
(0)CAN_PCI331: Clock=0x00000000 Baud=0x7fffffff Mode=0x00000000 Nodes=can0
(0)CAN_PCI331: Hardware-version 1.0.0

Depending on the module the resource manager might be called by means of different commands.
The code pci331-i20 in the character combination ‘devcan-pci331-i20’, as shown in the
example above, has to be substituted for other modules as described in 4.2.1.1.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 179 of 218

Command Line of the Resource Manager for PCI Boards:

With the command

devcan-pci331-i20 -h

or

use devcan-pci331-i20

the input syntax of all available parameters (here CAN-PCI/331) is listed:

devcan-pci331-i20 [Options]

The resource manager can be configured by means of the parameters described below.

Parameter Function

-b baudrate Initial baud rate (default value: module is ‘OFF Bus’)

-m mode Mode flags (default value = 0x00000000)

0x00000040: Listen-Only mode only

0x00000080: Go OFF Bus after last handle is closed

0x20000000: Do not use firmware fast mode

-n net Base net of card.
net = 0...255 (default value = 0 for first card)

-v[v...] Verbose level

-p prio Back-end handling priority (default value = 19)

-P Prio Prio of IRQ handling thread (default: No IRQ threads)

-R rxbuffer Rx-buffer of CAN node (default: 128)

-e errorinfo Extended error info (default = 1):
0=Off
1=On

-C frequency Override CAN controller clock in [Hz]

-t maxthreadpool Maximal size of threadpool (1...64) (default = 4* CAN nodes)

-h Showing a help text

-c card_options PCI index and/or esd device-id of card
(default: all CAN cards will be attached)

Pci = index (= “PCI Index” as indicated by the QNX
 Shell command “pci -v”)

sdid = id (= “Subsystem ID” as indicated by the QNX
 Shell command “pci -v”)

 irq = interrupt (= Overload the PCI P&P interrupt)

 nomsi (= Forbit the use of MSI interupts)

Example for the installation of two CAN-PCI/331 boards in one system:

devcan-pci331-i20 -n0 -c pci=0 -n2 -c pci=1

Now you can test the communication on the CAN bus by means of the example program cantest.

Real-Time Operating Systems

Page 180 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.2.2 QNX4

 Attention!
As the date of the last QNX 4.x release was more than 20 years ago, technical support
and maintenance by esd for this QNX version is also terminated but the latest version
of the device driver files are kept available.

4.2.2.1 Files of the QNX4 Packages

The software drivers for the QNX package are shipped on CD-ROM. The CD contains the following
files:

File Description

readme current notes and installation
information

The character combination ‘c331’
signifies files of the CAN-PCI/331
module. For other modules the
characters have to be changed as
follows:

c331 CAN resource manager for
CAN-PCI/331

 CAN Module File Name

 CAN-ISA/200

c200i

CAN-PC104/200
(SJA1000 version)

 CAN-ISA/331
CAN-PC104/331

c331i

 CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

updc331 program for firmware update

libntcan3s.lib CAN-API library (stack parameter)

libntcan3r.lib CAN-API library (register parameter)

ntcan.h header for CAN-API

cantest.c source code of example program ‘cantest’
(see CAN-API manual part 1 /1/)

cantest binary file of example program ‘cantest’

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 181 of 218

4.2.2.2 Sequence of Installation Under QNX4

4.2.2.2.1 Installation of ISA-Boards

First install the hardware of the module. When installing ISA boards, please make sure to set the
board address correctly. The address corresponding to the standard configuration (e.g. 0x1E8 for

CAN-ISA/200) should be set before shipping already.

Calling the Resource Manager

Log in as ‘root’.
Start the resource manager (e.g. for QNX4, CAN-ISA/200): ‘c200i &’

After this call an output similar to the following is to appear on the screen:

C200i[0x1e8]: Using I/O-Base 0x1E8

C200i[0x1e8]: Using Interrupt 5

C200i[0x1e8]: "CAN_ISA200" with 1 Nets identified

C200i[0x1e8]: Hardware-Version=1.0.00

C200i[0x1e8]: Firmware-Version=0.0.00

C200i[0x1e8]: Driver-Version =1.0.00

C200i[0x1e8]: Net 0 successfully created

Depending on the module the resource manager is called by means of different commands. The
character combination ‘c200i’ for QNX4 shown in the example above, has to be substituted for other
modules as follows:

Input syntax when calling the resource manager:

CAN Module Entry Syntax QNX4

CAN-ISA/200

c200i CAN-PC104/200
(SJA1000 version)

CAN-ISA/331
CAN-PC104/331

c331i

Real-Time Operating Systems

Page 182 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

Command Line of the Resource Manager for ISA Boards

Parameter Function

-h Showing a help text

-n net Assigning the logical network number.
net = 0...255

default: net = 0

-p port Selecting the ISA board in the system by means of the port address set via the
hardware (see also hardware manual of the module).

-i irq Setting the interrupt to be used by the board.
You have to determine an available interrupt which has to be set here.
If this parameter is not specified, interrupt 5 will be used.

Example for the installation of two CAN-ISA/200 boards in one system:

Call Function

c200i -p0x1e8 -i5 -n0 & Interrupt 5 and the CAN network number 0 are assigned to the
CAN-ISA/200 module with the address 0x1E8 .

c200i -p0x1e0 -i7 -n1 & Interrupt 7 and the CAN network number 1 are assigned to the
CAN-ISA/200 module with the address 0x1E0 .

Now you can test the communication on the CAN bus by means of the example program cantest.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 183 of 218

4.2.2.2.2 Installation of PCI-Boards

First install the module hardware.

Log in as ‘root’.
Start the resource manager (example CAN-PCI/331): ‘c331 &’

Now an output similar to the one below has to appear on the screen:

 C331[0]: Using Interrupt 12
 C331[0]: "CAN_PCI331" with 2 Nets identified
 C331[0]: Hardware-Version=1.1.00
 C331[0]: Firmware-Version=0.c.00
 C331[0]: Driver-Version =1.0.00
 C331[0]: Net 0: Successfully created
 C331[0]: Net 1: Successfully created

Depending on the module the resource manager might be called by means of different commands.
The character combination ‘c331’ , as shown in the example above, has to be substituted for other

modules as shown below:

Input syntax when calling the resource manager on PCI boards:

CAN Module Entry Syntax QNX4

CAN-PCI/200
CPCI-CAN/200
CAN-PCI/266

-

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

C331

 -... has not been implemented yet

Command Line of the Resource Manager for PCI Boards

The resource manager can be configured by means of the parameters described below.

Parameter Function

-h Showing a help text.

-n net Assigning the logical network number.

default: net = 0

net = 0...255

-p index Selecting the esd CAN-PCI boards in the system.
The boards are numbered starting with ‘0’. The assignment of numbers and boards
is determined by the plug-and-play controller. In case of doubt, the assignment
should be checked by means of a test.

Example for the installation of two CAN-PCI/331 boards in one system:

Call Function

c331 -p0 -n0 & The CAN network numbers 0 and 1 are assigned to the CAN-PCI/331
module with the PCI number 0.

c331 -p1 -n2 & The CAN network numbers 2 and 3 are assigned to the CAN-PCI/331
module with the PCI number 1.

Now you can test the communication on the CAN bus by means of the example program cantest.

Real-Time Operating Systems

Page 184 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.3 IntervalZero RTX® and RTX64®

This chapter covers the necessary steps to install, configure and start the device drivers for esd CAN
boards supporting the real time operating system IntervalZero RTX and RTX64® of Interval Zero,
Inc.

RTX and RTX64 are no stand alone real-time operating systems but a kernel mode add-on that
extends Microsoft Windows (32 or 64 bit) with high-speed and deterministic real-time capabilities.

As long as the information in this chapter cover the 32 bit version as well as the 64 bit version it is
just referred to RTX. If the text refers explicitly to the 64 bit version the text will refer to RTX64.

 Attention!
As the IntervalZero support and maintenance for all RTX (32-bit) versions is expired,
technical support and maintenance by esd is also terminated but the latest version of
the device driver files are kept available.

 Note:
All esd CAN device drivers require an interrupt. RTX does not support sharing IRQ lines
with Windows® devices, so the interrupt line used by the driver must be available for
exclusive use by RTX but can be shared between RTX devices.

Finding an exclusive IRQ often requires physically moving hardware in the system or
disabling other Windows® devices.

For the PCIe bus the most trouble-free solution is using the CAN-PCIe/402 because
this CAN board supports MSI which means interrupts are never shared and the
problems described above do not arise.

A device driver package for RTX contains the following files where <drvname> is the device family

specific driver name following driver naming convention I (see chapter 1.4).

Filename Description

bin/rtss/<drvname>.rtss The hardware specific CAN device driver.

bin/rtss/ntcan.rtss The NTCAN library (only RTX)

bin/rtss/ntcan.rtdll The NTCAN library (only RTX64)

bin/rtss/cantest.rtss The cantest application

doc/ Folder with API documentation, release notes, etc.

include/ntcan.h NTCAN header to compile the NTCAN based application.

inf/ Folder with digitally signed installation files (only RTX64).

lib/vc/ntcan_rtss.lib Lib file for Visual Studio to link the NTCAN based application

samples/cantest.c Source code of the cantest application

Table 14: Files of RTX/RTX64 CAN driver package

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 185 of 218

4.3.1 Driver Integration

4.3.1.1 RTX

The support for an esd CAN interface consists of a device driver (Cxxx.rtss) and the NTCAN library
(ntcan.rtss) as shown in the picture below. A hardware specific device driver (which usually covers a
complete CAN device family) has to be loaded together with the CAN hardware independent NTCAN
library into the RTSS environment. Device driver and NTCAN library are implemented as RTSS DLLs
which means that they are individual RTSS processes exporting entries to any RTSS application,
share a common address space with other RTSS processes and accurately mirror the automatic
resolution of references to exported functions like implicitly linked Windows DLLs.

This approach allows using different CAN drivers in the RTSS environment with the identical API and
allows several RTSS processes using the same CAN hardware as well as one RTSS process using
different CAN hardware.

The entries exported by the CAN device driver are only referenced by the NTCAN RTSS library. A
CAN based RTSS application will always reference to the NTCAN API exported by the NTCAN RTSS
DLL described in /1/. The NTCAN RTSS DLL may also be loaded without a driver to create RTSS
applications which refer to the NTCAN API even if the CAN hardware and its device driver is not
present.

Figure 3: RTX Driver Architecture

Real-Time Operating Systems

Page 186 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.3.1.2 RTX64

The support for an esd CAN interface consists of a device driver (Cxxx.rtss) and the NTCAN library
(ntcan.rtdll) as shown in the picture below. A hardware specific device driver (which usually covers a
complete CAN device family) implemented as an RTSS process has to be loaded and the application
has to link explicitly or implicitly to the NTCAN library implemented as an RTDLL.

This approach allows using different CAN driver in the RTSS environment with the identical API and
allows several RTSS processes using the same CAN hardware as well as one RTSS process using
different CAN hardware.

The entries exported by the CAN device driver are only referenced by the NTCAN RTSS library. A
CAN based RTSS application will always reference to the NTCAN API exported by the NTCAN RTSS
DLL described in /1/.

 For implicitly linked RTDLLs or explicitly linking RTDLLs without specifying the full path
name in LoadLibrary, the RTDLL files must be located in the same directory where the
RTSS executable file exists.

Figure 4: RTX64 Driver Architecture

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 187 of 218

4.3.2 Driver Installation

In order to support an esd CAN interface in the RTSS environment it is necessary to convert it into
a RTX managed device as described below (for further details refer to the RTX Runtime
Documentation).

4.3.2.1 RTX

Before the RTSS device driver can control the device the CAN interface has to be assigned to RTX.
This is performed using the RTX Properties control panel applet via the Plug and Play Tab. In the
device tree the CAN interface has to be selected and assigned to the RTX driver according to the
following figure:

If a Windows driver is already installed for this CAN interface the device will be listed under the
device class CAN-Interface. If no Windows driver has been installed, it will be listed depending on
the CAN interface and Windows version as Other PCI Bridge Device, Network Interface or CAN
Interface.

After this logical assignment the CAN interface must be removed from the Windows device
management by selecting Remove in the device manager context menu followed by a scan for new
hardware or a reboot of the system. On success the CAN interface should be listed in the RTX
Drivers class as shown below:

Real-Time Operating Systems

Page 188 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.3.2.2 RTX64

The 64-bit versions of Windows only accept digitally signed drivers. For this reason the RTX64 device
driver package comes with an INF file and a related CAT file which will allow to install the RTX64PNP
driver for the CAN interface. The steps to this are similar to the installation process of a standard
Windows device driver described in chapter 2 for the various (RTX64 supported) versions of
Windows.

For a general detailed instructions how to convert a device to RTX64 please refer to the chapter
Converting a PCI/PCIe Device to RTX64 in the RTX64 SDK Help.

You have to use the Windows Device Manager to assign the RTX64PNP driver to the CAN interface.
In the Device Manager windows there will be a device under Other Devices with a yellow exclamation
point next to the icon (if there is no device driver installed yet. The text next to the device will depend
on the CAN module attached) or the device is listed under CAN Interfaces if a Windows driver is
already installed (see the picture below).

Follow the installation instructions and click the Have Disk... button to browse for the signed copy of
the esdrtx64.inf file.

http://www.intervalzero.com/library/RTX64/HTML5/Content/PROJECTS/Subsystem/Managing_Devices/Converting_a_Windows_Device_to_an_RTX_Device.htm

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 189 of 218

Proceed with the installation and Windows will present you a security dialogue box. The RTX64
device driver which are loaded in the RTSS environment are not digitally signed but the INF file which
assigns the CAN interface to the IntervalZero RTX64PNP driver has to. Please refer to chapter 2.8
for more details about Digital Signatures.

 Note:
If you activate the check box “Always trust software from esd electronic system design
gmbh” you will not have to confirm this dialogue in the future during the installation of
another digitally signed driver for an esd device.

Press the Install button to continue.

Real-Time Operating Systems

Page 190 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

If device conversion to RTX64 completes successfully the CAN interface has to appear under RTX64
Drivers in the Device manager..

 If a Windows driver is already installed for this device it is possible that Windows
prevents migration to RTX/RTX64 with an indication that “The Best Driver is already
Installed” for this device. Refer to chapter 2.4.4 to overcome this situation.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 191 of 218

4.3.3 Driver Start

The driver is loaded into the RTSS environment and started with the console or the GUI version of
the RTX tool RTSSrun. Type in a Windows console the following command:

rtssrun driver.rtss [Arguments]

where driver.rtss has to be replaced with the name of the driver (e.g. c405.rtss) and

Arguments contain the device driver configuration parameter described in the next chapter.

In the GUI-version this may be performed like this:

If an error occurs at start the numeric error code is displayed in the RTX console and the RTSS-
process is terminated. In this case the driver can be started with the option ‘-v’ followed by a
numerical hexadecimal value to increase the verbosity of the debug trace messages reporting
initialization errors.

For RTX (not RTX 64):

In a second step the NTCAN library has to be loaded into the RTSS environment and started in the
same manner. Type in a Windows console the following command:

rtssrun ntcan.rtss [Arguments]

If an error occurs at start the numeric error code is displayed in the RTX console and the RTSS-
process is terminated.

Figure 5: Starting the driver

Real-Time Operating Systems

Page 192 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.3.4 Driver Configuration

The RTX device drivers are configured with parameters to the RTSSrun command.

4.3.4.1 Command Line Parameter

The RTX device drivers are configured via options listed in the table below which are passed as
arguments to the driver start command described in the previous chapter:

Option Argument Description

-V - After the start the driver displays driver version information in the RTX
console and terminates afterwards.

-v mask Display additional (debug) messages during startup in the RTX console.
The mask parameter may be given as a decimal value or as a
hexadecimal value prepended by a ‘0x’

-h - Display a list of all possible command line options and terminate
afterwards.

-p prio This option configures the priority of the IST thread that processes the
CAN messages. The default value for prio is 127.

-n net number This option configures the logical base net number which is assigned to
the first physical port of the CAN interface. The logical net numbers are
incremented by one for each additional physical port. The default value
for net number is 0.

-k - Force clean unload of a resident driver (after closing all applications).

Table 15: Command Line Parameter of RTX Driver

Example:

The command

rtssrun c405.rtss -v0xFF -n2 -p118

• Starts the CAN-PCI/405 device driver with additional (debug) output

• Assigns the logical base-net number 2

• Configures an IST (interrupt service thread) priority of 118.

If a driver is started without any command line options the logical net number 0 is assigned to the
first physical CAN port, all IST threads get a priority of 127 and the messages shown in the RTX
console are reduced to a minimum.

4.3.4.2 SMP Support

If RTX is assigned more than one physical processor on a SMP system the IRQ and the IST of the
driver are handled on the processor the process runs on. You can influence this with the RTSSrun
utility to optimize your overall system performance by using the '/a' parameter to configure the affinity
and/or using the '/p' parameter to define an ideal processor (see RTX runtime help).

Example:

The command starts the CAN-PCI/405 device driver as in the example above but forces IRQ/IST
execution to the processor with the system-wide processor number 2.

rtssrun /p 2 c405.rtss -v0xFF -n2 -p118

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 193 of 218

4.3.5 Miscellaneous

This chapter covers several topics using the NTCAN architecture on RTX.

4.3.5.1 Application Development

To develop your own NTCAN based applications with Microsoft® Visual Studio the driver package
contains the header ntcan.h and the library file ntcan_rtss.lib. To compile for RTX you have to

define UNDER_RTSS before the header is included.

You can also start developing your application in the Win32 non-real-time environment before you
change into the real-time RTSS environment to use the more comfortable possibilities to debug your
application and take advantage of the esd CAN tools which just support the Windows environment.
In this case you must install the Windows device driver and the CAN SDK as described in chapter
2. Use the header ntcan.h which comes with your RTX driver package (to prevent implementing

features which are already available on Windows but not yet available on RTX) but do not define
UNDER_RTSS before you include the header.

 Note:
The NTCAN API on Windows and RTX is identical with the exception that overlapped
operations are not supported in the RTSS environment.

4.3.5.2 Example Application

The driver package comes with the RTSS application cantest.rtss which can be loaded into the

RTSS environment in the same way as described for the NTCAN library. With the help of this program
you can do basic functionality checks of the CAN interface. The program and its parameters are
described in more detail in /1/.

Real-Time Operating Systems

Page 194 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.4 TenAsys® INtime®

This chapter covers the necessary steps to install, configure and start the device drivers for esd CAN
boards supporting the real time operating system INtime® of TenAsys®

INtime® is a hard real-time, event-driven OS for the x86 architecture which can operate stand-alone
(INtime dustributed RTOS) or side-by-side with Windows (INtime for Windows). The RT kernel
supports Real-Time Applications (RTAs) and Real-Time Shared Libraries (RSLs).

A device driver package for INtime® contains the following files where <drvname> is the device family

specific driver name following driver naming convention I (see chapter 1.4) and <ver> is an INtime

major version.

Filename Description

bin/<ver>/<drvname>.rta The hardware specific CAN device driver.

bin/<ver>/ntcan.rsl The NTCAN library

bin/<ver>/cantest.rta The cantest application

doc/ API documentation, release notes, etc.

include/ntcan.h NTCAN header to compile the NTCAN based application.

lib/vc/ntcan.lib Lib file for Visual Studio to link the NTCAN based application

samples/cantest.c Source code of the cantest application

Table 16: Files of Intime® CAN driver package

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 195 of 218

4.4.1 Driver Integration

The support for an esd CAN interface consists of a device driver (cxxx.rta) and the NTCAN library
(ntcan.rsl) as shown in the picture below. The hardware specific device driver (which usually covers
a complete CAN device family) is implemented as an INtime® Real-Time Application (RTA) which
creates a resident service after the successful start. The driver must be started before any other RTA
which links explicitly or implicitly to the NTCAN library implemented as an INtime® Real-time Shared
Library (RSL).

This approach allows using different CAN driver in the INtime® environment with the identical API
and allows several INtime® RTAs using the same CAN hardware as well as one INtime® RTA using
different CAN hardware.

An RTA which uses the CAN hardware must always use the entries exported by the NTCAN RSL
described in /1/ and must communicate directly with the device driver.

Real-Time Operating Systems

Page 196 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.4.2 Driver Installation

To support an esd CAN interface in the INtime® environment it is necessary to remove the control
from convert it into a RTX managed device as described below (for further details refer to the INtime
SDK Documentation).

4.4.2.1 INtime for Windows

Without additional measures Windows gets control on the CAN hardware and tries to install an
associated device drivers as necessary. This is undesired when a device must be controlled from
within the INtime environment.

You must use the INtime Device Manager to pass control of plug-and-play devices between Windows
and a local INtime node. This utility assigns a device to INtime use by installing a simple device
driver on the requested device. The device driver does two things:

• It satisfies Windows plug-and-play management to stop it trying to install a normal Windows
device driver, and

• It signals to the INtime node that it "owns" the device.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 197 of 218

Open the INtime Device Manager and open the right-click context menu of the CAN interface which
control you will pass from Windows to INtime.

Select “Pass to INtime using MSI” to prepare the use of the CAN hardware in the INtime environment.

If you exit the INtime Device Manager, you will be asked to finalize the requested changes.

Real-Time Operating Systems

Page 198 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

After the changes are applied the INtime Device Manager will indicate that the CAN device is
assigned to an INtime node.

The Windows Device Manger will indicate that the device is assigned to INtime.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 199 of 218

 The INtime CAN device driver is currently limited to supporting one physical CAN board
per INtime node. If you need more physical CAN ports available on a single CAN board
you must create additional INtime nodes to assign them additional CAN boards.

The picture below shows a configuration with two CAN boards assigned to different INtime nodes.
You must start the device driver as described in the next chapter for each node.

Real-Time Operating Systems

Page 200 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.4.3 Driver Start

The INtime kernel is designed to support dynamical loading of executable code. This involves three
components:

• INtime Load Server: A service within the INtime kernel which handles load requests. The
load server manages the loading of both application (RTA) and dynamic libraries (RSL).

• Windows Load Client: A Windows application (ldrta.exe) which interacts with the load
server to load a .RTA file and to create new process with it.

• INtime Load Client: An INitme kernel service which allows an INtime application to interact
directly with the load server.

This architecture is identical wheter the kernel runs on an INtime node of INtime for Windows or
INtime Distributed RTOS.

The driver is loaded with ldrta.exe executing the following command line in a Windows console
window:

where driver.rta must be replaced with the name of the driver RTA (e.g. c402.rta) and

Arguments contain the device driver configuration parameter described in chapter 4.4.4.1. For

configurations with support for more than one node you also must provide the INtime node name the
respective CAN interface is assigned.

After a successful start the root process of the device driver is cataloged with the respective (family)
name and is ready to be used by applications (via the NTCAN RSL). In case of any error during the
startup a Windows console window is opened to show an error message. In the latter case the driver
can be started with the option ‘-v’ followed by a numerical hexadecimal value to increase the
verbosity of the debug trace messages reporting initialization errors.

ldrta [-node nodename][-a “Arguments”] driver.rta

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 201 of 218

4.4.4 Driver Configuration

The INtime® device drivers are configured with parameters to the ldrta.exe command.

4.4.4.1 Command Line Parameter

The INtime® device drivers are configured via options listed in the table below which are passed as
arguments to the driver start command described in the previous chapter:

Option Argument Description

-V - After the start the driver displays driver version information in the Intime®

console window and terminates afterwards.

-v mask Display additional (debug) messages during startup in the INtime®
console window. The mask parameter may be given as a decimal value
or as a hexadecimal value prepended by a ‘0x’

-h - Display a list of all possible command line options in the Intime® console
window nd terminate afterwards.

-p prio This option configures the priority of the DPC thread that processes the
CAN messages. The default value for prio is 135.

-P prio This option configures the priority of the dispatch thread that handles
requests from the applications. The default value for prio is 140.

-n net number This option configures the logical base net number which is assigned to
the first physical port of the CAN interface. The logical net numbers are
incremented by one for each additional physical port. The default value
for net number is 0.

-w time in ms Time window in ms for the HW TX operation mode. The default value is
10 ms.

Table 17: Command Line Parameter of INtime® Driver

Example:

The command

Starts the C402 device driver with additional (debug) output.
Assigns the logical base-net number 2.
Configures the DPC priority to 130.

If a driver is started without any command line options, the default values according to the table
above are applied.

 ldrta -a “-v0xFF -n2 -p130” c402.rta

Real-Time Operating Systems

Page 202 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.4.4.2 Priority Layout

The active CAN device driver starts several threads as shown in the picture below for a configuration
with two physical CAN boards.

Some of the priorities might be adapted via the command line as described in the previous chapter
if the assigned default priorities do not fit into your priority layout. The threads are catalogued with
thread names starting with the device driver family name followed by a ‘.’ as described in the table
below:

Thread name Priority Description

DRV.MAIN 155 The priority of the initial thread created by the INtime load
server. Refer to Loading INtime Applications in the INtime
SDK for details on how this value can be adapted.

DRV.ISTxx N/A One Interrupt Service Thread (IST) for each active physical
CAN board. The priority of these threads is assigned by the
INtime kernel dynamically in the range from 0 – 130.

DRV.DPC 135 Common CAN driver event handler which priority can be
adapted at load time.

DRV.DISP 140 Common CAN driver application message dispatch handler
which priority can be adapted at load time.

As a rule, you should always keep the following numerical priority relation:

DRV.ISTxx < DRV.DPC < DRV.DISP < RTA

with RTA as priority of the threads which perform NTCAN API calls.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 203 of 218

4.4.5 Driver Unload

A driver can be gracefully stopped (unloaded) with the INtime tool killrta.exe executing the following
command line in a Windows console window:

or alternatively

with rtaname as cataloged driver name or handle as process Id you might figure out with the

INtime Explorer.

4.4.6 Miscellaneous

This chapter covers several topics using the NTCAN architecture on INtime®.

4.4.6.1 Application Development

To develop a NTCAN based applications with Microsoft® Visual Studio the driver package contains
the header ntcan.h and the library file ntcan.lib. To compile for INtime® you must define

__INTIME__ before the header is included. The latter is already defined if you start your project with

the Visual Studio INtime wizard to create an RTA. If you

 Note:
The NTCAN API on Windows and INtime® is identical with the exception that overlapped
operations are not supported in the INtime® environment.

4.4.6.2 Example Application

The driver package comes with the INtime® application cantest.rta which can be loaded into the

INtime® environment with the RT Application Loader (ldrta.exe) or the PipeRTA (piperta.exe) tools.
Output is displayed in the respective colsole windows. With the help of this program, you can do
basic functionality checks of the CAN interface. The program and its parameters are described in
more detail in /1/ and the source code of this example application is part of the driver package.

Please refer to the chapter Loading INtime Applications of the INtime SDK for a detailed description
of loading RTAs. Any NTCAN API based application requires to link to the NTCAN API RSL which
must be accessible by the INtime Load Server e.g. by keeping RTA and RTS in the same folder.

 Refer to the INTime SDK Help for the search pathes which are used by the RT kernel
to load RTAs with implicitly or explicitly linked RSLs.

killrta [-node nodename] [-name rtaname]

killrta [-node nodename] [-proc handle]

Real-Time Operating Systems

Page 204 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5 Legacy Support
This chapter covers installation and configuration of CAN device driver for RTOS derivatives which
are no longer available at the market and versions of still available RTOS derivatives which have
reached the EOL according to the vendors life cycle management.

 Attention!
Active technical support by esd and development for these RTOS derivates or versions
have stopped but the latest version of the device driver files are kept available.

4.5.1 LynxOS

The software drivers for LynxOS are contained on a CD-ROM with the following files:

File Description

instcan script for loading and unloading the driver

README.c331 current information and notes The character combination ‘c331’

represents the files of module CAN-
PCI/331. For other modules this
combination is changed as shown below:

c331 dynamically loadable driver

c331.info parameter file for the driver
(is read at installation and
deinstallation)

c331dbg debug version of the dynamically
loadable driver (should only be
used, if problems arise during
installation)

 CAN Module File name

 VME-CAN2 ican2

 VME-CAN4 ican4

CAN-ISA/331
CAN-PC104/331

c331i

 CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

ntcan.o ntcan-API

ntcan.h header for the ntcan-API

canupd program for firmware update

cantest.c source code of the example program ‘cantest’ (see /1/)

cantest binary file of the example program ‘cantest’

 Note:
The ‘Object mode’ of the NTCAN-API is not supported by LynxOS.

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 205 of 218

4.5.1.1 Driver Installation

1. Unpacking the Archive

 To unpack the tar-archive the following command has to be called:

 tar -xvf c331-lynx-v1.0.0.tar

 ‘c331’ must be entered for the CAN-PCI/331 module. For other modules the character

 combination shown in the following table must be entered:

 Input syntax for unpack the archive:

CAN Module Entry

VME-CAN2 ican2

VME-CAN4 ican4

CAN-ISA/331
CAN-PC104/331

c331i

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

c331

2. Loading the CAN Driver:

instcan c331

3. Unloading the CAN Driver:

The CAN driver must be unloaded, e.g., after an update of the local firmware in order to reset
the processor. In the CAN-PCI/331 module, e.g., the driver can be unloaded by the following
command:

instcan -u c331

Real-Time Operating Systems

Page 206 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5.2 OnTime RTOS-32

4.5.2.1 Overview

RTOS-32 is a royalty-free hard real-time operating system for x86 CPUs which is (amongst many
other things) implementing a subset of the WIN32 API. This operating system and its supporting
components are developed and distributed by 'On Time' (http://www.on-time.com).

4.5.2.2 Implementation

The support for an esd CAN module consists of the NTCAN library part and the hardware specific
driver part. For RTOS-32 both parts are linked together into a single, static library. To use the esd
NTCAN API functionality from within your program, this library has to be linked into your RTOS-32
application.

4.5.2.3 RTOS-32 Software Requirement

The current esd NTCAN driver for RTOS-32 has been developed and were tested lately using RTOS-
32 version 5.25.

4.5.2.4 Required (RTOS-32) Libraries

The esd NTCAN RTOS-32 driver makes use of the following RTOS-32 modules:

• Rtk32.lib (or Rtk32mp.lib for a multiprocessor kernel). Alternatively use Rtk32s.lib

or Rtk32mps.lib for the standard (non-debug) versions instead

• Drvrt32.lib for high-resolution timers, interrupt handling, etc.

• Rtt32.lib for the RTTarget-32 native API and Win32-emulation

While linking, the above order of libraries should be retained. See the On Time documentation about
'Order of Libraries'.

In addition, you also must link against ntcan.lib.

http://www.on-time.com/

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 207 of 218

4.5.2.5 Using the esd NTCAN Library

4.5.2.5.1 Folder and File Hierarchy

The distributed esd RTOS-32 CAN driver is organised in the following folder hierarchy:

 doc/ - Documentation and release notes

 include/ - Header for application development

 lib/ - Driver library for development with Microsoft Visual Studio

 samples - Sample application (cantest)

4.5.2.5.2 Including Header File ntcan.h

First of all, you have to include the header ntcan.h into your code. ntcan.h is providing function

prototypes, type declarations, macros etc. for the esd NTCAN API.

Be sure ntcan.h is within the preprocessor’s search path. When necessary, adapt the preprocessor

search path.

4.5.2.5.3 Linking Against ntcan.lib

Be sure ntcan.lib is within the linker's search path. If needed, adapt the linker search path.

Real-Time Operating Systems

Page 208 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5.2.5.4 Initialisation Procedure for the esd NTCAN Library

Before using any NTCAN API functionality from within your application you have to do the following
three steps:

Initialise RTKernel-32

At first you need to call RTKernelInit(). Please also consider the On Time documentation.

Set up Timer Interrupts

As the second step set up the RTOS-32 timer interrupts. esd NTCAN is providing time-outs with a
resolution of 1 ms. So we suggest to use a timer interrupt cycle of 1 ms (or below).

CLKSetTimerIntVal(1*1000); // 1000µs = 1ms

4.5.2.5.5 Initialisation of NTCAN itself

As step number three it is mandatory to call esdcanInit() once before using the NTCAN API. By

means of this function call the esd CAN hardware will be setup, an interrupt handler will be installed,
etc. Next to this, the esdcan NTCAN driver is ready for use.

Function prototype: extern int esdcanInit(void)

On successful completion esdcanInit returns 0, in case of an error a value unequal to 0 is returned.

4.5.2.5.6 De-initialisation Procedure for the esd NTCAN Library

To properly disconnect the interrupt handler and clean up all other resources claimed by the esd
NTCAN driver it is mandatory to call esdcanDeInit just before leaving your application.

Function prototype: extern int esdcanDeInit(void)

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 209 of 218

4.5.2.6 Compiling the Sample Application “cantest”

Compiling the sample application cantest by modifying / extending the On Time hello.c sample.

4.5.2.6.1 Add / Replace Source Code

Add sample/cantest.c and replace hello.c by sample/hello.c from within the esd

RTOS-32 driver distribution:

Real-Time Operating Systems

Page 210 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5.2.6.2 Adapt Header Search Path

Add the path to include/ntcan.h to the preprocessor's additional include directories.

E.g.:

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 211 of 218

4.5.2.6.3 Define RTOS32

For proper compilation of cantest.c add RTOS32 (please use RTOS32 in unhyphenated notation

here!) to the preprocessor definitions:

Real-Time Operating Systems

Page 212 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5.2.6.4 Adapt Library Search Path

Add the path to lib/ntcan.lib to the linker's additional library directories.

E.g.:

Real-Time Operating Systems

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 213 of 218

4.5.2.6.5 Add Additional Libraries

Add the needed additional libraries to the linker:

Real-Time Operating Systems

Page 214 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

4.5.2.6.6 Build and run

Now you are ready to build and execute the solution …

Firmware Update Application

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 215 of 218

5 Firmware Update Application
Some of the active esd CAN boards store their firmware in a NVRAM which is in most cases
updatable by the end user. A firmware update to a different version than the one the CAN board is
shipped with might be necessary to support new features or to troubleshoot problems. The task of
performing the firmware update is handled by a console application which is described in chapter
5.1.

An additional task which is also covered by the same application is switching between active and
passive support for CAN messages in the extended frame format (29-bit CAN-IDs) for a certain
family of active CAN boards (see chapter 5.2).

The firmware update applications are usually available for Windows and in many cases also as
native versions for operating systems with shell support (Linux, LynxOS, QNX, VxWorks, …). If the
firmware update tool is not available as native version for your target operating system you must do
the update with a supported OS (e.g. Windows).

The table below gives an overview on the updatable esd CAN boards with a firmware stored in the
NVRAM. The name of the tool always starts with 'upd' followed by a CAN board and platform specific
extension. An update application for active CAN boards which can be switched between active and
passive support for 29-bit CAN-IDs are marked with an asterisk (*).

CAN Board Update Tool Name

CAN-PCI/331, CPCI-CAN/331, PMC-CAN/331 updc331*, upd-pci331* or upd-pci331-i20*

CAN-PCI/360, CPCI-CAN/360 updc360*, upd-pci360 or upd-pci360-i20*

CAN-PCIe/402, CAN-PCI/402,
CPCIserial-CAN/402, CAN-PCIMini/402,
CPCI-CAN/402

updc402

CAN-PCIe/402_FD, CAN-PCI/402-FD,
CPCIserial-CAN/402-FD, CAN-PCIMini/402-FD,
PMC-CAN/402-FD, XMC-CAN/402-FD

updc402fd

CAN-USB/Mini updusb331

CAN-USB/Micro updcanmicro

CAN-USB/2 updusb2292

CAN-USB/2V2 updusb2v2.exe

CAN-USB/3-FD updusb3fd.exe

CAN-USB/400, CAN-USB/400-IRIG-B updusb400

CAN-USB/400-FD updusb400fd

CAN-AIR/2 updcanair2

CAN-ISA/331, CAN-PC104/331 updc331i*, upd-isa331* or upd-isa331-i20*

Table 18: Overview of firmware update applications

Firmware Update Application

Page 216 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

 Note:
The EtherCAN and EtherCAN/2 boards also have an updatable firmware but as a
network attached device the update is also performed via the network and not with the
firmware update tool described here. Please refer to /3/ for further details.

Other active CAN boards not mentioned in the table above have the latest firmware in
the device driver binary.

5.1 Updating the Firmware

A firmware can be updated with a CAN board and operating system specific console application.

 Attention!

Even if the updating process is made fail-safe, we do not recommend updating the
firmware if the CAN board works without any problems or the update is explicitly
recommend/required. For any damages caused by improper operation of updating the
firmware esd assumes no responsibility.

 Prerequisites:
For the firmware update the device driver has to be installed and started and you have
to make sure that CAN board works properly in your system. You also have to make
sure, and no other application is using the CAN board. Otherwise, the update tool will
return with an error.

Follow the steps below to update the firmware:

➢ To start the firmware update you have to open a console window and change into the
directory with the firmware update tool for your CAN board.

Note:
On Windows the update tool requires a console with Administrator Privileges.

If you start the update tool in a standard console without these privileges modern
Windows versions will show the UAC prompt and start the tool in a privileged
console which will open and close immediately without any further action.

Firmware Update Application

NTCAN Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 Page 217 of 218

➢ Type the name of the update tool which covers you CAN hardware (see Table 18) followed
by one of the logical net numbers which is assigned to the CAN board you want to update.
Below is an example for a CAN-USB/2 which is assigned the logical net number 6 in the
system (1).

➢ The tool will display the version of the firmware the CAN board can be updated to (2) and the
active firmware version (3). If the tool can not find a suitable CAN hardware for the given
logical net number it just shows the built-in firmware image.

➢ You will also see a warning message about the dangers of a firmware update and in case
you do a downgrade an information that you change to an older firmware version (4).

➢ If you answer the question to continue with 'y' the firmware update process is started and you
will be informed about its progress. If you want to cancel now and keep the active firmware
answer with 'n'.

 Attention!

Once started do not interrupt the update process by aborting the program or
resetting the system before the firmware update tool reports that it has
updated the firmware successfully.

➢ After the new firmware is successfully updated an USB based device (with the exception of
the CAN-USB/400) will automatically do a reset, the device is re-enumerated by the host
system and can be used immediately with the new firmware. CAN boards for other buses
require an explicit hardware reset before the new firmware becomes active which can either
be performed by rebooting the host system or by loading/unloading the device driver (if this
is supported by the host OS).

Firmware Update Application

Page 218 of 218 Installation Guide • Doc. No.: C.2001.21 / Rev. 4.8 NTCAN

 Attention!

For devices of the Classical CAN C402 family (CAN-PCI/402, CAN-
PCIe/402, CAN-PCIMini/402, CPCIserial-CAN/402, PMC-CAN/402, XMC-
CAN/402), their CAN FD enabled derivatives and the CAN-USB/400 the
method described above for the hardware reset is not sufficient to activate
the new firmware. The hardware requires a real power cycle where it is
disconnected from the power supply for a second.

5.2 Switch between CAN 2.0A and CAN 2.0B Mode

Some esd CAN boards (marked in Table 18 with an asterisk) support two different firmware
operation modes. One mode (according to CAN 2.0A) can transmit and receive only 11-bit CAN-IDs
(passive support of 29-bit CAN-IDs), the other mode (according to CAN 2.0B) can transmit and
receive 29-bit as well as 11-bit CAN-IDs. The first version is the factory default, and this chapter
describes how you can switch to the other version.

 Note:
Only the CAN boards marked in Table 18 with an asterisk come with two different
firmware versions. All other esd CAN boards always support the universal CAN 2.0B
mode and you can ignore this chapter if you have one of these other boards.

To switch between the two firmware modes the update application offers in addition to the real
firmware update capability described in the previous chapter the options '-ta' to switch into the
(factory default) 11-bit mode and '-tb' to switch into the 29-/11-bit mode.

Follow the steps below to switch to another firmware version:

➢ Open a console window and change into the directory with the firmware update application
for your CAN board.

➢ Type the name of the update application which covers you CAN hardware (see Table 18)
followed by the option '-ta' to switch into the CAN 2.0A mode or '-tb' to switch into the CAN
2.0B mode followed by one of the logical net numbers which is assigned to the CAN board.

➢ The CAN board requires an explicit hardware reset before the new firmware mode becomes
active which can either be performed by rebooting the host system or by loading/unloading
the device driver (if this is supported by the host OS).

 Note:
In comparison to the real firmware update described in the previous chapter just
changing the firmware operation mode does not contain any risks to make the CAN
board unusable.

	1 Introduction
	1.1 Scope
	1.2 Overview
	1.3 Terminology
	1.4 CAN Interface Families
	1.5 Hardware IDs
	1.5.1 PCI / PCIe / PCIe Mini / CPCI / CPCIserial / PMC / XMC
	1.5.2 USB
	1.5.3 Ethernet

	1.6 Software Deployment
	1.6.1 Windows
	1.6.2 Linux / Unix
	1.6.3 Real-Time Operating Systems

	2 Windows®
	2.1 Windows 10 / 11
	2.1.1 Hardware-First Driver Installation
	2.1.2 Software-First Driver Installation
	2.1.3 Driver Lifecycle Management

	2.2 Configuration
	2.2.1 Device Driver
	2.2.1.1 Standard Settings
	2.2.1.2 Expert Settings
	2.2.1.3 Device Specific Settings

	2.2.2 System
	2.2.2.1 Power Management
	2.2.2.2 Interrupt Affinity

	2.3 Device Driver Preinstallation
	2.3.1 Driver Staging
	2.3.2 Driver Installation for Non-Administrators

	2.4 Troubleshooting Driver Installation
	2.4.1 Error Code 31
	2.4.2 Error Code 39
	2.4.3 Error Code 52
	2.4.4 Best Driver already Installed

	2.5 Device Driver Lifecycle Management
	2.5.1 Driver Update
	2.5.2 Driver Rollback
	2.5.3 Driver Uninstall

	2.6 EtherCAN and EtherCAN/2
	2.6.1 Installation
	2.6.2 Configuration
	2.6.3 Uninstall

	2.7 Windows CAN Software Development Kit (SDK)
	2.7.1 Setup Command Line Parameter
	2.7.2 Installation Options
	2.7.3 Uninstall
	2.7.4 IDE Integration

	2.8 Digital Signatures
	2.8.1 Overview
	2.8.2 Driver Installation
	2.8.3 Software Installation
	2.8.4 Digital Signature Verification

	2.9 Legacy Windows Versions
	2.9.1 Windows 7 / 8.x / Server 2008 R2
	2.9.1.1 Hardware-First Driver Installation
	2.9.1.2 Software-First Driver Installation
	2.9.1.3 Driver Lifecycle Management

	2.9.2 Windows Vista® and Server 2008
	2.9.2.1 Hardware-First Driver Installation
	2.9.2.2 Software-First Driver Installation
	2.9.2.3 Driver Lifecycle Management

	2.9.3 Windows XP and Server 2003
	2.9.3.1 Hardware-First Driver Installation
	2.9.3.2 Software-First Driver Installation
	2.9.3.3 Driver Lifecycle Management

	2.9.4 Windows 2000
	2.9.4.1 Hardware-First Driver Installation
	2.9.4.2 Software-First Driver Installation
	2.9.4.3 Driver Lifecycle Management
	2.9.4.4 Non-PnP hardware

	2.9.5 Windows NT 4.0
	2.9.5.1 Driver Installation
	2.9.5.2 Driver Configuration
	2.9.5.3 Driver Start
	2.9.5.4 Driver Uninstall

	2.9.6 Windows 9x/ME
	2.9.6.1 Installation of PnP CAN modules
	2.9.6.2 Installation of non-PnP CAN modules

	3 Unix® Operating Systems
	3.1 Linux®
	3.1.1 CAN Board Support Overview
	3.1.2 NTCAN Driver
	3.1.2.1 Files of the Linux Package
	3.1.2.2 CAN-Module-ID and Default Parameters of the Driver
	3.1.2.3 Installation

	3.1.3 Linux CAN Driver (aka SocketCAN)
	3.1.3.1 Integration
	3.1.3.2 Installation
	3.1.3.3 Configuration
	3.1.3.4 Restrictions

	3.1.4 EtherCAN and EtherCAN/2
	3.1.4.1 Installation
	3.1.4.2 Configuration
	3.1.4.3 Miscellaneous

	3.2 Legacy UNIX Versions
	3.2.1 PowerMAX OS Installation
	3.2.1.1 Files of the PowerMAX OS Package
	3.2.1.2 Sequence of Installation Under PowerMAX OS

	3.2.2 Solaris™ Installation
	3.2.2.1 Files of the Solaris Package
	3.2.2.2 Sequence of Installation Under Solaris

	3.2.3 SGI-IRIX6.5 Installation
	3.2.3.1 Files of the SGI-IRIX6.5-Package
	3.2.3.2 Sequence of Installation Under SGI-IRIX6.5

	3.2.4 AIX Installation
	3.2.4.1 Special Features of the AIX Implementation
	3.2.4.2 Files of the AIX Package
	3.2.4.3 Installation Sequence under AIX

	4 Real-Time Operating Systems
	4.1 VxWorks®
	4.1.1 CAN Board Support Overview
	4.1.2 Driver Integration
	4.1.2.1 VxWorks 5.x
	4.1.2.2 VxWorks 6.x
	4.1.2.3 VxWorks 7.x

	4.1.3 Driver Configuration
	4.1.3.1 VxWorks 5.x
	4.1.3.2 VxWorks 6.x (Non-VxBus)
	4.1.3.3 VxWorks 6.x (VxBus)
	4.1.3.4 VxWorks 7.x (VxBus GEN2)

	4.1.4 Driver Start
	4.1.4.1 VxWorks 5.x
	4.1.4.2 VxWorks 6.x (Non-VxBus)
	4.1.4.3 VxWorks 6.x/7.x (VxBus)

	4.1.5 Miscellaneous
	4.1.5.1 Unresolved Symbols Building the VxWorks Image
	4.1.5.2 Number of Available NTCAN Handles
	4.1.5.3 Test Program 'canTest'
	4.1.5.4 Unexpected Behaviour of Software Timestamps
	4.1.5.5 Correct Interpretation of Error Codes Returned by the Driver
	4.1.5.6 Support of the CAN Extended Frame Format

	4.1.6 Troubleshooting Hints
	4.1.6.1 Where to Implement Needed Configuration Changes
	4.1.6.2 Public Interface of the Version 2.x Driver Core
	4.1.6.3 Public Interface of the VME-CAN4 Driver Core
	4.1.6.4 Address Translation and Board Access Issues
	4.1.6.5 Interrupt Connection Issues
	4.1.6.6 VxBus Driver Prerequisites

	4.2 QNX
	4.2.1 QNX 6 and QNX 7
	4.2.1.1 Driver Package Content
	4.2.1.2 Sequence of Installation Under QNX6 and QNX7

	4.2.2 QNX4
	4.2.2.1 Files of the QNX4 Packages
	4.2.2.2 Sequence of Installation Under QNX4

	4.3 IntervalZero RTX® and RTX64®
	4.3.1 Driver Integration
	4.3.1.1 RTX
	4.3.1.2 RTX64

	4.3.2 Driver Installation
	4.3.2.1 RTX
	4.3.2.2 RTX64

	4.3.3 Driver Start
	4.3.4 Driver Configuration
	4.3.4.1 Command Line Parameter
	4.3.4.2 SMP Support

	4.3.5 Miscellaneous
	4.3.5.1 Application Development
	4.3.5.2 Example Application

	4.4 TenAsys® INtime®
	4.4.1 Driver Integration
	4.4.2 Driver Installation
	4.4.2.1 INtime for Windows

	4.4.3 Driver Start
	4.4.4 Driver Configuration
	4.4.4.1 Command Line Parameter
	4.4.4.2 Priority Layout

	4.4.5 Driver Unload
	4.4.6 Miscellaneous
	4.4.6.1 Application Development
	4.4.6.2 Example Application

	4.5 Legacy Support
	4.5.1 LynxOS
	4.5.1.1 Driver Installation

	4.5.2 OnTime RTOS-32
	4.5.2.1 Overview
	4.5.2.2 Implementation
	4.5.2.3 RTOS-32 Software Requirement
	4.5.2.4 Required (RTOS-32) Libraries
	4.5.2.5 Using the esd NTCAN Library
	4.5.2.6 Compiling the Sample Application “cantest”

	5 Firmware Update Application
	5.1 Updating the Firmware
	5.2 Switch between CAN 2.0A and CAN 2.0B Mode

