
NTCAN
Part 1:

C/C++ Software Design Guide

Application Developers Manual

NTCAN-API Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 1 of 289

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd electronics makes no warranty of any kind with regard to the material in this document and
assumes no responsibility for any errors that may appear in this document. In particular
descriptions and technical data specified in this document may not be constituted to be guaranteed
product features in any legal sense.

esd electronics reserves the right to make changes without notice to this, or any of its products, to
improve reliability, performance or design.

All rights to this documentation are reserved by esd electronics. Distribution to third parties, and
reproduction of this document in any form, whole or in part, are subject to esd electronics' written
approval.

© 2024 esd electronics gmbh, Hannover

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Phone: +49-511-372 98-0

Fax: +49-511-372 98-68

E-Mail: info@esd.eu

Internet: www.esd.eu

Trademark Notices

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
CiA® and CANopen® are registered community trademarks of CAN in Automation e.V..
Linux® is the registered trademark of Linus Torvalds in the United States and/or other countries.
Microsoft®, Windows®, Windows Vista®, the Windows and .NET logo are registered trademarks of Microsoft
Corporation in the United States and/or other countries.
QNX® and Neutrino® are registered trademarks of QNX Software Systems Limited, and are registered trademarks
and/or used in certain jurisdictions.
Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and in other countries.
UNIX® is a registered trademark of The Open Group in the United States and other countries.
VxWorks® is a registered trademark of Wind River Systems, Inc.
PCI Express® is a registered trademark of PCI-SIG.

All other trademarks, product names, company names or company logos used in this manual are reserved by their
respective owners.

Page 2 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

mailto:info@esd.eu
http://www.esd.eu/

Document file: I:\Texte\Doku\MANUALS\PROGRAM\CAN\C.2001.21_NTCAN\API\CAN-API_Manual_en_5_8.odt

Manual Order no.: C.2001.21
This order no. covers the two parts:
Part 1: ‘NTCAN, Application Developers manual’ (this document) and
Part 2: ‘NTCAN, Installation Manual’.

Date of print: 2024-01-15

Products covered by this document

CAN-Driver / SDK (Driver) Revision

CAN SDK for Windows 4.x.y

Windows 95/98/ME VxD-Driver 1.x.y

Windows NT Device Driver 2.x.y

Windows 2000
Windows XP (32/64-Bit)
Windows Vista (32/64-Bit)
Windows 7 (32/64-Bit)
Windows 8 / 8.1 (32/64-Bit)
Windows 10 (32/64-Bit)
Windows 11 (64-Bit)

2.x.y
3.x.y
4.x.y

Linux Driver (32-/64-Bit) 3.x.y
4.x.y

LynxOS Driver 1.x.y

PowerMAX OS Driver 1.x.y

Solaris-Driver 3.x.y

SGI-IRIX6.5 Driver 2.x.y

AIX Driver 1.x.y

VxWorks 5.x/6.x (Non-VxBus)
VxWorks 6.x (VxBus)
VxWorks 7.x (VxBus GEN2)

2.x.y
3.x.y
4.x.y

QNX4 Driver 2.x.y

QNX6 / QNX 7 Driver 3.x.y / 4.x.y

RTOS-UH Driver 2.x.y

RTX / RTX64 Driver 3.x.y / 4.x.y

INtime Driver 4.x.y

On Time RTOS-32 3.x.y

CAN-Hardware Order No.

EtherCAN C.2050.xx

EtherCAN/2 C.2051.xx

CAN-ISA/200 C.2011.xx

CAN-ISA/331 C.2010.xx

CAN-PC104/200 C.2013.xx

CAN-PC104/331 C.2012.xx

CAN-PCI104/200 C.2046.xx

CAN-PCI/200 C.2021.xx

CAN-PCI/266 C.2036.xx

CAN-PCI/331 C.2020.xx

CAN-PCI/360 C.2022.xx

CAN-PCI/400 C.2048.xx

CAN-PCI/402 C.2049.xx

CAN-PCI/402-FD C.2049.xx

CAN-PCI/405 C.2023.xx

CAN-PCIe/200 C.2042.xx

CAN-PCIe/400 C.2043.xx

CAN-PCIe/402 C.2045.0x

CAN-PCIe/402-FD C.2045.xx

CAN-PCIeMini/402 C.2044.xx

CAN-PCIeMini/402-FD C.2044.xx

CAN-PCIeMiniHS/402-FD C.2054.xx

CAN-M.2/402-2-FD C.2074.xx

PMC-CAN/266 C.2040.xx

PMC-CAN/331 C.2025.xx

PMC-CAN/400 C.2047.xx

PMC-CAN/402-FD C.2028.xx

PMC-CPU/405 V.2025.xx

CPCI-CAN/200 C.2035.xx

CPCI-CAN/331 C.2027.xx

CPCI-CAN/360 C.2026.xx

CPCI-CAN/400 C.2033.xx

CPCI-CAN/402 I.2332.xx

CPCI-CAN/402-FD I.2332.xx

CPCI-405 I.2306.xx

CPCI-CPU/750 I.2402.xx

CPCIserial-CAN/402 I.3001.04

CPCIserial-CAN/402-FD I.3001.6x

CAN-PCC C.2422.xx

CAN-USB/Mini C.2464.xx

CAN-USB/Micro C.2068.xx

CAN-USB/2 C.2066.xx

CAN-USB/3-FD C.2076.xx

CAN-USB/400 C.2069.xx

CAN-USB/400-FD C.2069.xx

CAN-CBX-AIR/2 C.3051.xx

CAN-CBX-AIR/3 C.3052.xx

VME-CAN2 V.1405.xx

VME-CAN4 V.1408.xx

AMC-CAN4 U.1002.xx

XMC-CAN/402-FD C.2018.xx

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 3 of 289

Document History

The changes in the document listed below affect changes in the software as well as changes in the
description of the facts, only.

Rev. Chapter Changes versus previous version Date

5.8 N/A Editorial changes 2024-01-05

Revised document for INtime driver support 2024-01-05

5.7 N/A Editorial changes 2023-01-02

3.7
Revised and refined the chapter of NTCAN event handling
with focus on the new event types NTCAN_EV_GPIO_XXX.

2023-08-10

3.16
New chapter covering the Switchable Bus Termination
support.

2023-07-12

3.17 New chapter covering the GPIO support. 2023-07-12

4.2.9
Description of new command for canIoctl():
NTCAN_IOCTL_SET_TERM_CFG, NTCAN_IOCTL_GET_TERM_CFG,
NTCAN_IOCTL_SET_GPIO_CFG and NTCAN_IOCTL_GET_GPIO_CFG.

2023-07-12

6.2.2 Feature flags NTCAN_FEATURE_PROG_TERM and
NTCAN_FEATURE_GPIO 2023-01-06

6.2.11 Description of EV_GPIO_DATA. 2023-08-10

6.2.25 Description of NTCAN_GPIO_CFG. 2023-01-06

6.2.26
Structure NTCAN_INFO extended with number of GPIO ports,
GPIO configuration capabilities, GPIO core version and the
product order number as ASCII string.

2023-01-06

6.2.26 Table with transceiver types extended. 2023-03-28

5.6 N/A Editorial changes 2022-12-02

1.3 Extended the terminology chapter. 2022-12-09

3.12.1
Extended description of the Scheduling Mode to clarify
existing restrictions.

2022-10-13

3.18 OS support revised and updated. 2022-29-02

4.2.9
Description of new command for canIoctl():
NTCAN_IOCTL_SET_DAR_MODE and NTCAN_IOCTL_GET_DAR_MODE

2022-11-24

6.2.26 Structure NTCAN_INFO extended with number of LIN ports. 2022-11-30

8.1 Revised example code for receiving data in FIFO mode 2022-12-07

8.3 New example code to demonstrate the Rx object mode. 2022-12-02

5.5 N/A Editorial changes 2022-05-13

3.2
Extended with the description of the Disable Automatic
Retransmission (DAR) mode.

2022-05-13

3.11.1 Added hints how to detected updates in Rx Object Mode. 2022-05-18

4.4.4
4.4.5
4.4.6

Added failure of initial transmission in DAR mode to the list of
reasons the blocking I/O operation is completed. 2022-05-13

6.2.2 Feature flags NTCAN_FEATURE_DAR 2022-05-13

6.2.3 Description of the flag NTCAN_DAR 2022-05-13

6.2.3 Described new msg_lost functionality in Rx Object Mode 2022-05-18

Page 4 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Rev. Chapter Changes versus previous version Date

7.1 Revised error code descriptions for cancelled transmissions. 2022-05-25

10.1.2 Revised and updated. 2022-05-17

5.4 N/A Editorial changes 2021-11-19

3.3.5 Description of the Transmit Pause feature. 2021-10-13

3.9 Extended description of timestamping 2021-10-21

3.11.2 Revised description of Rx Object scheduling. 2021-10-28

3.12.1 Revised description of Tx Object scheduling. 2021-10-15

3.15 TDC/SSP configuration description enhanced and revised. 2021-11-12

3.18 Updated for Win11 support and new hardware. 2021-11-19

4.2.1
Added layout description of user defined bitrate configuration
register for CAST IP cores and M_CAN.

2021-03-04

4.2.9

Description of new command for canIoctl():
NTCAN_IOCTL_TX_OBJ_AUTOANSER_ONCE
NTCAN_IOCTL_LIN_MASTER_SEL
NTCAN_IOCTL_GET_HW_TIMESTAMP
NTCAN_IOCTL_GET_HW_TIMESTAMP_EX

2020-07-16

4.3.1
4.3.2
4.3.3

Corrected misleading general description that the Rx Object
Mode is limited to 11-bit CAN-IDs which is only true for device
driver versions before 3.x.

2021-10-28

5 Macros NTCAN_GET/SET_TDC_XXX revised and extended. 2021-11-19

6.2.2
Definition for new controller type NTCAN_CANCTL_CAST,
NTCAN_CANCTL_ESDLIN, NTCAN_CANCTL_MSAM.

2021-09-06

6.2.2 Feature flag NTCAN_FEATURE_TX_PAUSE 2021-10-13

6.2.16 Added description of flag NTCAN_BAUDRATE_FLAG_TXP 2021-10-13

6.2.16 Added description of flag NTCAN_BAUDRATE_FLAG_TDC 2021-11-17

6.2.27 Description of NTCAN_TDC_CFG. 2011-11-17

6.2.26 Extended table with transceiver types. 2021-03-04

6.2.26
Structure NTCAN_INFO extended with frequency of the driver
internal high resolution (software) timestamp.

2021-10-20

8.6 - 8.7 Example source code for timestamped Tx transmission. 2020-07-16

9 Added description to start tests in listen-only/self-test mode, 2021-10-22

5.3 N/A Editorial changes 2019-07-16

1.5
New chapter introducing LIN support for some esd electronics
boards.

2019-07-15

3.12 Tx object mode description revised and updated for CAN FD. 2019-07-11

3.15.2 Fixed description of TDC defines and macros. 2018-08-01

4.1.1 Revised description of canOpen() for LIN support. 2019-07-15

4.2.9
Description of new commands for canIoctl():
NTCAN_IOCTL_TX_OBJ_CREATE_X, NTCAN_IOCTL_TX_OBJ_UPDATE_X
NTCAN_IOCTL_TX_OBJ_DESTROY_X, NTCAN_IOCTL_TX_MSG_COUNT

2019-07-10

6.1.1 Description of NTCAN_NO_HANDLE as invalid handle value. 2018-08-24

6.2.2 Feature flag NTCAN_FEATURE_LIN 2019-07-15

6.2.9 Description of dma_stall for EV_CAN_ERROR. 2018-07-03

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 5 of 289

Rev. Chapter Changes versus previous version Date

7.1 New error codes NTCAN_NO_XXX_CAPABILITY. 2019-07-15

8.8 Example source code for Tx scheduling mode. 2019-07-24

B.1 Corrected interchanged ‘Direction’ bit in table 38 2018-07-11

5.2 N/A Editorial changes 2018-06-11

3.9 Updated and extended description of timestamps. 2018-06-03

3.18 Updated for QNX7 support and new hardware. 2018-05-08

4.1.1 Clarified meaning of NTCAN_NO_QUEUE as handle queue size. 2018-01-24

8.5 Fixed example code 2017-11-24

5.1 N/A Editorial changes 2017-06-08

4.5.6 Revised wrong description of canFormatEvent(). 2017-03-24

Annex B Annex to describe the NTCAN bus error codes. 2016-11-23

5.0 N/A Documentation completely revised for CAN FD 2016-11-10

1.4 New chapter with an introduction of CAN FD. 2016-10-21

3.3 Revised bit rate configuration description for CAN FD 2016-10-07

3.3.4 New chapter to describe the triple sampling mode 2016-10-13

3.4 Revised CAN message structure description for CAN FD 2016-10-07

3.15 New chapter to describe the CAN FD TDC 2016-10-26

4.2.3 Description of new API function canSetBaudrateX() 2016-08-24

4.2.4 Description of new API function canGetBaudrateX() 2016-08-24

4.2.9 Description of CAN FD TDC commands for canIoctl() 2016-10-26

4.3.3 Description of new API function canTakeX() 2016-05-31

4.3.6 Description of new API function canReadX() 2016-05-31

4.4.3 Description of new API function canSendX() 2016-05-31

4.4.6 Description of new API function canWriteX() 2016-05-31

4.5.4 Description of new API function canGetOverlappedResultX() 2016-06-01

5
Revised macro description for CAN FD and added description
for NTCAN_NTCAN_IS_FD, NTCAN_DATASIZE_TO_DLC,
NTCAN_LEN_TO_DATASIZE and NTCAN_IS_FD_WITHOUT_BRS

2016-06-01

5.10
5.16

Added new macros to configure or get TDC configuration.
2016-10-26

6.2.2 Feature flag NTCAN_FEATURE_TRIPLE_SAMPLING 2016-10-13

6.2.3 Description of CMSG_X revised for CAN FD. 2016-10-25

6.2.5 Description of CMSG_X. 2016-10-25

6.2.8 Extended description of struct EV_BAUD_CHANGE for CAN FD. 2016-10-06

6.2.14 Description of EVMSG_X. 2016-10-10

6.2.17 Structure of NTCAN_BITRATE revised for CAN FD. 2016-09-30

6.2.18 Structure NTCAN_BUS_STATISTIC extended for CAN FD. 2016-10-06

6.2.26 Structure NTCAN_INFO extended with number of open handles. 2016-10-27

8 Example source code to transmit/receive CAN FD messages. 2016-11-09

Page 6 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Rev. Chapter Changes versus previous version Date

9 Description of the CAN FD support in canTest. 2016-10-13

4.7 6.2.2 Documentation of hardware status NTCAN_BSTATUS_XXX 2015-10-07

N/A Revised document for LynxOS 3.x driver support 2015-06-19

N/A Fixed NTCAN_GET_BOARD_STATUS was falsely documented as
NTCAN_GET_HW_STATUS. 2015-10-07

N/A Editorial changes. 2016-04-07

4.6 2.2 Introduction of the 4.x driver 2015-01-27

4.2.1 Extended description to configure a user defined BTR 2015-01-28

6.2.21 New option 'number_of_repeat' for EEI unit 2015-02-09

Annex A Annex to describe the (ESDACC) CAN bus timing 2015-02-09

N/A Editorial changes. 2015-02-09

4.5 3.3.3 New chapter to describe the Self Test Mode 2013-10-09

3.8
Acceptance filtering completely revised with detailed
description of the Smart ID Filter.

2014-09-11

4.2.1 Description of STM bit in canSetBaudrate() 2013-10-09

4.2.6/4.2.8 Description of canIdRegionAdd()/canIdRegionDelete() 2014-09-09

4.2.9 Description of new command for canIoctl():
NTCAN_IOCTL_GET_INFO 2014-08-26

6.2.2 Description of the feature flag NTCAN_FEATURE_CAN_FD 2014-08-26

6.2.17 Partially correct description of bit rate details fixed 2013-10-09

6.2.23 Description of NTCAN_FILTER_MASK. 2014-09-05

6.2.26 Description of NTCAN_INFO. 2014-08-26

11 Pictures of VIs updated 2014-05-27

11.1.1 Chapter restructured, VI icons updated 2014-05-27

11.1.2
All VI icons and the LabView block diagram of CanObjectPoll
updated

2014-05-27

11.1.1.2.5
Block diagrams updated and description of error injection
related IO controls inserted

2014-05-27

11.1.1.5.3 New chapter 'canFormatFrame' 2014-05-27

N/A Editorial changes. 2014-09-11

4.4 6.2.2
Definition for new supported CAN controller types
NTCAN_CANCTL_SITARA / NTCAN_CANCTL_MCP2515. 2013-08-07

9 Description of new test 20 for feature Timestamped TX. 2013-02-18

N/A Editorial changes. 2013-02-18

4.3 1.6 Added feature Timestamped TX 2013-01-09

2.3.4 Added Timestamped TX to feature overview 2013-01-31

3.14 Added Timestamped TX as chapter 3.14 2013-01-31

3.18 Corrected features of C331 driver for Windows / RTX 2013-01-18

3.18 EPPC-405-HR/EPPC-405-UC Operating System Support 2013-02-05

4.1.1 Description of NTCAN_MODE_TIMESTAMPED_TX for canOpen(). 2013-01-07

4.2.5 Remarks to the canIdAdd() behaviour with USB devices. 2013-01-07

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 7 of 289

Rev. Chapter Changes versus previous version Date

4.2.9

Description of new commands for canIoctl():
NTCAN_IOCTL_SET_TX_TS_WIN,
NTCAN_IOCTL_GET_TX_TS_WIN,
NTCAN_IOCTL_SET_TX_TS_TIMEOUT,
NTCAN_IOCTL_GET_TX_TS_TIMEOUT

2013-01-09

4.4.2 Added information on mode Timestamped TX 2013-01-09

4.4.4 Fixed description of value returned in len parameter 2013-01-31

4.4.5 Changed for Timestamped TX 2013-01-31

6.2.2
Description of the new feature flags NTCAN_FEATURE_PXI
and NTCAN_FEATURE_TIMESTAMPED_TX.

2013-01-09

N/A Editorial changes. 2013-01-09

4.2 3.2 More detailed description of communication error types. 2012-12-03

9 Updated for canTest V 2.11.1 and later 2012-11-16

11 Added chapter 'Attachment' (LabVIEW documentation) 2012-12-13

N/A Editorial changes. 2012-11-13

4.1 4.2.9 Fixed example for NTCAN_IOCTL_GET_SERIAL. 2012-04-26

5 Description of the new macros NTCAN_DLC, NTCAN_IS_RTR,
NTCAN_DLC_AND_TYPE and NTCAN_IS_INTERACTION 2012-07-18

6.2.2 New controller type NTCAN_CANCTL_FLEXCAN. 2012-05-07

N/A Editorial changes. 2012-05-02

4.0 N/A
The complete document is revised, large parts of the text are
rewritten and the figures are updated.

3.4 New chapter to describe NTCAN-ID concept.

3.5 New chapter to describe the Interaction concept.

3.6 New chapter to describe the CAN bus diagnostic.

3.8 New chapter to describe the message acceptance filtering.

3.13 New chapter to describe the Error Injection concept.

4.1.1 Description of flag NTCAN_MODE_LOCAL_ECHO for canOpen().

4.2.9

Description of new commands for canIoctl():
NTCAN_IOCTL_SET_BUSLOAD_INTERVAL
NTCAN_IOCTL_GET_BUSLOAD_INTERVAL
NTCAN_IOCTL_GET_BUS_STATISTIC
NTCAN_IOCTL_GET_CTRL_STATUS
NTCAN_IOCTL_GET_BITRATE_DETAILS
NTCAN_IOCTL_GET_NATIVE_HANDLE
NTCAN_IOCTL_SET_HND_FILTER

4
Removed description of deprecated canReadEvent() and
canSendEvent().

4.4.2 Description of new API function canSendT()

4.4.5 Description of new API function canWriteT()

4.5.3 Description of new API function canGetOverlappedResultT()

4.5.5 Description of new API function canFormatError().

4.5.6 Description of new API function canFormatEvent().

5 New chapter for NTCAN-API macros.

Page 8 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Rev. Chapter Changes versus previous version Date

6.2.2

Description of the feature flags:
NTCAN_FEATURE_LOCAL_ECHO
NTCAN_FEATURE_SCHEDULING
NTCAN_FEATURE_DIAGNOSTIC
NTCAN_FEATURE_SMART_ID_FILTER

6.2.2
Revised description of member boardstatus in
CAN_IF_STATUS..

6.2.7 Description of CSCHED and scheduling mode flags.

6.2.8-6.2.10
Description of the NTCAN events EV_BAUD_CHANGE,
EV_CAN_ERROR and EV_CAN_ERROR_EXT.

6.2.13 Description of EVMSG_T.

6.2.17 Description of NTCAN_BITRATE.

6.2.18 Description of NTCAN_BUS_STATISTIC.

6.2.19 Description of NTCAN_CTRL_STATE.

6.2.20 -
6.2.21

Description of NTCAN_EEI_STATUS and NTCAN_EEI_UNIT.

6.2.22 Description of NTCAN_FORMATEVENT_PARAMS.

6.2.24 Description of NTCAN_FRAME_COUNT.

7.1
New error codes NTCAN_CONTR_ERR_PASSIVE,
NTCAN_ERROR_LOM and NTCAN_ERROR_NO_BAUDRATE.

9 Description of canTest console application completely revised.

10
New chapter to describe the development process for NTCAN
based applications and the Windows CAN SDK

Technical details are subject to change without further notice.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 9 of 289

Table of contents

1. Introduction...21
1.1 Scope..21
1.2 Overview..21
1.3 Terminology..22
1.4 CAN FD..25

 1.4.1 In a nutshell...25
 1.4.2 Integration and Migration...26

1.5 LIN...28
1.6 Features...29

2. NTCAN-API and Device Driver..30
2.1 Abstraction Layer..30
2.2 Driver History...32
2.3 Implementation Details Overview...34

 2.3.1 Operating System Integration...34
 2.3.2 Interaction..36
 2.3.3 CAN Bit Rate Configuration..37
 2.3.4 Extended Features...38

3. CAN Communication with NTCAN-API..40
3.1 Overview..40
3.2 CAN Errors and Fault Confinement..42
3.3 Bit Rate Configuration..45

 3.3.1 Overview..45
 3.3.2 Listen-Only Mode...46
 3.3.3 Self Test Mode..47
 3.3.4 Triple Sampling Mode..47
 3.3.5 Transmit Pause...47
 3.3.6 Disable Automatic Retransmission (DAR) Mode...48
 3.3.7 Automatic Bit Rate Detection..48
 3.3.8 Smart Disconnect...49

3.4 NTCAN-ID and Structures of Data Exchange...50
3.5 Interaction..51
3.6 Bus Diagnostic...54

 3.6.1 Basic Support..54
 3.6.2 Extended Support...54

3.7 NTCAN Events..55
 3.7.1 Event types..55
 3.7.2 Reception..57
 3.7.3 Trigger..57

3.8 Acceptance Filtering...58
 3.8.1 Message Type Filter...58
 3.8.2 Basic ID Filter..59

3.8.2.1 First Filter Stage...59
3.8.2.2 Second Filter Stage...59
3.8.2.3 Flow Chart..61

 3.8.3 Smart ID Filter...62
3.8.3.1 First Filter Stage...62
3.8.3.2 Second Filter Stage...62
3.8.3.3 Flow Chart..64

Page 10 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

3.9 Timestamps..65
 3.9.1 Implementation...65
 3.9.2 Usage...66

3.10 FIFO Mode...67
 3.10.1 Overview..67
 3.10.2 Reception and Transmission of CAN-Frames..68

3.11 Rx Object Mode...69
 3.11.1 Overview..69
 3.11.2 Reception of CAN Frames...70

3.12 Tx Object Mode...71
 3.12.1 Scheduling Mode..71
 3.12.2 Autoanswer Mode..73

3.12.2.1 Use case...73
3.12.2.2 Configuration..73

3.13 Error Injection..74
 3.13.1 Overview..74
 3.13.2 Usage...76

3.14 Timestamped TX...77
 3.14.1 Overview..77
 3.14.2 General rules and behaviour...78
 3.14.3 Timestamped TX via canSendT() and canWriteT()...79
 3.14.4 High priority TX FIFO...79
 3.14.5 TX Object mode scheduling..79
 3.14.6 Frame timeout...79

3.15 Transmitter Delay Compensation (TDC)..80
 3.15.1 Overview..80
 3.15.2 SSP Configuration..82

3.15.2.1 TDC Automatic Mode..83
3.15.2.2 TDC Manual Mode..84
3.15.2.3 TDC Mode Parameters...85

3.16 Switchable Bus Termination...87
 3.16.1 Overview..87
 3.16.2 Usage...87

3.17 GPIO Support..88
 3.17.1 Overview..88
 3.17.2 Polling mode...89
 3.17.3 Event based mode...90

3.18 Operating System Support..91

4. API Reference..97
4.1 Initialization and Cleanup...98

 4.1.1 canOpen..98
 4.1.2 canClose..102

4.2 Configuration...103
 4.2.1 canSetBaudrate..103
 4.2.2 canGetBaudrate..108
 4.2.3 canSetBaudrateX...109
 4.2.4 canGetBaudrateX...111
 4.2.5 canIdAdd..112
 4.2.6 canIdRegionAdd...114
 4.2.7 canIdDelete...115
 4.2.8 canIdRegionDelete...116
 4.2.9 canIoctl...117

4.3 Receiving CAN messages...128

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 11 of 289

 4.3.1 canTake..128
 4.3.2 canTakeT...130
 4.3.3 canTakeX...132
 4.3.4 canRead..134
 4.3.5 canReadT..137
 4.3.6 canReadX..139

4.4 Transmitting CAN messages...141
 4.4.1 canSend...141
 4.4.2 canSendT..143
 4.4.3 canSendX..145
 4.4.4 canWrite...147
 4.4.5 canWriteT..149
 4.4.6 canWriteX..152

4.5 Miscellaneous functions...155
 4.5.1 canStatus...155
 4.5.2 canGetOverlappedResult..156
 4.5.3 canGetOverlappedResultT..158
 4.5.4 canGetOverlappedResultX...160
 4.5.5 canFormatError...162
 4.5.6 canFormatEvent...164
 4.5.7 canFormatFrame..166

5. Macros...168
5.1 NTCAN_DATASIZE_TO_DLC...168
5.2 NTCAN_DLC...168
5.3 NTCAN_DLC_AND_TYPE..169
5.4 NTCAN_GET_BOARD_STATUS..169
5.5 NTCAN_GET_CTRL_TYPE..169
5.6 NTCAN_GET_TDC_FILTER...170
5.7 NTCAN_GET_TDC_MODE...170
5.8 NTCAN_GET_TDC_SSPO..171
5.9 NTCAN_GET_TDC_SSPS..171
5.10 NTCAN_GET_TDC_TD...172
5.11 NTCAN_IS_FD..172
5.12 NTCAN_IS_FD_WITHOUT_BRS...173
5.13 NTCAN_IS_RTR...173
5.14 NTCAN_IS_INTERACTION...173
5.15 NTCAN_LEN_TO_DATASIZE...174
5.16 NTCAN_SET_TDC...174

6. Data Types..175
6.1 Simple Data Types..176

 6.1.1 NTCAN_HANDLE..176
 6.1.2 NTCAN_RESULT...176

6.2 Compound Data Types...177
 6.2.1 CAN_FRAME_STREAM...177
 6.2.2 CAN_IF_STATUS...178
 6.2.3 CMSG..182
 6.2.4 CMSG_T..187
 6.2.5 CMSG_X..188
 6.2.6 CMSG_FRAME..189
 6.2.7 CSCHED..190
 6.2.8 EV_BAUD_CHANGE...192

Page 12 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

 6.2.9 EV_CAN_ERROR..193
 6.2.10 EV_CAN_ERROR_EXT..194
 6.2.11 EV_GPIO_DATA...195
 6.2.12 EVMSG..196
 6.2.13 EVMSG_T...198
 6.2.14 EVMSG_X...199
 6.2.15 NTCAN_BAUDRATE_CFG...200
 6.2.16 NTCAN_BAUDRATE_X..202
 6.2.17 NTCAN_BITRATE..204
 6.2.18 NTCAN_BUS_STATISTIC...206
 6.2.19 NTCAN_CTRL_STATE..208
 6.2.20 NTCAN_EEI_STATUS...209
 6.2.21 NTCAN_EEI_UNIT...210
 6.2.22 NTCAN_FORMATEVENT_PARAMS..212
 6.2.23 NTCAN_FILTER_MASK..213
 6.2.24 NTCAN_FRAME_COUNT..214
 6.2.25 NTCAN_GPIO_CFG..215
 6.2.26 NTCAN_INFO...217
 6.2.27 NTCAN_TDC_CFG..221

7. Return Codes...222
7.1 General Return Codes...222
7.2 Specific Return Values of the EtherCAN Driver..233

8. Example C Source...234
8.1 Receiving messages (CAN CC /FIFO Mode)..234
8.2 Receiving messages (CAN CC and CAN FD / FIFO Mode).......................................236
8.3 Receiving Messages (CAN CC / Object Mode)..238
8.4 Transmitting messages (CAN CC)..240
8.5 Transmitting messages (CAN FD)..242
8.6 Timestamped TX messages (CAN CC)...244
8.7 Timestamped TX messages (CAN FD)..246
8.8 Scheduling messages (CAN CC)..248

9. CLI Application canTest..250

10. Application Development..257
10.1 CAN SDK for Windows...257

 10.1.1 GUI Tools...257
 10.1.2 Programming Language Support & Language Bindings...................................259

11. Attachment..260
11.1 esd electronics NTCAN Programming with LabVIEW..260

 11.1.1 Wrapper VIs for direct use of the esd electronics NTCAN API.........................261
11.1.1.1 Initialization and Cleanup..261
11.1.1.2 Configuration..261
11.1.1.3 Receiving CAN messages..270
11.1.1.4 Transmitting CAN messages..271
11.1.1.5 Miscellaneous functions..273

 11.1.2 LabVIEW signal based access to CAN..275

Annex A: Bus Timing...282

Annex B: Bus Error Code...285

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 13 of 289

Index of Tables
Table 1: Supported Bus Systems...30
Table 2: Supported Operating Systems..31
Table 3: Classes of Device Driver Implementations...35
Table 4: CAN Communication Error Types...42
Table 5: CAN Controller Error States...44
Table 6: NTCAN events..55
Table 7: Acceptance filter examples for 29-bit CAN-IDs..60
Table 8: Structure of the NTCAN_IOCTL_GET_FD_TDC argument...85
Table 9: Driver Features...92
Table 10: CAN driver capabilities (Windows operating systems)...93
Table 11: CAN driver capabilities (UNIX operating systems)...94
Table 12: CAN driver capabilities (Real-time operating systems)..95
Table 13: CAN driver capabilities (esd electronics embedded CPU boards)...................................96
Table 14: Parameter Usage Types...97
Table 15: Mode flags of canOpen()..99
Table 16: esd electronics Nominal Bit Rate Table..104
Table 17: CAN Controller Specific Bus Timing Register...106
Table 18: Data type size in bits for different data models...175
Table 19: Simple C99 data types used by NTCAN-API...175
Table 20: CAN Hardware Status..178
Table 21: CAN Controller Types...179
Table 22: NTCAN Feature Flags..181
Table 23: Mapping between DLC and payload size for CAN CC...183
Table 24: Mapping between DLC and payload size for CAN FD...183
Table 25: Meta Information of the CMSG len...184
Table 26: Flags to configure the scheduling in TX Object Mode..190
Table 27: CAN controller state..193
Table 28: esd electronics Data Phase Bit Rate Table...200
Table 29: CAN Transceiver Types..218
Table 30: GPIO Port Configuration Options...219
Table 31: CAN board information listed with canTest...250
Table 32: Command line parameter of canTest..253
Table 33: Test Cases of 'canTest'...256
Table 34: Supported C/C++ IDEs for Windows..259
Table 35: Supported Language Bindings for Windows..259
Table 36: CAN Bit Time Parameters...282
Table 37: ESDACC Bus Timing Register..283
Table 38: Bus Error Code...285
Table 39: Error detection and indication during reception..286
Table 40: Error detection and indication during transmission...288

Page 14 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

List of Figures
Figure 1: CAN FD Operating Principle...25
Figure 2: CAN FD vs. CAN CC Performance Improvement...25
Figure 3: Time line of the NTCAN Development..32
Figure 4: Integration into the Operating System...34
Figure 5: CAN Message Interaction...36
Figure 6: CAN Controller States...43
Figure 7: NTCAN-ID layout..50
Figure 8: Interaction with IPC...51
Figure 9: Interaction without IPC..52
Figure 10: Mask based acceptance filtering of CAN-IDs...59
Figure 11: Acceptance Filtering with the Basic ID Filter...61
Figure 12: Acceptance Filtering with the Smart ID Filter..64
Figure 13: Overview of esdACC Error Injection...74
Figure 14: Error Injection Unit..75
Figure 15: Timestamped TX with canSendT() and canWriteT() on CAN/40x family........................77
Figure 16: Transmitter Delay Compensation (TDC) and Second Sample Point (SSP)....................80
Figure 17: SSP configuration in NTCAN TDC Automatic Mode...83
Figure 18: SSP configuration in NTCAN TDC Manual Mode...84
Figure 19: CANreal Bus Monitor..257
Figure 20: CAN Nominal Bit Time..282

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 15 of 289

Typographical Conventions

Throughout this manual the following typographical conventions are used to distinguish technical
terms.

Convention Example

File and path names /dev/null or <stdio.h>

Function names open()

Programming constants NULL

Programming data types uint32_t

Variable names Count

The following indicators are used to highlight noticeable descriptions.

Notes to point out something important or useful.

Caution: Cautions to tell you about operations which might have
unwanted side effects.

Number Representation

All numbers in this document are base 10 unless designated otherwise. Hexadecimal numbers
have a prefix of 0x, and binary numbers have a prefix of 0b. For example, 42 is represented as
0x2A in hexadecimal and 0b101010 in binary.

Page 16 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Abbreviations

ABI Application Binary Interface
ACK Acknowledgement
ACR Acceptance Code Register
AMC Advanced Mezzanine Cards
AMR Acceptance Mask Register
API Application Programming Interface
BIF Basic ID Filter
BRP Baud Rate Prescaler
BRS Bit Rate Switch
BTR Bus Timing Register
CAN Controller Area Network
CBFF Classical Base Frame Format
CEFF Classical Extended Frame Format
CPU Central Processing Unit
CiA CAN in Automation
CLI Command Line Interface
CPCI Compact Peripheral Component Interconnect (Computer Bus)
CRC Cyclic Redundancy Check
DAR Disable Automatic Retransmission
DLC Data Length Code
DLL Dynamic Link Library
DMA Direct Memory Access
EFF Extended Frame Format
esdACC esd electronics Advanced CAN Controller
ESI Error State Indication
FBFF FD Base Frame Format
FD Flexible Data.
FEFF FD Extended Frame Format
FIFO First-In-First-Out
GPIO General Purpose Input/Output
GUI Graphical User Interface
HW Hardware
I/O Input/Output
ISA Industry Standard Architecture (Computer Bus)
IPC Interprocess Communication
IRIG Inter-range Instrumentation Group
LabVIEW® Laboratory Virtual Instrumentation Engineering Workbench (Application)
LIN Local Interconnect Network
LOM Listen Only Mode
LSB Least Significant Bit
LSW Least Significant Word
MCU Micro Controller Unit
MSB Most Significant Bit
MSW Most Significant Word
mtq Minimum Time Quantum = CAN clock period
tq Time Quantum
N/A Not Applicable
OS Operating System
PCI Peripheral Component Interconnect (Computer Bus)
PCIe Peripheral Component Interconnect Express (Computer Bus)
PMC PCI Mezzanine Card
PXI PCI Extension for Instrumentation (Computer Bus)
REC Receive Error Counter
SDK Software Development Kit
SIF Smart ID Filter
SoC System on Chip

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 17 of 289

SFF Standard (Base) Frame Format
SJW Synchronous Jump Width
SP Sample Point
SSP Second Sample Point
SSPO Second Sample Point Offset
SSPS Second Sample Point Shift
STM Self Test Mode
TD Transmitter Delay
TDC Transmitter Delay Compensation
TEC Transmit Error Counter
TSEG1 Time Segment before sample point
TSEG2 Time Segment after sample point
USB Universal Serial Bus
VME Versa Module Eurocard (Computer Bus)
XMC Express Mezzanine Card

Page 18 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Reference

/1/ esd electronics gmbh, NTCAN-API Installation Guide, Revision 4.8, 2024

/2/ ISO 11898-1, Road vehicles – Controller area network (CAN) – Data link layer and physical
signalling, 2015

/3/ CAN in Automation, CiA 301, CANopen application layer and communication profile,
Revision 4.2, February 2011

/4/ CAN in Automation, AN 801, Automatic bit-rate detection, Revision 1.1, November 2009

/5/ Philips Semiconductors, Data sheet SJA1000 Stand-alone CAN controller, January 2000

/6/ esd electronic system design, CAN Error Injection, a simple but versatile approach, Paper
from international CAN Conference (iCC) 2012

/7/ Bit Time Requirements for CAN FD, Florian Hartwich, Robert Bosch GmbH, 14th
International CAN Conference, iCC 2013 Paris

/8/ CAN in Automation, CiA 601-1, CAN FD Node and System Design: Physical Interface
Implementation, V1.0.1, June 2016

/9/ esd electronics gmbh, NTLIN-API Application Developers Manual, Revision 1.0, 2019

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 19 of 289

This page intentionally left blank

Page 20 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Introduction

1. Introduction
This document describes the software design and the application layer of the cross platform
communication interface for Classical Controller Area Network (CAN CC) and Controller Area
Network with Flexible Data Rate (CAN FD) esd electronics hardware. The well structured
Application Programming Interface (API) allows an easy integration into any application. The
functional range and versatility of the implementation provide all necessary mechanisms to control,
configure and monitor CAN CC / CAN FD networks. Many sophisticated features make the API
ideally suited to implement higher layer CAN CC / CAN FD based protocols on top of it.
Implementations for most of the prevalent protocols are already available by esd electronics.
Within this document the API is referred as NTCAN-API and the common implementation as a
combination of a device driver and a library as NTCAN. The name has its origin in the initial
implementation for Windows NT but it is now the common API for all Operating Systems (OS).

1.1 Scope
This document covers the description of the NTCAN architecture which usually consists of an OS
and CAN CC / CAN FD hardware specific device driver and a (shared) library which exports the
application interface to integrate CAN CC / CAN FD I/O into an application.

The software installation is described in the second part of the CAN-API
documentation called ‘CAN-API, Part 2: Installation Guide’.

The data link layer for CAN CC / CAN FD is internationally standardized in /2/.

1.2 Overview

Chapter 1 contains a general overview on the structure of this manual.
Chapter 2 provides general overview about the features of the NTCAN implementation.
Chapter 3 describes the NTCAN concepts and how the API can be integrated into an application
to realize a CAN bus based communication.
Chapter 4 describes the Application Programming Interface (API) with all functions followed by
Chapter 5 with a description of macros and Chapter 6 which contains the reference to the simple
and complex data types used with NTCAN-API.
Chapter 7 is a description of the error codes which are returned by the NTCAN-API functions
described in the previous chapters in case of a failure.
Chapter 8 contains two complete, small example applications which demonstrate the transmission
and reception of CAN messages.
Chapter 9 describes the example application canTest, which is delivered as binary and as source
code. This console test program can be used to verify the installation and to test the CAN
communication.
Chapter 10 introduces the NTCAN based application development especially with the CAN SDK
for Windows.
Chapter 11 is an attachment of this document which covers the NTCAN support with other
programming languages than C/C++.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 21 of 289

Introduction

1.3 Terminology

Within this manual you will encounter the following terms:

Term Description

Arbitration Phase Phase in which the nominal bit time is used.

Base Frame Format CAN messages with 11-bit CAN-IDs according to /2/

Base Net The Base Net of a CAN Board is the logical net number
which is assigned to the first physical CAN port.

CAN Controller Area Network
A serial bus system (also known as CAN bus) that was
originally designed for use in vehicles but is now also used
in automation technology. With the standardization of CAN
FD the original CAN is also referred to as “Classical CAN
or short CAN CC” by the CiA to distinguish it from the
enhanced standard.

CAN Board A CAN board is a hardware which makes one or more
physical CAN ports available for use by an application.
This is either an esd electronics CAN Interface or an
embedded system with an on-board CAN Controller.

CAN CC Short form of Classical CAN.

CAN Controller A chip whose hardware processes the CAN bus protocols.
This can be a stand alone chip which is solely dedicated to
this function or a System on Chip (SoC) which integrates
one or more CAN controllers as external interface.

CAN Device The (logical) application view to a physical CAN port.

CAN FD CAN FD (CAN with Flexible Data Rate) is an enhancement
of the CAN CC protocol. The main differences to standard
CAN are the extended payload from 8 up to 64 bytes and
the ability to send this payload with a higher data rate. A
CAN FD controller always supports the CAN CC protocol
as well

CAN Handle Logical link between the application and a physical CAN
port. An application can open several CAN handles to the
same or to different CAN ports.

CAN-ID Identifier of a CAN message either in the Standard Frame
Format (11-bit) or the Extended Frame Format (29-bit)

CAN Interface A CAN interface is a dedicated esd electronics hardware
which is either connected to a local bus (PCI, USB,
PC/104, etc.) of a CPU or remotely (Ethernet, Wireless,
etc.) to a host system.

CAN Node All hardware connected to the CAN bus. This can be any
hardware with a CAN port ranging from a simple sensor up
to a complex control system.

CAN Message Logical unit which consists of a CAN-ID and a payload
either as data frame or as remote request frame.

CAN Port The physical connector to a CAN bus which is handled by
a CAN controller.

Page 22 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Introduction

Term Description

Classical Base Frame Format
(CBFF)

Format for Data Frames or Remote Frames using an 11-bit
identifier, which are transmitted with one single bit rate and
up to and including 8 data bytes.

Classical Extended Frame Format
(CEFF)

Format for Data Frames or Remote Frames using a 29-bit
identifier, which are transmitted with one single bit rate and
up to and including 8 data bytes.

Classical CAN The term Classical CAN (or CAN CC) is used if it is
necessary to emphasize differences to the CAN FD
protocol.

Data Bit Rate Number of bits per time during data phase.

Data Bit Time Duration of one bit in the data phase.

Data Frame Frame which contains up to 8 bytes of data either in the
Standard Frame Format or the Extended Frame Format.

Data Phase Phase in which the data bit time is used.

Event-ID Identifier of an NTCAN Event.

Extended Frame Format CAN messages with 29-bit CAN-IDs according to /2/

FD Base Frame Format
(FBFF)

Format for Data Frames using an 11-bit identifier, which
are transmitted with a flexible bit rate and up to and
including 64 data bytes according to /2/.

FD Extended Frame Format
(FEFF)

Format for Data Frames using a 29-bit identifier, which are
transmitted with a flexible bit rate and up to and including
64 data bytes according to /2/.

Interaction Frame No official technical term. Describes in this document a
frame which is transmitted and received on the same CAN
port.

IRIG B Time code format used to provide time-of-day information
to communication systems which have to correlate data
(reception) with time.

LabVIEW® System design platform and development environment for
a visual programming language from National Instruments.

LIN LIN (Local Interconnect Network)
A serial bus system (also known as LIN bus) designed for
use in vehicles as a less performant (and less expensive)
supplement to the CAN bus with a completely different
physical layer but distantly related to the message format
of CAN CC Base Format Messages.

Linux CAN Linux CAN is the standard support of CAN in the Linux
kernel. The CAN device driver are implemented as network
device driver.

Nominal Bit Rate Number of bits per time during arbitration phase.

Nominal Bit Time Duration of one bit in the arbitration phase.

NTCAN Event Logical unit which consists of an Event-ID and a payload to
describe the reason of the event (errors, warnings, state
changes, ...).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 23 of 289

Introduction

Term Description

NTCAN-ID Identifier (32-Bit) of a received message which allows to
distinguish between an NTCAN Event and a CAN
Message.

PXI PXI is an open bus standard for test, measurement, and
control based on the CPCI.

RTR Frame A frame transmitted to request the transmission of data
frame.

SocketCAN See Linux CAN.

Standard Frame Format Same as Base Frame Format.

Page 24 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Introduction

1.4 CAN FD

1.4.1 In a nutshell

In 2011, after more than 20 years of the introduction of the CAN CC standard, Bosch started in
cooperation with CAN experts from the automotive and the automation industry the development of
an enhanced protocol version to meet especially the demands of increased bandwidth. In relation
to main operating principle this improved version was standardized /2/ as CAN FD (flexible data
rate) in 2015.

The picture below shows the main idea. During the arbitration phase CAN FD uses the same
mechanism and nominal bit (limited to 1 Mbit/s) rate as CAN CC. In the consecutive data phase
the bit rate can be increased as only one node is transmitting data and synchronization between
the nodes is not required. In the acknowledge phase the nodes are again re-synchronized at the
nominal bit rate. In addition to the higher bit rate during the data phase the maximum payload size
was increased from 8 to 64 byte.

The combination of these two enhancements result either in a higher throughput or a reduced
latency. The picture below shows these two effects for the comparison between CAN CC and CAN
FD with an assumed ration of 1:8 between CAN FD nominal bit rate and data bit rate.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 25 of 289

Figure 1: CAN FD Operating Principle

Figure 2: CAN FD vs. CAN CC Performance Improvement

Introduction

In addition to these most prominent changes several other aspects of the protocol have been
changed or enhanced

➢ CAN FD implements enhanced CRCs to improve the already very good error detection
capability of CAN CC.

➢ To overcome the conflicts between physical limitations of the basic CAN communication
principals and a much higher bit rate in the data phase a Transmitter Delay Compensation
(TDC) mechanism and a Second Sample Point (SSP) for the transmitting node was
introduced (refer to chapter 3.15 for more details).

➢ Remote Request Transmission (RTR) frames are undefined for the CAN FD frame format.

➢ Every transmitting node indicates its error state (active/passive) with each transmitted
frame via an Error State Indication (ESI) bit.

Attention: CAN CC controller do not tolerate CAN FD frames !

Every CAN FD controller is backward compatible to the CAN CC protocol. CAN
CC nodes and CAN FD nodes can communicate with each other as long as the
CAN FD frame format remains unused.

1.4.2 Integration and Migration

This chapter is intended for application engineers which already use the NTCAN API for CAN CC
to get a quick overview on the way CAN FD is integrated into the API and what has to be done to
migrate an existing application from CAN CC to CAN FD.

The main objective integrating CAN FD support into the NTCAN library and the
underlying device driver was backward compatibility so any application written
for a CAN CC only version of the API will work without any changes on CAN FD
capable as well as CAN CC esd electronics hardware.

The following changes and enhancement integrate CAN FD support into the NTCAN API:

➢ The increased data size of up to 64 bytes requires the new CAN message types CMSG_X
and EVMSG_X which are always timestamped. Previously reserved bits in the meta data part
of the CAN message len parameter are used to mark it as CAN FD type transmitted or
received with or without bit rate switch during the data phase. The CAN FD Error State
Indication flag (ESI) is reflected for received messages.

➢ Several macros are provided to write an application in a frame type aware way especially
conversion routines between the data size and the frame´s Data Length Code (DLC).

➢ The new message types require the introduction of the CAN I/O functions canTakeX(),
canReadX(), canSendX() and canWriteX() which complement the functionality of the
existing I/O functions for the CMSG and the CMSG_T format. These functions can be used to
send CAN FD messages as well as CAN CC messages which can be defined on a per
message base.

➢ To prevent a legacy application from transmitting/receiving CAN FD messages inadvertently
because the previously reserved bit in the parameter len of a CAN message was not reset
as expected a CAN handle for CAN FD I/O has to be opened with the new mode flag
NTCAN_MODE_FD set for canOpen().

Page 26 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Introduction

➢ To configure the nominal bit rate and the data bit rate as an atomic operation the new
function canSetBaudrateX() is introduced which can be used as well to configure just the
CAN CC operation mode. Call canGetBaudrateX() to request the current bit rate
configuration of a device. A call to the legacy canGetBaudrate(), if the device is configured
in the CAN FD mode, will return the value NTCAN_BAUD_FD.

➢ Changing the bit rate to a CAN FD operation mode will cause two consecutive
EV_BAUD_CHANGE events for the nominal and the data bit rate.

➢ Reserved fields of the structure NTCAN_BITRATE are used to indicate the bit rate details of a
configured data bit rate.

➢ Reserved fields of the NTCAN_BUS_STATISTIC are used to count the transmitted /received
CAN FD messages for statistical purposes.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 27 of 289

Introduction

1.5 LIN

The Local Interconnect Network (LIN) bus is a serial bus system designed for use in vehicles as a
less performant (and less expensive) supplement to the CAN bus with a completely different
physical layer.

Dedicated esd electronics boards can be extended with an add-on hardware to provide LIN ports in
addition to their CAN ports. The information content of a LIN frame is similar to that of a CAN CC
Base Format message. For this reason the device driver for the respective esd electronics boards
also handle the LIN communication instead of using a dedicated device driver for this. The NTLIN-
API [9] is implemented on top of the NTCAN library instead of accessing the device driver directly.

References to the LIN support in this document are only made to describe references inside the
NTCAN-API header <ntcan.h> to LIN.

Page 28 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Introduction

1.6 Features
The esd electronics NTCAN-API is a compact and easy to handle programming interface for
integrating the control of CAN CC / CAN FD based networks in (real-time) applications. The
implementation provides the following features* which are described in more detail in chapter 2.3.

➢ Device driver support of OS specific features

➢ Support for Plug & Play and hot-pluggable CAN devices

➢ Multitasking/multi-threading support

➢ Support for Classic CAN (CAN CC) as well as CAN with Flexible Data Rate (CAN FD)

➢ Event driven and/or polled CAN CC / CAN FD I/O

➢ CAN CC / CAN FD message interaction

➢ Multiprocessor and multi-core support

➢ Background bus-off recovery

➢ Firmware update for CAN CC / CAN FD modules with local operating system

➢ Hardware independent CAN CC / CAN FD node number mapping

➢ Common OS independent API on all platforms

➢ Sophisticated acceptance filtering for messages in base and extended frame format

➢ Blocking and non-blocking CAN CC / CAN FD I/O

➢ Event based status and error indication

➢ High resolution timestamps for received/transmitted frames and events

➢ Flexible bit rate configuration

➢ Intelligent CAN FD TDC Auto Configuration Mode.

➢ Listen only mode for non destructive CAN CC / CAN FD bus monitoring

➢ CAN CC bus bitrate detection

➢ Scheduling (single shot or cyclically) of Tx messages

➢ Support for extended device driver based CAN CC auto answering mechanisms

➢ Extended error information about CAN bus state

➢ CAN CC / CAN FD Error Injection for dedicated CAN hardware

➢ Time-triggered transmission (Timestamped TX)

➢ Support to disable the automatic retransmission (aka single-shot mode)

➢ LIN support on appropriate hardware

➢ GPIO support on appropriate hardware

➢ Programmatically switchable CAN bus termination on appropriate hardware

* Some of the features require special (CAN) hardware or operating system (OS) support. Please refer to
chapter 3.18 for details which features are supported by your hardware/OS combination.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 29 of 289

NTCAN-API and Device Driver

2. NTCAN-API and Device Driver
This chapter contains an overview about the features of the esd electronics CAN device drivers
and the NTCAN Application Programming Interface (API).

2.1 Abstraction Layer

The NTCAN-API is CAN hardware and OS independent providing the same functionality for the
following list of esd electronics CAN boards and many esd electronics embedded CPU boards
not listed below.

Bus CAN board

ISA CAN-ISA/200, CAN-ISA/331

PC/104 CAN-PC104/200, CAN-PC104/331

PCI/104 CAN-PCI104/200

PCI CAN-PCI/200, CAN-PCI/266, CAN-PCI/331, CAN-PCI/360*, CAN-PCI/400,
CAN-PCI/405, CAN-PCI/402, CAN-PCI/402-FD

PCIe CAN-PCIe/200, CAN-PCIe/400, CAN-PCIe/402, CAN-PCIe/402-FD

PCIe Mini CAN-PCIeMini/402, CAN-PCIeMini/402-FD, CAN-M.2/402-2-FD

CPCI CPCI-CAN/200, CPCI-CAN/331, CPCI-CAN/360*, CPCI-CAN/400,
CPCI-CAN/402, CPCI-CAN/402-FD

CPCIserial CPCIserial-CAN/402, CPCIserial-CAN/402-FD

PMC PMC-CAN/266, PMC-CAN/331, PMC-CAN/400, PMC-CAN/402-FD

XMC XMC-CAN/402-FD

AMC AMC-CAN4

VME VME-CAN2*, VME-CAN4*

Parallel Port CAN-PCC**

USB CAN-USB/Mini*, CAN-USB/Micro, CAN-USB/2, CAN-USB/400,
CAN-USB/400-FD, CAN-USB/3-FD

Ethernet EtherCAN**, EtherCAN/2

Wireless CAN-AIR/2

Table 1: Supported Bus Systems

CAN / CAN FD boards marked with one asterisk (*) in the table above are not recommended for
new designs and CAN boards marked with two asterisks (**) are out of production.

Page 30 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

NTCAN-API and Device Driver

The NTCAN-API is implemented for the following desktop, embedded, real-time and UNIX
operating systems as communication layer between application and device driver.

Windows* UNIX Real-Time OS

Windows 10 (32-/64 Bit)
Windows 11 (64 Bit)

Legacy Support:

Windows 9x/ME
Windows NT
Windows 2000
Windows XP (32-/64-Bit)
Windows Vista (32-/64-Bit)
Windows 7 (32-/64 Bit)
Windows 8+ (32-/64 Bit)

Linux (32-/64-Bit)

Legacy Support:

PowerMAX OS
SGI-IRIX 6.5
Solaris

INtime 6.4 / 7.x
LynxOS
QNX 6.x/7.x (32-/64-Bit)
RTOS-UH
RTX64
VxWorks 5.x/6.x/7.x

Legacy Support:

Windows CE
On-Time RTOS-32
QNX 4.x
RTX

Table 2: Supported Operating Systems

Attention:

esd electronics gmbh does no longer provide support and maintenance for
operating systems which are considered as Legacy according to the table
above.

For several other operating systems (such as Net+OS, ThreadX,..) NTCAN implementations are
available: Please contact our support team: support@esd.eu for more information or if you want
NTCAN support for a certain OS which is not listed in the table above.

A DOS driver (as source) is also available for many esd electronics CAN
modules, but this driver has an individual API which is not covered in this
document. You will find the description of the DOS driver in the Document ‘C
Interface Library for DOS and Win 3.11’.

Using the NTCAN-API gives the application developer the possibility to change the esd
electronics CAN CC /CAN FD hardware as well as the operating system without the need to
change the CAN I/O related parts of the application.

The basic functions are available for any combination. Depending on hardware
design, operating system capability and/or software development state. Some
extended features described in this manual may not be supported (yet). Please
refer to chapter 3.18 for details.

* The list just contains the desktop versions of Windows but the related server versions are also covered.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 31 of 289

mailto:support@esd.eu

NTCAN-API and Device Driver

2.2 Driver History
The development of the NTCAN driver/library architecture started in 1996 with the goal to have a
powerful and versatile platform for CAN higher layer protocols and applications which is common
on all supported operating systems independent of the CAN controller and bus interface. Since the
initial release many features have been added and the internal driver implementation has
undergone major changes without breaking the (backward) compatibility of the API. The picture
below gives an overview on the changes and the switch from one driver architecture to another as
a time line:

Page 32 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 3: Time line of the NTCAN Development

NTCAN-API and Device Driver

Revision 1.x:

Initial release internally based on ring buffers as receive and transmit queues for CAN messages.
Multiple applications can use the same physical CAN port at the same time via the abstraction of
CAN handles and the support of Interaction.

Revision 2.x

Major internal change which removes one limitation of the 1.x driver that simultaneous reception
and transmission of CAN messages with the same handle was not possible. Many new features as
the Rx Object Mode for CAN messages with CAN-IDs in Base Frame Format, Timestamps Support
and the Extended Bus Diagnostic are added to the device driver.

Revision 3.x

Completely new driver design which separates the CAN core functionality from the OS layer and
the CAN layer to improve speed and robustness porting the driver to a new platform. Internally
receive and transmit queues are based on linked lists. Several features like an extension of the Rx
 Object Mode for CAN messages with CAN-IDs in Extended Frame Format, Scheduling Mode,
Smart ID Filter, Error Injection and Timestamped TX are only supported with this driver.

Revision 4.x

Major internal change to support CAN messages with up to 64 bytes and several other
improvements which were introduced with the CAN FD standard /2/. The support for LIN enabled
boards is also integrated only in this device driver branch.

Today the 2.x, 3.x and 4.x driver co-exist (sometimes even on the same OS platform). Please refer
to chapter 3.18 to get the details which CAN board is supported by which driver version on which
platform.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 33 of 289

NTCAN-API and Device Driver

2.3 Implementation Details Overview
This chapter explains several aspects of NTCAN listed in chapter 1.6 in more detail.

2.3.1 Operating System Integration

The NTCAN implementation is usually a combination of a library which provides the API for the
application and a CAN board specific device driver which is implemented on top of the host OS
specific device driver interface as shown in the figure below.

Page 34 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 4: Integration into the Operating System

NTCAN-API and Device Driver

The approach to integrate the CAN driver into the OS kernel in the same way as device driver for
other device classes (Network controller, Serial ports, etc.) prevents compatibility and
interoperability issues and allows the use of OS specific mechanisms for driver configuration or
resource cleanup mechanisms.

As shown in figure 4 the device driver implementation can be classified according to the table
below:

Class Driver Type Description

A A kernel mode driver which directly handles a CAN controller on a CAN board that is
connected to an internal bus (PCI, PCIe, CPCI, …) of the host. Examples for this
class are diver for the passive CAN200 or CAN400 boards.

B A kernel mode driver which handles a CAN board with an additional MCU and a
firmware that is connected to an internal bus (PCI, PCIe, CPCI, …) of the host.
Examples for this class are diver for the active CAN331 or CAN405 boards.

C A kernel mode driver which handles a CAN board with an additional MCU and a
firmware that is connected to an external bus (USB) of the host. This driver type is
usually implemented on top of an OS bus driver. Examples for this class are diver for
the CAN-USB/Mini, CAN-USB/Micro, CAN-USB/2 and CAN-USB/400 boards.

D A user mode driver which handles a CAN board with an additional MCU and a
firmware that is externally connected to the host without using directly an internal or
external bus. This driver type is usually implemented a user mode driver on top of an
OS protocol driver. Examples for this class are diver for the EtherCAN boards.

Table 3: Classes of Device Driver Implementations

Multiprocessor and multi-cores processor support

Device driver for operating systems which support more than one processor or core have been
developed and tested to support this environment.

Plug & Play (P'n'P) and Hot Plugging support

In order to simplify the driver installation of devices for P'n'P capable buses (PCI, USB, ...) the
mechanisms provided by the OS are supported to enumerate the already configured devices. For
USB based interfaces hot plugging is supported.

Support for multiple CAN ports

Due to the device driver approach driver types of all classes can co-exist on one host and each
driver is able to support simultaneously several CAN boards of its device class which have one or
more physical CAN ports.

To make the underlying esd electronics CAN hardware transparent from the application point of
view each physical port is assigned an individual logical net number in the range from 0 to 255.
The details about the configuration of the logical net numbers are OS specific and described in
the /1/.

As the link between a physical CAN port and the application is based on the logical net numbers it
is possible to switch easily between different esd electronics CAN board types without the need to
change the application.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 35 of 289

NTCAN-API and Device Driver

Multitasking / Multithreading support

The NTCAN implementation is not limited to create just one link to a CAN port but allows creating
several simultaneous links to the same port with different tasks/processes or even different threads
of the same process. The support for this behaviour is based on NTCAN handles. Each handle
virtualizes a CAN controller so the underlying physical CAN port can be used by several
processes/threads at the same time.

If the host OS supports the handle concept it is used by the driver otherwise it is emulated.

2.3.2 Interaction

A standard CAN controller usually does not receive its own transmitted CAN messages. In many
cases exactly this is necessary if e.g. there is a CAN based control application and you want to run
in parallel a CAN monitor tool in another process on the same host using the identical physical
CAN port. This feature as shown in the picture below is supported in all esd electronics CAN
driver implementation and called Interaction. Refer to chapter 3.5 for further details on the
Interaction mechanism.

Page 36 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 5: CAN Message Interaction

NTCAN-API and Device Driver

2.3.3 CAN Bit Rate Configuration

The NTCAN-API supports configuring the CAN bit rate for the CAN CC mode and the CAN FD
mode in various ways to reach a maximum of flexibility (refer to chapter 3.3 for more details).

➢ Configuration based on the esd electronics bit rate table Table for the common standard
bit rates which cover the recommended values of the CiA.

➢ Configuration based on the direct manipulation of the BTR registers of the CAN controller.
➢ Configuration based on numerical values and a built-in algorithm to calculate an optimal

CAN controller configuration.

Listen Only Mode

This mode is intended for CAN bus monitoring without any influence on other CAN nodes (refer to
chapter 3.3.2 for more details) or in combination with the baud rate detection mechanism described
below.

Automatic bit rate detection

If the Listen Only mode described above is supported by the CAN board a device driver or the
firmware can determine the bit rate of a physical CAN bus without affecting the CAN bus state in a
destructive way. Afterward it can seamlessly join the communication on the bus. The Automatic
Bitrate Detection is only supported in the Classic CAN mode and based on the following
preconditions:

➢ There is an ongoing data exchange between at least two CAN nodes.
➢ The bit rate is among the bit rates which are part of the esd electronics bit rate table (refer

to chapter 3.3.7 for more details).

Smart Disconnect

The default behavior of a device driver is to stay active on the CAN bus with the last configured bit
rate, even if there is no application running, using this physical CAN port. This behavior is desired if
you want to have an active CAN node connected to the bus, such as to acknowledge CAN
messages.

Several device driver can be configured to leave the CAN bus if no application is using this
physical CAN port (see chapter 3.3.8 for more details) which is called Smart Disconnect in this
manual.

Automatic recovery from CAN controller state Bus Off

If a CAN controller received too many error frames, it changes into the state Bus Off and stops
participating in the communication via CAN bus (refer to chapter 3.2 for more details). The device
driver (passive CAN boards) or the firmware (active CAN boards) re-initializes the CAN controller
automatically after a certain period of time. The application does not have to take special action for
this but gets an indication about the state change.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 37 of 289

NTCAN-API and Device Driver

2.3.4 Extended Features

Firmware Update

All active CAN boards with an MCU require a CAN firmware. It is usually possible to update this
firmware with a dedicated firmware update tool in the field to add new features or to improve the
performance.

Blocking and Non-Blocking CAN I/O

The NTCAN-API implements non-blocking I/O functions for reading and writing CAN data used by
applications following the polling principle as well as blocking I/O functions for event-driven
applications. The trade-off of the non-blocking calls which return immediately is the lack of
immediate feedback in case of communication errors.

NTCAN Events

To indicate a state change or error situation to the application the NTCAN-API supports a
mechanism which allows an application to receive such events in the same way and with identical
API calls as CAN messages (refer to chapter 3.7 for more details). This allows an easy correlation
of these events with the stream of CAN data.

Timestamp Support

The NTCAN-API supports a timestamp for received/transmitted CAN messages and NTCAN
events. Depending on the CAN board this timestamp is either captured in software by the device
driver in the interrupt handler or, more accurate, applied by the (active) CAN board (refer to chapter
3.9 for more details).

Scheduling

The driver supports scheduling of CAN messages. Transmission of frames can be initiated in a
single-shot mode at a given point in time or cyclically. This feature is useful for residual bus
simulation or generation of sync-frames.

Timestamped TX

Timestamps are supported in TX direction as well. This can be used to defer the transmission of
CAN frames up to a given point in time without the need to set up special Scheduling objects.
Please refer to chapter 3.14 for additional information.

Autoanswer

The CAN driver supports a fast automatically generated answer for a received CAN-RTR frame
with a user configurable CAN frame. This feature is also supported for Basic CAN Controller
without a limitation to the number of objects. For a given CAN-ID only one auto-answer object can
be defined.

Extended Error Information

This feature provides additional detailed information about the state of the CAN bus, if the CAN
controller supports a detailed error analysis. This comprises information about protocol errors, error
counter, etc.

Refer to chapter 3.2 for further details.

Page 38 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

NTCAN-API and Device Driver

Disable Automatic Retransmission (DAR) mode

This feature supports the possibility to disable the default behavior of a CAN controller to
automatically repeat the transmission of a CAN message which has failed due to errors or a lost
arbitration procedure. According to the CAN controller capabilities this can be configured globally
or on a frame based basis. This behavior is often also referred to as single-shot or one-shot mode.

Refer to chapter 3.2 for further details.

Switchable Bus Termination

The CAN board allows to activate or deactivate a bus termination resistor programmatically.

Refer to chapter 3.16 for further details.

General Purpose Input/Output (GPIO) support

The CAN board supports up to 32 GPIO channels which are configured and controlled with
NTCAN API.

Refer to chapter 3.17 for further details.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 39 of 289

CAN Communication with NTCAN-API

3. CAN Communication with NTCAN-API
This chapter provides an overview of the general functionality of the CAN communication with the
NTCAN-API, before the API function calls, data types, etc. will be explained in greater detail in the
following chapters.

3.1 Overview
An application which wants to access the CAN bus has to create a logical link to a physical CAN
port with canOpen(). This link is represented by an opaque handle of the data type NTCAN_HANDLE
which is an input parameter for most NTCAN-API calls. A process can use multiple handles to the
same or to different physical CAN ports simultaneously.

To distinguish between different physical CAN ports the device driver assigns a logical net number
to each port and an application uses this number as an input parameter of canOpen() to reference
the CAN port. This mechanism allows the use of CAN boards with more than one physical CAN
port as well as the simultaneous use of several CAN boards of the same or different board type.
The process of assigning different logical net numbers to physical CAN ports is hardware and
operating system specific (please refer to /1/ for further details).

From the application point of view each handle references a virtual CAN controller with an
individual set of properties for receive and transmit buffers as well as I/O timeouts. For each handle
an individual receive filter for CAN messages in standard frame format (11-bit CAN identifier) can
be configured with canIdAdd() and canIdDelete() together with an acceptance mask as a filter for
CAN messages in extended frame format (29-bit CAN identifier). Since CAN driver revision 3.x
even for 29-bit CAN identifier individual filter can be configured with canIdRegionAdd() and
canIdRegionDelete(). Additional filter criteria to receive e.g. no RTR frames can be applied with
the help of the parameter mode of canOpen(). Refer to chapter 3.8 for all details on acceptance
filtering.

Before any CAN I/O can be performed the bit rate of the physical CAN port has to be configured
once, either by using canSetBaudrate() to define a fixed bit rate (based on a table of common
values, numerical values or CAN controller bit rate configuration register) or by starting the
‘automatic bit rate detection’ which is supported by many CAN boards. The configured value is
valid for all handles opened with the logical network number of this physical CAN port. For CAN FD
a 2nd bit rate for the data phase has to be defined which is done with canSetBaudrateX().

In order to prevent two applications from trying to initialise the same physical CAN port with
different bit rates, the current configuration can be request with canGetBaudrate() or
canGetBaudrateX() for CAN FD and any change will be indicated event driven. Refer to chapter
3.3 for all details on configuring the CAN bit rate.

For CAN message transmission the API offers blocking and non-blocking services. A call to
canWrite() to transmit one or several CAN message(s) in the CMSG format will block the calling
process or thread until all messages are transmitted successfully on the CAN bus, an I/O error
occurred during transmission or the configured transmission timeout for the handle has expired
(synchronous transmission). A call to canSend() will return immediately and make the device
driver perform the transmission of messages in background (asynchronous transmission). The
main difference between these two modes of operation is the feedback the application gets about
the successful transmission.

Page 40 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

In order to receive messages the API offers the blocking call canTake() and the non-blocking call
canRead(). This enables the caller either to check whether new data is available in the receive
buffer (polling), or to block until one or more messages which passed the message filter of this
handle have been received. The CAN driver can also insert meta information as CAN events into
the stream of I/O data (see chapter 3.7 for details).

Optionally a 64-bit high resolution timestamp (see chapter 3.9) might be applied to each received
CAN message. For this purpose the extended CMSG_T structure format is available and the receive
message calls canTakeT() and canReadT(). If an application wants to get the transmission time
of a message it has to be received using Interaction (see chapter 3.5). The timestamps applied to
transmitted messages in combination with canSendT() and canWriteT() are used since driver
version 3.x for message Scheduling (see chapter 3.12) or the deferred transmission of CAN
messages (see chapter 3.14).

With the introduction of CAN FD and its extended payload of up to 64 bytes the CMSG_X structure
is introduced as the universal timestamped message format with the related API calls canSendX(),
canWriteX(), canTakeX() and canReadX() to transmit respectively receive CAN FD as well as
Classic CAN messages in a blocking or non-blocking way.

The general purpose API call canIoctl() is available to set or get further device and or/driver
configuration options or to request any kind of (diagnostic) information.

In case of an error each API call returns a corresponding error code. The individual error codes will
be explained in greater detail in chapter 7 and the convenience function canFormatError() is
available to return a descriptive English error message.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 41 of 289

CAN Communication with NTCAN-API

3.2 CAN Errors and Fault Confinement

Because CAN nodes are able to distinguish between permanent failure and temporary
disturbances, an automatic fault confinement is an integral part of the CAN protocol which makes it
superior to other bus systems.

A CAN controller can distinguish between the following five types of errors within it's transmit or
receive state machine.

Error Type Description

Bit Error A CAN controller sending a bit on the bus also monitors it comparing the bit levels
(dominant or recessive) detected on the bus with the bit levels transmitted. A Bit
Error is indicated in case of a difference. The are two allowed exceptions. No bit
error is indicated sending a recessive bit and receiving a dominant bit during the
arbitration field or the ACK slot and a controller transmitting a passive error flag
(described later in this chapter) and receiving a dominant bit does not take this as a
Bit Error.

Stuff Error Whenever five consecutive dominant or recessive bits have to be transmitted, an
extra complementary (stuff) bit is implicitly inserted into the bit stream as a
necessary edge for clock resynchronization. Every receiver automatically removes
these extra stuff bits. If a receiver state machine detects a sequence of more than
five consecutive recessive or dominant bits during a message field that should be
encoded by bit stuffing a Stuff Error is indicated.

CRC Error A CRC (Cyclic Redundancy Check) Error is indicated by a receiver if the calculate
CRC is different from the CRC received in the message.

Form Error A Form Error is indicated by a receiver if a fixed form field contains illegal bits. For
example, a fixed form field would be the control field which has two reserved bits (r1
and r0) that need to be sent out as two consecutive dominant bits.

ACK Error An Acknowledge Error is indicated if no dominant bit is received during the ACK
slot.

Table 4: CAN Communication Error Types

Any CAN controller transmitting or receiving CAN messages continuously checks the received
CAN data for one of the five error types described in the table above. If an error is detected the
discovering controller discards this message and an Error Flag is transmitted onto the CAN bus
(according to the rules described later in this chapter) to signal the error situation. Other CAN
controllers which have not (yet) detected the error themselves will discard the message because of
this Error Flag so a system wide data consistency is guaranteed.

According to /2/, the default behaviour of a CAN controller whose transmission has failed due to
errors (or a lost arbitration procedure) is to automatically retransmit this message. Optionally this
behaviour can be disabled if the CAN controller supports the Disable Automatic Retransmission
(DAR) mode which is also referred to as Single-Shot mode.

Page 42 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

Detected errors are usually not indicated directly to the host CPU but only the change of the CAN
controller state (described later in this chapter). For this purpose each CAN controller contains an
8-bit Transmit Error Counter (TEC) associated with the controller's transmit state machine and
Receive Error Counter (REC) associated with the controller's receive state. The error counters are
increased if any of the five error types described above is detected. For a successful transmission
or reception the corresponding error counter is decreased. The complex rules for the increments
and decrements are defined in /2/ but can be summarized in this simplified way:

➢ If an error is detected during reception, the REC is increased by 1. The error counter is
increased by 8, if this error is not detected by other CAN nodes.

➢ The TEC is increased by 8, if an error is detected while the node is transmitting.
➢ After a successful reception the REC is decreased by 1
➢ After a successful transmission the TEC is decreased by 1.

With the help of this mechanism the error counters of a node will increment more rapidly if a fault is
local to the node. Consequently permanent failures result in high counter values, whereas
temporary disturbances result in small counts that recover back to zero in a running system.
Depending on the value of its error counters the CAN controller is in one of the three states Error
Active, Error Passive or Bus Off as shown in the picture below.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 43 of 289

Figure 6: CAN Controller States

CAN Communication with NTCAN-API

With the help of the error counters the CAN controller moves between different (error) states that
allow a node to fail in a sophisticated way without blocking the bus as described in the table below.

Error state Description

Error Active Regular operational state of the node, with both counters less than 128. In this
state the node can participate in usual communication.
If it detects any error during communication, an Error Active Flag, consisting of 6
dominant bits, is transmitted. This blocks the current transmission.

Error Passive When either counter exceeds 127, the node is declared Error Passive. This
indicates that there is an abnormal level of errors. The node still participates in
transmission and reception, but it has an additional time delay after a message
transmission before it can initiate a new message transfer of its own. This extra
delay for the Error Passive node which is known as suspended transmission
results from transmission of 8 additional recessive bits at the end of the frame.
This means that an error passive node loses arbitration to any error active node
regardless of the priority of their CAN-IDs.
When an error passive node detects an error during communication, it transmits
an Error Passive Flag consisting of 6 recessive bits. These will not disturb the
current transmission (assuming another node is the transmitter) if the error turns
out to be local to the Error Passive node.

Bus Off When the transmit error counter exceeds 255 the node is declared Bus Off. This
indicates that the node has experienced consistent errors whilst transmitting.
This state restricts the node from sending any further CAN message. The node
will eventually be re-enabled for transmission and become Error Active after it has
detected 128 occurrences of 11 consecutive recessive bits on the bus which
indicate periods of bus inactivity.

Table 5: CAN Controller Error States

A change of the CAN controller state is indicated by the event mechanism of the NTCAN-API (see
chapter 3.7 for details).

Page 44 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.3 Bit Rate Configuration

3.3.1 Overview

The physical layer of the CAN standard /2/ distinguishes between a CAN CC and a CAN FD
enabled implementation of a CAN controller. A CAN CC controller or a CAN FD enabled controller
which is operated in the CAN CC mode requires the configuration of a nominal bit rate up to 1000
Kbit/s and enforces with its arbitration and communication mechanism a dependency between
configured bit rate and the maximum cable length. A CAN FD enabled controller which is operated
in the CAN FD mode also requires the configuration of a further bit rate for the data phase (which
has to be equal or higher than the nominal bit rate).

The basic physical structure of a CAN network requires that all nodes are configured to the same
bit rate which has to be checked by the system integrator for any single CAN node. Configuring a
wrong bit rate for a CAN port is a critical issue because all CAN nodes start with the error handling
described in the previous chapter. The process of error detection and signaling only stops when
the device with the incorrect bit rate goes into the bus-off state.

Bit timing is a complex issue because it's not just the bit rate itself but also the position of the
sample point within the nominal bit time that matters. To increase the interoperability of CAN nodes
from different vendors the CAN in Automation (CiA) has recommended /3/ some standard bit rates
for CAN CC together with a detailed definition of the sample point which should be used in general
purpose CAN bus networks. The bit timing configuration for CAN FD even adds some more
complexity which is described in /7/.

The detailed register values to configure a given bit rate with a given sample point for a CAN
controller are hardware specific and depend on the clock frequency of the CAN controller.

The NTCAN-API simplifies the task of configuring the bit rate by implementing a common bit rate
table which is CAN controller and operating system independent. It follows the recommendations
of the CiA for the CAN CC standard bit rates but also contains some intermediate as well as
common higher layer CAN protocol bit rates.

CAN CC

An application calls canSetBaudrate() to configure the nominal bit rate and canGetBaudrate() to
obtain the current configuration. Possible parameter for these calls are:

➢ An index of the esd electronics Nominal Bit Rate Table.
➢ A hardware (CAN controller) specific value in case the necessary bit rate is not covered by

the bit rate table.
➢ A numerical bit rate value. In this case the driver calculates the necessary hardware specific

configuration parameter.

The details of the bit rate configuration can be obtained by the application
calling canIoctl() with NTCAN_IOCTL_GET_BITRATE_DETAILS as argument.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 45 of 289

CAN Communication with NTCAN-API

CAN FD

An application calls canSetBaudrateX() to configure the nominal as well as data bit rate and
canGetBaudrateX() to obtain the current configuration. Possible parameter for these calls are:

➢ A supported combination of index values from the esd electronics Nominal Bit Rate Table
and the esd electronics Data Phase Bit Rate Table.

➢ A bit timing register configuration in a hardware (CAN controller) specific format.
➢ A bit timing register configuration in a canonical format.
➢ A supported combination of numerical bit rate values.

The details of the bit rate configuration can be obtained by the application
calling canIoctl() with NTCAN_IOCTL_GET_BITRATE_DETAILS as argument.

Related to a configured CAN FD bit rate in the data phase is the Transmitter Delay Compensation
(TDC) mechanism and the position of a Second Sample Point (SSP) (refer to chapter 3.15 for
further details) which is setup by NTCAN together with the bit rate.

The NTCAN architecture implements an intelligent automatic to setup the
TDC and configure an optimal SSP, so usually an application specific
deviating configuration is not required.

3.3.2 Listen-Only Mode

Many CAN controller support a so called listen-only mode which can be configured in combination
with the bit rate calling canSetBaudrate() or canSetBaudrateX(). In this operation mode the CAN
controller would send neither an acknowledge nor an error frame on the CAN-bus but a message
transmission is also not possible. This operation mode is ideally suited for monitoring the bus or for
a nondestructive hot plugging of CAN nodes to an active bus.

Note that in both cases a physical layer interface must be available including
CAN bus lines with a termination.
As not all CAN controller support the listen-only mode the application should
check for the feature flag NTCAN_FEATURE_LISTEN_ONLY_MODE returned with
canStatus().

Page 46 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.3.3 Self Test Mode

Many CAN controllers support a self test mode which can be configured in combination with the bit
rate calling canSetBaudrate() or canSetBaudrateX(). The Self Test Mode allows internal
transmission of CAN messages without the requirement for an acknowledge from other CAN
nodes. This mode is ideally suited for a local self test or for stand alone system development and
testing still keeping the timing constraints of the configured bit rate.

Note that depending on the implementation of this feature in the CAN controller
also for this loop back mode a physical layer interface must be available which
might require a proper termination.

As not all CAN controllers support a self test mode the application should check
for the feature flag NTCAN_FEATURE_SELF_TEST.

3.3.4 Triple Sampling Mode

The default behavior of a CAN controller is to sample the bus once per bit at the configured sample
point (SP). Some CAN controller optionally implement a mode where the bus is sampled three
times per bit with a majority logic to determine the bit value. The latter mode is usually
recommended for low/medium speed to filter spikes.

As not all CAN controller support a triple sampling mode the application should
check for the feature flag NTCAN_FEATURE_TRIPLE_SAMPLING returned with
canIoctl().

3.3.5 Transmit Pause

The default behavior of a CAN controller is to start the next data transmission immediately after it’s
previous transmission was completed successfully considering the bus idle time required by the
CAN protocol. Especially with modern CAN controller types which are capable to generate a one
hundred percent bus utilization a node which needs to transmit CAN messages with a worse
arbitration priority may starve.

To overcome this situation a device with an active transmit pause will wait for a controller number
of additional bit times after a successful transmission so other nodes are able to transmit their
messages with a worse arbitration because they start the next messages arbitration earlier.

Enabling a transmit pause will mitigate situations where the application on a single node performs
burst transmissions and protects against a "babbling idiot" error situation.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 47 of 289

CAN Communication with NTCAN-API

As not all CAN controller support a transmit pause mode the application should
check for the feature flag NTCAN_FEATURE_TX_PAUSE returned with canIoctl().

3.3.6 Disable Automatic Retransmission (DAR) Mode

The default behaviour of a CAN controller is to repeat immediately a transmission which has failed
due to errors or a lost arbitration procedure. Although CAN messages can be sent with a very small
timeout it is not possible to limit the number of retransmissions to deterministic number.

To overcome this situation some CAN controller support an operation mode which disables this
retransmission globally so CAN frames are either transmitted successfully on the 1st attempt or not
transmitted at all and repeating the transmission must be requested by the application.

Disabling the automatic retransmission is required to support a time-triggered communication as
described in /2/.

As not all CAN controller support a DAR mode the application should check for
the feature flag NTCAN_FEATURE_DAR and/or NTCAN_FEATURE_DAR_FRAME
returned with canIoctl().

Standard CAN controller with DAR support do not distinguish between a transmission failure
caused by an arbitration lost situation or a CAN transmission error. The ESDACC allows to
configure the bevaiour per physical CAN individually for these two failure situations via canIoctl().

3.3.7 Automatic Bit Rate Detection

Most device driver for CAN controller with the listen-only mode support also support an automatic
bit rate detection for the CAN CC mode. This mode is initialized with canSetBaudrate() or
canSetBaudrateX() in the same way a fixed bit rate is set. The device driver continuously monitors
the CAN bus in a nondestructive way while automatically switching the nominal bit rate until a valid
CAN message is received. In the end the application can seamlessly join the communication on
the bus. The implementation follows the CiA recommendation /4/ for automatic bit-rate detection.

A successful automatic bit rate detection is only possible if there is already
communication on the CAN bus with a bit rate which is part of the NTCAN bit
rate table and is only supported in the CAN CC operation mode.

In order to follow the bit rate detection process an application can either poll the current state with
canGetBaudrate() or can wait for a bit rate change event.

Page 48 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.3.8 Smart Disconnect

The default behavior of the device driver is to leave the CAN controller active on the bus with the
last configured bit rate, even if no application has an open handle to the physical CAN port any
more. This behavior is desired if you want to have an active CAN node connected to the bus, e.g.
to acknowledge CAN messages.

Some drivers support disabling the CAN controller automatically as soon as the last handle to this
physical CAN port is closed. The configuration of this Smart Disconnect behavior is set during
driver initialization and can not be changed during run-time. The configuration method is operating
system dependent and is described in the driver installation manual /1/.

An application can check if the Smart Disconnect mode is supported and
enabled with the feature flag NTCAN_FEATURE_SMART_DISCONNECT returned with
canIoctl().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 49 of 289

CAN Communication with NTCAN-API

3.4 NTCAN-ID and Structures of Data Exchange
The data exchange between the application and NTCAN library is based on (arrays of) equal sized
messages. The main components of each CAN message structure are the

➢ The NTCAN-ID (4 Bytes)
➢ The data length (1 Byte)
➢ The payload (CAN operation mode dependent)

The NTCAN-ID is used to distinguish between CAN messages and NTCAN Events as shown in
the figure below:

Bit 30 is used to distinguish between CAN messages (CMSG structures) and NTCAN Events (EVMSG
structures) which are identical with respect to data size and layout. Thus they can be mixed in
related NTCAN-API I/O calls.
For an NTCAN Event (Bit 30 set to '1') the bits 0..7 contain the Event-ID and the bits 8..29 are
reserved for future use and should be set to '0'.
For a CAN message (Bit 30 set to '0') the bit 29 of the NTCAN-ID is used to distinguish between
11-bit (SFF) and 29-bit (EFF) CAN messages. In case of a 11-bit CAN message (Bit 29 set to '0')
the bits 0..10 contain the CAN-ID of the message and the bits 8..28 are reserved for future use and
should be set to '0'. In case of a 29-bit CAN message (Bit 29 set to '1') the bits 0..28 contain the
CAN-ID.
The Bit 31 of the NTCAN-ID is reserved for future use and should always be set to '0'.

The lower 4 bit of the data length are the Data Length Code (DLC) of the CAN message or the
NTCAN event which indicates the valid data bytes in the payload part. The upper 4 bits are used
for additional meta information (e.g. if a CAN message is a data frame or a RTR frame).

For the CAN CC mode the payload part contains up to 8 bytes of CAN or event data which
requires a structure size of 16 bytes.

For timestamped I/O in CAN CC mode the data structures described above are extended with a
timestamp (8 bytes) defined in the NTCAN-API as data structures of the type CMSG_T and EVMSG_T.
The timestamp increases the structure size to 24 Bytes.

For the CAN FD mode the payload part contains up to 64 bytes of CAN data and always a
timestamp. The NTCAN-API defines data structures of the type CMSG_X and EVMSG_X for this. The
additional payload increases the structure size to 80 Bytes.

Because of this size difference an own set of CAN I/O API functions is defined for each structure.

Page 50 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 7: NTCAN-ID layout

CAN Communication with NTCAN-API

3.5 Interaction

If an application transmits a CAN message as described in chapter 3.10.2 a CAN controller usually
does not receive its own transmitted message. As in a multitasking/multithreading environment it's
often required by the application logic or it's at least convenient to receive the CAN messages
transmitted by another task/thread, the esd CAN driver implements a feature called Interaction
which is illustrated in figure 5. The driver implements this feature in a way that an interaction
message is NOT passed via Interprocess Communication (IPC) mechanisms of the operating
system as shown in figure 8, but is related to the successful transmission of the message on the
CAN bus by the driver as shown in figure 9.

If the interaction would be implemented with IPC mechanisms a local receiver would get a CAN
message even if the physical transmission on the CAN bus failed (as show in the picture above)
which is an error.
The esd electronics driver implementation instead is based on a successful transmission as
shown in the figure below. In case of a transmission error local receivers will not get the message,
too.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 51 of 289

Figure 8: Interaction with IPC

CAN Communication with NTCAN-API

In addition the this implementations guarantees that local receivers get the data at the same time
as all other CAN devices connected to this bus. This is important as otherwise the order of
received messages, their timing relation and/or their timestamps would be wrong.

The trade-off of the implementation is that Interaction demands the CAN message
to be physically transmitted which requires a physical working CAN bus with at least
one additional CAN node.

Page 52 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 9: Interaction without IPC

CAN Communication with NTCAN-API

The default of the Interaction behaviour is to be enabled for all handles but the handle which
transmits the message which follows again the concept of a complete virtual CAN controller (that
usually does not receive its own transmitted message, too).

An application can configure the interaction behaviour on a per handle basis in many ways:

➢ If the application logic does not require or allow CAN messages received via the
Interaction mechanism the CAN handle can be opened with the mode flag
NTCAN_MODE_NO_INTERACTION so the these messages do not pass the acceptance filter
(see chapter 3.8.1 for details).

➢ If the application logic requires to distinguish CAN messages received via the Interaction
mechanism from CAN messages received on the CAN bus from other CAN devices the
CAN handle has to be opened with the mode flag NTCAN_MODE_MARK_INTERACTION. All
messages received via Interaction will now have set the NTCAN_INTERACTION flag in the
length field of the CMSG or CMSG_T.

➢ If the application logic requires that transmitted CAN messages are received on the same
handle with the Interaction mechanism this handle has to be opened with the mode flag
NTCAN_MODE_LOCAL_ECHO to have the same interaction behaviour as other handles.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 53 of 289

CAN Communication with NTCAN-API

3.6 Bus Diagnostic

The NTCAN Bus Diagnostic is subdivided into a basic diagnostic support and an extended
diagnostic support.

The Extended Bus Diagnostic is not available for every CAN board as it is very
CAN controller dependent. An application should check for the feature flag
NTCAN_FEATURE_DIAGNOSTIC returned with canStatus().

3.6.1 Basic Support

The basic diagnostic support is available for all NTCAN implementations and is realized as the
NTCAN event (see chapter 3.7.1) NTCAN_EV_CAN_ERROR in case of CAN controller state changes
or CAN I/O overruns (refer to 6.2.9 for more details).

3.6.2 Extended Support

The extended diagnostic support covers event based indications as well as polled diagnostic data.
➢ Any change of the configured bit rate is indicated with the NTCAN event

NTCAN_EV_BAUD_CHANGE (refer to chapter 6.2.8 for details).

➢ In addition to the basic support the NTCAN event NTCAN_EV_CAN_ERROR_EXT is indicated
every time the CAN controller detects an error on the bus (refer to chapter 3.7.1 and 6.2.10
for more details). The event contains CAN controller dependent information about the error
reason and the current values of the controller's TEC and REC. With the help of
canFormatEvent() a textual description of the error can be received.

➢ The periodic NTCAN event NTCAN_EV_BUSLOAD can be configured to indicate the current
number of received bits for this CAN port. The event is generated as soon as it is enabled
with canIdAdd(). The cycle time of the event can be set/requested with canIoctl() and the
argument NTCAN_IOCTL_SET_BUSLOAD_INTERVAL/NTCAN_IOCTL_GET_BUSLOAD_INTERVAL.
With the help of two (timestamped) events and the configured bitrate the CAN busload can
be calculated in the application or with the help of canFormatEvent().

➢ The actual CAN controller state with the controller's TEC and REC is returned by calling
canIoctl() with the command NTCAN_IOCTL_GET_CTRL_STATUS (refer to chapter 6.2.19 for
details).

➢ The actual CAN bus statistic for a CAN port can be requested by calling canIoctl() with the
command NTCAN_IOCTL_GET_BUS_STATISTIC (refer to chapter 6.2.18 for details).

Page 54 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.7 NTCAN Events
In addition to error return values and API calls for status and bus diagnostic information, the CAN
driver can indicate errors and other state changes, e.g. a change of the CAN controller into Bus Off
state has occurred, asynchronously with an event mechanism. These events can be received by
the application with a separate handle but their main advantage is that they are embedded in the
stream of received CAN data so they can be set in a temporal relation to the CAN bus activity.
NTCAN events are returned in the data structure EVMSG.

NTCAN events can only be received in FIFO mode. There is no support
to receive NTCAN events if the handle is opened in object mode.

If timestamps are supported, the NTCAN events can also be returned in the timestamped data
structure EVMSG_T or EVMSG_X.

3.7.1 Event types

A valid NTCAN Event-ID is in the range from NTCAN_EV_BASE to NTCAN_EV_LAST. The table below
shows the supported events and the event specific data types which are embedded in the data part
of the EVMSG, EVMSG_T or EVMSG_X. All other Event-IDs are reserved for future use.

Depending on the Event-ID the event can be received, transmitted or both with a direction specific
payload length for the event as defined in the table below. If an event can be transmitted and
received, the transmission of the event is an internal trigger for the device driver to generate the
event.

Event-ID Data Type Length Description
NTCAN_EV_CAN_ERROR EV_CAN_ERROR Tx: N/A

Rx: 6
General bus diagnostic data.

NTCAN_EV_BAUD_CHANGE EV_BAUD_CHANGE Tx: N/A
Rx: 4/8

Bit rate change event. For a CAN FD
configuration the application will
receive separate events for the
nominal bit rate and the data bit rate.

NTCAN_EV_CAN_ERROR_EXT EV_CAN_ERROR_EXT Tx: N/A
Rx: 4/5

CAN controller specific diagnostic
data.

NTCAN_EV_BUSLOAD uint64_t Tx: N/A
Rx: 8

Cyclically transmitted busload event.

NTCAN_EV_GPIO_SET_DIR EV_GPIO_DATA Tx: 8
Rx: N/A

Set the direction of the GPIO
channels.

NTCAN_EV_GPIO_SET_DO EV_GPIO_DATA Tx: 8
Rx: N/A

Set the state of the GPIO channels
configured as digital outputs.

NTCAN_EV_GPIO_GET_DO EV_GPIO_DATA Tx: 0
Rx: 4

Get the state of the GPIO channels
configured as digital outputs.
Note: This event must be triggered.

NTCAN_EV_GPIO_GET_DI EV_GPIO_DATA Tx: 0
Rx: 4/8

Get the state of the GPIO channels
configured as digital inputs.
Note: This event can be triggered.

Table 6: NTCAN events

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 55 of 289

CAN Communication with NTCAN-API

Only the NTCAN_EV_CAN_ERROR event is guaranteed to be supported on all
platforms.

The NTCAN-API exports the function canFormatEvent() to return a textual evaluation of an
NTCAN event in English for the CAN bus diagnostic related events.

The application which processes the event has to evaluate the length
information of the event message. If this size can vary according to Table
 6 and is less than the size of the payload data type, only the part of the
data which is reflected by this length information is valid.

Page 56 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.7.2 Reception

1. Create a NTCAN_HANDLE with canOpen() or use an exiting handle (FIFO mode only).

2. Configure the message filter using canIdAdd(). The application has to enable the Event-Ids
of interest.

3. Receive the events

Use canRead() or canTake() in the same way as described in chapter 3.10 to receive CAN
messages in FIFO mode. If for this CAN handle 11- or 29-bit CAN-IDs are enabled in
addition to the Event-Ids, you need to distinguish between received CAN frames and events
by evaluating bit 30 of the (CAN) identifier. If this bit is set, cast the type of the data
structure from CMSG to EVMSG to process the received message as an NTCAN event.

If timestamps are supported, you can use canReadT() or canTakeT() to receive messages
of the type EVMSG_T.

The NTCAN API also exports a still working entry named canReadEvent() for
backward compatibility. This call is deprecated although it allows to receive the
NTCAN events without a cast for the following reasons:

• It covers the same functionality as canRead().
• Events can only be received one at a time.
• Events can not be related temporally to CAN messages.
• There is no version with timestamp support.

Do not use the canReadEvent() API for new applications.

3.7.3 Trigger

The generation of some events can actively be triggered by the application. These events

1. Create a NTCAN_HANDLE with canOpen() or use an exiting handle (FIFO mode only).

2. Trigger the event

Use canWrite() or canSend() in the same way as described in chapter 3.10 to transmit
CAN messages in FIFO mode.

The NTCAN API also exports a still working entry named canSendEvent() for
backward compatibility. This call is deprecated although it allows to transmit the
NTCAN events without a cast for the following reasons:

• It covers the same functionality as canWrite().
• Events can only be transmitted one at a time.

Do not use the canSendEvent() API for new applications.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 57 of 289

CAN Communication with NTCAN-API

3.8 Acceptance Filtering
In order to receive CAN messages the application has to define an acceptance filter for the handle.
The NTCAN-API implements sophisticated acceptance filtering mechanisms which can be defined
individually for each handle based on the

➢ CAN message type

➢ CAN message identifier

The configuration of the acceptance filter has no influence on the transmission
of CAN messages with this CAN handle.

The advantage of this implementation is that in most cases no further acceptance filtering within
the application is required. It can be handled completely in a much more efficient way within the
device driver or even in hardware which reduces the overall system load.

In chapter 3.8.2.3 you will find the complete process of NTCAN acceptance filtering in flow chart
form.

3.8.1 Message Type Filter

During handle creation with canOpen() an individual message type filter can be defined. With the
help of this filter type the application can selectively prevent the reception of

➢ CAN Data Frames

➢ CAN RTR Frames

➢ CAN Interaction Frames

or a combination of them. The message type filter can not be changed at runtime and without any
filter configuration all message types pass the filter.

Page 58 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.8.2 Basic ID Filter

An application can define for each handle an individual Basic ID Filter (BIF) based on the NTCAN-
IDs which should pass the filter for this handle. The BIF which is implemented in CAN device
drivers before V 3.9.x implements a table based two-stage filter mechanisms with a first stage
solely dedicated to CAN-IDs in the Base Frame Format (11-bit identifier) and Event-IDs and a 2nd

stage dedicated to CAN-IDs in the Extended Frame Format (29-bit identifier).

There are two implementation aspects which are worth mentioning:

➢ The filter is applied with constant time independent from the filter configuration.

➢ The filter can be modified at runtime while CAN data is received.

3.8.2.1 First Filter Stage

As a first filter stage the application can define for each handle an individual set of 11-bit CAN-IDs
and Event-IDs which should pass the acceptance filter by adding and removing identifier to this set
with canIdAdd() and canIdDelete(). After the handle is created with canOpen() no NTCAN-ID will
pass the filter.

3.8.2.2 Second Filter Stage

As soon as an arbitrary 29-bit CAN-ID is enabled with canIdAdd() all 29-bit CAN-IDs will pass the
first filter stage.

For acceptance filtering of 29-bit CAN-IDs the CAN driver implements a 2nd filter stage with a
mechanism based on a logical combination of an acceptance code with an acceptance mask. Such
a mechanism is implemented by many CAN controller in hardware but the NTCAN-API allows to
define an individual filter for each handle. The acceptance filter is realized by a logical AND-
combination of an acceptance code followed by a logical OR-combination with the acceptance
mask according to the following figure.

The acceptance code is the last 29-bit CAN-ID enabled for this handle with canIdAdd() and the
acceptance mask is defined with the command NTCAN_IOCTL_SET_20B_HND_FILTER for
canIoctl().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 59 of 289

Figure 10: Mask based acceptance filtering of CAN-IDs

Message Bit

Acceptance Code Bit

Acceptance Mask Bit
1 -> accepted
0 -> not accepted

=

1

:

&

CAN Communication with NTCAN-API

Figure 10 shows that an active bit within the acceptance mask results in a don’t care condition for
the result of the comparison of received message bit and acceptance code bit. It is possible to limit
the filter exactly to one 29-bit CAN identifier or one group of 29-bit CAN identifiers.

The following table shows some examples of bit combinations of the acceptance mask and
acceptance code and the resulting filter behaviour.

ACR AMR Filter

0x00000100 0x00000000 Only 29-bit messages with the CAN identifier 0x100
are stored in the receive FIFO of the handle.

0x00000100 0x000000FF All 29-bit CAN messages within the identifier area
0x100 ... 0x1FF are stored in the receive FIFO of the
handle.

Any 0x1FFFFFFF All 29-bit CAN messages are stored in the receive
FIFO of the handle (open mask) → Default

Table 7: Acceptance filter examples for 29-bit CAN-IDs

After handle creation with canOpen() the acceptance mask is configured as shown in the last row
of the table above.

Page 60 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.8.2.3 Flow Chart

The figure below gives a complete overview on all stages of acceptance filtering with the BIF for a
received CAN frame according to its message type and its ID.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 61 of 289

Figure 11: Acceptance Filtering with the Basic ID Filter

CAN Communication with NTCAN-API

3.8.3 Smart ID Filter

The Smart ID Filter (SIF) is similar to the Basic ID Filter (BIF), described in the previous chapter, a
two-stage filter. But it is a completely revised implementation with two major improvements:

➢ The first filter stage is no longer limited to 11-bit CAN-Ids and NTCAN Events but also
supports 29-Bit CAN-IDs.

➢ The second filter stage is no longer limited to 29-Bit CAN-IDs but implements three
independent filter for 29-Bit CAN-Ids, 11-bit CAN-IDs and Event-IDs.

The Smart ID Filter is not supported by CAN device drivers before V3.9.x. An
application should check for the feature flag NTCAN_FEATURE_SMART_ID_FILTER
returned with canStatus().

Due to the sophisticated implementation as a multi-level tree-structured table the filter is still
applied with constant time independent from it's configuration and can be changed at runtime.

Drivers with the Smart ID Filter are fully binary backward compatible to drivers
with the Basic ID Filter with respect to the API as well as the filter behaviour.

3.8.3.1 First Filter Stage

The CAN-IDs and Event-IDs for the first filter stage are enabled or disabled with
canIdRegionAdd() and canIdRegionDelete(). The legacy API calls canIdAdd() and
canIdDelete() (which are internally mapped to the new API calls) can still be used in parallel.

3.8.3.2 Second Filter Stage

The three masks of the second filter stage are configured with the command
NTCAN_IOCTL_SET_HND_FILTER for canIoctl() and an initialized NTCAN_FILTER_MASK structure as
argument. Figure 10 shows how an active bit of the Acceptance Mask Register (AMR) results in a
don’t care condition for the result of the comparison between the bit in the received ID and the
related bit in the Acceptance Code Register (ACR).

The resource (memory) requirement of a SIF configuration depends on the
implementation of the first and second stage. As a rule of the thumb it is often
worthwhile to filter as much as possible with the second stage and to keep the
consecutive areas of the first stage as wide as possible.

Page 62 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

Example:

Definition of a SIF for all odd 29-bit CAN-IDs in the range from 0x20001111 to 0x200FFFFFF
(which can not be configured with the BIF).

Solution 1 (with just the first filter stage):

int32_t id, count;
for(id=0x20001111; id <= 0x200FFFFF; id += 2) {

count = 1;
canIdRegionAdd(hnd, id, &count);

}

Solution 2 (with a combination of first and second filter stage):

int32_t count = FEEEF;
canIdRegionAdd(hnd, 0x20001111, &count);
filter.acr = 0x00000001;
filter.amr = 0xFFFFFFFE;
filter.idArea = NTCAN_IDS_REGION_20B;
canIoctl(hnd, NTCAN_IOCTL_SET_HND_FILTER, &filter)

→ The resource usage of solution 2 is far smaller than that of solution 1.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 63 of 289

CAN Communication with NTCAN-API

3.8.3.3 Flow Chart

The figure below gives a complete overview on all stages of acceptance filtering with the BIF for a
received CAN frame according to its message type and its ID.

Page 64 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 12: Acceptance Filtering with the Smart ID Filter

CAN Communication with NTCAN-API

3.9 Timestamps
Most esd electronics CAN boards support capturing the time stamp of the moment a CAN
message was received or a CAN event occurred. Depending on the device capabilities the time
stamping is performed either in hardware by the CAN board or in software by the driver's interrupt
handler using a high resolution counter of the host CPU.

Hardware timestamps are supported by most of the active esd electronics CAN
boards and the FPGA based Advanced CAN Core. Hardware timestamps
usually result in a higher accuracy compared to software timestamps as the jitter
does not depend on the real-time capabilities or the CPU load of the host
system.

3.9.1 Implementation

Timestamped CAN messages are received in FIFO Mode as well as in Object Mode using
canReadT() / canTakeT() or canReadX() / canTakeX() in the same way as described in the
chapters 3.10 and 3.11 for canRead() and canTake(). The argument to store the CAN messages
are of the type CMSG_T respectively CMSG_X to apply the additional timestamp. The latter structures
are also used for Timestamp Tx mode described in chapter 3.14 using canSendT() / canSendX()
or canWriteT() / canWriteX(). The same timestamp is used in the CSCHED structure to define the
start time and interval for the scheduling of CAN messages described in chapter 3.12.1.

An application can check if timestamps are supported with the feature flag
NTCAN_FEATURE_TIMESTAMP returned with canStatus().

The current timestamp can be requested at any time calling canIoctl() with the
NTCAN_IOCTL_GET_TIMESTAMP command. As especially reading a small amount of data directly
from hardware is a performance bottleneck the timestamp returned for this command for ESDACC
based devices is a virtual software timestamp which is synchronized with the hardware timestamp
of the ESDACC. If the accuracy of this timestamp is not sufficient the ESDACC hardware
timestamp can be requested at any time calling canIoctl() with the
NTCAN_IOCTL_GET_HW_TIMESTAMP or NTCAN_IOCTL_GET_HW_TIMESTAMP_EX command.

A timestamp has no default resolution to prevent time consuming calculations in the driver. Instead,
the timestamps are realized as 64-bit free-running counter with the most accurate available time
stamping source. The application can query the frequency of the time stamping source in order to
scale the timestamps online or offline and can query the current timestamp to link them to the
absolute system time.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 65 of 289

CAN Communication with NTCAN-API

3.9.2 Usage

In this chapter the typical steps to use of the timestamp interface (in FIFO Mode) are summarized:

1. Open CAN handle with canOpen() in FIFO Mode.

2. Check if timestamps are supported via the feature flag NTCAN_FEATURE_TIMESTAMP
returned with canStatus().

3. Somewhere at the beginning of your application request once the following information:
➢ The frequency of the timestamp counter (which is specific for any esd electronics CAN

board and/or host OS). This can be accomplished by calling canIoctl() with the
NTCAN_IOCTL_GET_TIMESTAMP_FREQ command.

➢ The current value of the timestamp counter, in order to correlate received timestamps
with your system time. This can be accomplished by calling canIoctl() with the
NTCAN_IOCTL_GET_TIMESTAMP command.

4. Set the bit rate with canSetBaudrate() for the physical CAN port.

5. Configure the message filter using canIdAdd().

6. Use canReadT() or canTakeT() instead of canRead() or canTake() to receive CAN
frames and scale the timestamp with the help of the timestamp frequency determined in
step 3 to your application specific time base.

Page 66 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.10 FIFO Mode
The CAN communication with the NTCAN-API is based on message queues which are
implemented as First-In-First-Out (FIFO) buffers. They contain one or more CAN messages and
can be used for event driven I/O as well as polled I/O. For the event driven CAN communication
this is the only supported mode of operation.

3.10.1 Overview

Each handle is assigned a separate receive and transmit FIFO whose size is defined
independently from each other when the handle is created with canOpen() and can not be
changed later on.

In the Rx-FIFO CAN messages are stored in the chronological order of their reception. By calling a
read operation one or more CAN messages are copied from the handle Rx-FIFO into the
application buffer. By calling a write operation one or more CAN messages are copied from
application buffer into the handle Tx-FIFO and the CAN messages are transmitted on the CAN bus
in their chronological order.

The blocking canRead()/canReadT() call returns with new data until the receive FIFO is empty. In
this case the calling thread blocks and returns immediately as soon as a new CAN message is
available or returns with an error if the configured receive timeout is expired or the request is
aborted by the application. If the Rx-FIFO gets overrun by the driver because the application does
not process the CAN messages fast enough, the oldest CAN message is overwritten and this error
is indicated to the application. The non-blocking canTake()/canTakeT() operates identical to
canRead()/canReadT() but always returns immediately independent of the availability new CAN
messages.

The blocking canWrite()/canWriteT() call blocks the calling thread until all CAN messages have
been transmitted successfully or returns with an error, if a message can not be transmitted within
the configured transmission timeout, in case of an I/O error or the request is aborted by the
application. If the number of CAN messages to be transmitted exceeds the current Tx-FIFO
capacity only the number of messages which fit into the FIFO are transmitted. The application has
to verify the return values to handle this situation. The non-blocking canSend()/canSendT() call
operates identical to canWrite()/canWriteT() but always returns immediately and the CAN
messages are transmitted asynchronously to the calling thread.

If the application does not want to make use of the Rx-FIFO, the FIFO size can be configured to 1.
This means that always the most recent CAN message it stored in the Rx-FIFO.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 67 of 289

CAN Communication with NTCAN-API

3.10.2 Reception and Transmission of CAN-Frames

1. Open a CAN-handle with canOpen().

Configure individual timeouts and FIFO sizes for reception and transmission of CAN
messages. On success a handle which is linked to a physical CAN port is returned.

The configured timeouts can be modified later on by using the
appropriate canIoctl() command but the FIFO sizes are immutable.

2. Set the baud rate with canSetBaudrate() for the physical CAN port.

This might already be done by another thread or process. Thus you are
advised to check the baud rate of the CAN-bus in advance with
canGetBaudrate().

3. Configure the message filter using canIdAdd().

If you want to receive CAN messages, you need to add at least one CAN-ID to the
handle message filter, for transmission this step is not necessary.

4.1. Reception of CAN frames:

Use canRead()/canReadT() or canTake()/canTakeT() to process CAN messages,
which were received from the CAN-bus and passed your configured message filter.

Either call is able to retrieve several CAN messages at once, depending
on the configured Rx-FIFO size and the size of the buffer provided by
the application. Depending on the current available number of received
CAN messages on return the application buffer might not be entirely
filled or even empty. The parameter len contains the number of CAN
messages copied to the application buffer.

4.2. Transmission of CAN frames:

Use canWrite()/canWriteT() or canSend()/canSendT() to transmit CAN frames on
the CAN bus.

Either call is able to send multiple messages. But only canWrite() or
canWriteT() return status information in case of communication errors.

Chapter 8 conatins several self-contained examples which demonstrate transmitting and receiving
CAN CC messages.

Page 68 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.11 Rx Object Mode
In addition to the FIFO mode described in the previous chapter most CAN driver also support an
object mode for polled I/O which is described in this chapter.

3.11.1 Overview

If an application is only interested in the most recent data of a CAN message the handle can be
initialized using the object mode instead of the default FIFO mode. The operation mode for
receiving CAN messages does not influence the transmission of CAN messages with this handle
and the possibilities of configuring a receive filter.

CAN driver versions before 3.x are limited to CAN messages in the Base Frame
Format (11-bit CAN-IDs) later versions also support CAN messages in the
Extended Frame Format (29-bit CAN-IDs).

If the object mode is configured for a handle, only the non-blocking API calls to receive CAN
messages canTake()/canTakeT()/canTakeX() are supported. Using a blocking call
canRead()/canReadT() with a handle configured in object mode will return an error.

In contrast to calling canTake()/canTakeT()/canTakeX() in FIFO mode, the CAN identifiers have to
be initialized in the application buffer before the call, because the device driver uses this
information to determine the CAN messages which are of interest to the application. The amount
and order of messages can be adapted by the application with every call to
canTake()/canTakeT()/canTakeX(), but it has to correspond to the configuration of the message
filter.

As not all driver on all platforms support the object mode the application should
check for the feature flag NTCAN_FEATURE_RX_OBJECT_MODE returned with
canStatus().

To distinguish between a driver which just supports CAN messages with 11-bit
CAN-IDs from a CAN driver which also supports CAN messages with 29-bit
CAN-IDs the application should check for the feature flag
NTCAN_FEATURE_SMART_ID_FILTER returned with canStatus().

To check if the object was updated between consecutive non-blocking receive operations an
application can compare the time-stamp of the CAN messages returened with canTakeT() or
canTakeX() or, starting with driver version V4.1.x, the msg_lost counter of the returned CAN
messages (see chapter 6.2.3).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 69 of 289

CAN Communication with NTCAN-API

3.11.2 Reception of CAN Frames

1. Open a CAN-handle with canOpen() and mode flag NTCAN_MODE_OBJECT.

The parameter rxtimeout will be ignored. The rxqueuesize should be set to the
maximum number of different CAN messages (messages with different CAN-IDs)
the application wants to receive.

2. Set the baud rate as described in chapter 3.3.1 for the physical CAN port.

The bit rate might be already configured by another application. Thus
you are advised to check the current configuration in advance as
described in chapter 3.3.1.

3a. Configure the message filter.

All CAN-IDs, the application is interested in, have to be enabled in the acceptance
filter with e.g. canIdAdd() as described in chapter 3.8.

3b. Create the object internally.

The application must create the objects for the CAN messages of interest with an
initial call of canTake()/canTakeT()/canTakeX() for the respective CAN-IDs.

Because of the different internal driver architecture the step 3a) is only
required for V2.x device driver and the step 3b) only for V3.x/V4.x
device driver. If the application does not want to implement a different
behavior based on the driver version it can perform both steps
independent of the driver version.

4. Reception of CAN frames.

Use canTake()/canTakeT()/canTakeX() (obviously blocking receive calls like
canRead() makes no sense in this mode) to retrieve the most recent data of a
certain CAN message. To indicate the IDs of the message the application is
interested in, the identifier (id) of the respective CMSG/CMSG_T/CMSG_X structure(s)
have to be initialized before calling canTake()/canTakeT()/canTakeX().

Please refer to chapter 8.3 for a self-contained example using the Rx Object Mode to receive CAN
CC messages.

Page 70 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.12 Tx Object Mode
The Tx Object Mode implements an application configurable dynamic set of objects which can be
transmitted autonomously by the driver. This feature is used for 2 purposes:

➢ Scheduling Mode for CAN messages
➢ Autoanswer Mode for CAN Remote Request (RTR) messages.

As the driver or the (active) CAN board is transmitting the messages autonomously without the
need for application support they are transmitted with a very low jitter with respect to the cycle time
(Scheduling Mode) or a very fast response time (Autoanswer Mode).

The Tx Object Mode requires CAN driver V3.x or later.

3.12.1 Scheduling Mode

Scheduling enables an application to schedule the transmission of CAN frames at a certain point of
time in the future and it is possible to define ‘jobs’ which do this cyclically. For this reason the
scheduling mode is ideally suited for (cyclic) CAN message transmission with a very low jitter.

There are no dedicated functions in the NTCAN-API which create, configure and destroy the Tx-
objects used for scheduling, instead configuration and update is performed with canIoctl() and the
NTCAN_IOCTL_TX_OBJ_XXX group of commands. A TX Object might either represent a CMSG or a
CMSG_X.

Different individual scheduling sets can be defined using different CAN handles and a scheduling
set is always related to the CAN handle. Scheduling sets can only be defined or modified while
scheduling is stopped for this CAN port. If the handle related to a scheduling set is closed while
scheduling is active the scheduling is implicitly stopped and all related resources are released. If a
message can not be transmitted within it’s interval it is silently discarded.

!! Only ONE scheduling set per CAN port is allowed to be active !!

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 71 of 289

CAN Communication with NTCAN-API

The following steps are necessary to setup a scheduling set for CAN CC communication. For CAN
FD similar steps with the CAN FD enabled API calls and objects have to be performed.

1. Create a NTCAN_HANDLE with canOpen().

2. Set the bit rate with canSetBaudrate() for the physical CAN port.

This might be already done by another thread or process. Thus you are
advised to check the baud rate of the CAN bus in advance with
canGetBaudrate().

3. Create TX Objects with NTCAN_IOCTL_TX_OBJ_CREATE / NTCAN_IOCTL_TX_OBJ_CREATE_X
commands with canIoctl(). The TX Objects are defined based on their CAN-ID and the
physical CAN port referenced by the CAN handle.

Even for different scheduling sets the driver implementation guarantees
that there can always be one TX Object per CAN-ID and CAN port.

4. Initialize the TX Objects with NTCAN_IOCTL_TX_OBJ_SCHEDULE commands via canIoctl().
Every TX Object can have an individual I/O configuration with respect to transmission time,
transmission type, etc. (refer to description of CSCHED for all configuration options).

5. Start the scheduling for this set with the NTCAN_IOCTL_TX_OBJ_SCHEDULE_START command
for canIoctl(). If the start time for this scheduling set is not absolute it is considered to be
relative to the point of time of this API call. Once the scheduling for this set is active a
change of the configuration described in the previous two steps is no longer possible until
the scheduling for this set is stopped with the NTCAN_IOCTL_TX_OBJ_SCHEDULE_STOP
command for canIoctl() in order to guarantee a deterministic transmission.

6. Updating the Tx Objects’s data of a scheduling set is possible at any time using the
commands NTCAN_IOCTL_TX_OBJ_UPDATE / NTCAN_IOCTL_TX_OBJ_UPDATE_X for
canIoctl(). An update in combination with an out-of-order transmission is triggered by using
the respective standard blocking or non blocking transmit API calls (see chapter 4.4).

7. Disabling or (re-)enabling a scheduled Tx Object is possible at any time with
NTCAN_IOCTL_TX_OBJ_SCHEDULE commands and the respective flags via canIoctl().
Disabling means that the Tx Object remains schedulded in the temporal grid defined by the
scheduling set but the transmission is suspended for the time being.

8. Removing a Tx Objects from a scheduling set is possible using the commands
NTCAN_IOCTL_TX_OBJ_DESTROY / NTCAN_IOCTL_TX_OBJ_DESTRY_X for canIoctl(). The
latter is only possible if scheduling is stopped.

Chapter 8.8 shows a complete example how to setup a scheduled Tx
object.

Page 72 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.12.2 Autoanswer Mode

The Autoanswer Mode enables an application to define TX Objects which are sent automatically
(by the device driver) on reply to a CAN Remote Request message on the related CAN-ID. This
mechanism is much faster than answering requests in the application and the data of the object
can be updated asynchronously without a relation to the request frequency.

3.12.2.1 Use case

Imagine a small application in an autonomous CAN thermometer. You receive temperature values
every second from an A/D-converter and want your thermometer to present the temperature on the
CAN bus on request. Using the Autoanswer Mode this is quite simple. All you have to do, is to
generate an Autoanswer TX Object and afterward update the data of this object every time you’re
A/D-converter has generated a new value.

3.12.2.2 Configuration

The following steps are necessary to setup an autoanswer CAN CC TX Object. The CAN FD
standard does not support the RTR mechanism.

1. Create a NTCAN_HANDLE with canOpen().

2. Set the bit rate with canSetBaudrate() for the physical CAN port.

This might be already done by another thread or process. Thus you
are advised to check the baud rate of the CAN bus in advance with
canGetBaudrate().

3. Configure the message filter using canIdAdd(). You have to enable at least the one CAN-ID
you want to be answered automatically on RTR.

4. Create an Autoanswer TX Object calling canIoctl() with NTCAN_IOCTL_TX_OBJ_CREATE. TX
Objects are referenced by their CAN-ID. You can create one TX Object per physical net and
CAN-ID.

5. Set the objects into ‘Auto Answer’ mode (NTCAN_IOCTL_TX_OBJ_AUTOANSWER_ON)

6. Use canIoctl() with NTCAN_IOCTL_TX_OBJ_UPDATE to provide new data to your Autoanswer
object as often and anytime you like.

It is possible to use the Autoanswer Mode in combination with e.g.
normal FIFO-modes so the data is also updated implicitly by using a
respective standard blocking or non blocking transmit API call (see
chapter 4.4).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 73 of 289

CAN Communication with NTCAN-API

3.13 Error Injection

The Error Injection Module is an extension to an FPGA based CAN controller board. Via several
trigger modes it is possible to generate all kinds of errors on CAN networks. This implies the
possibility to test existing systems with reproducible CAN errors. Depending on the configuration,
a CAN controller can have several units, so it is possible to create complex error scenarios by
combining these units. The concepts and some use cases of error injection are described in /6/.

The Error Injection Module is not available on every CAN controller board, the
application should check for the feature flag NTCAN_FEATURE_ERROR_INJECTION
returned with canStatus().

3.13.1 Overview

The Error Injection is an additional module on FPGA based CAN boards. The Error Injection
Module is divided into several Error Injection Units. These units can be assigned to the different
esdACC Controllers. Figure 13 shows a stripped-down overview of the FPGA structure. The Error
Injection is configured in the same way as the esdACC CAN controllers. CAN signals and states
are available by the esdACC Controller. The outputs of both are combined to one output signal. So
there are no changes in the wire connection necessary.

As already mentioned, the Error Injection Module consists of several units. An Error Injection Unit
(shown in figure 14) is composed of a sending module (CAN TX) and several Trigger Units (Trigger
...). With the CAN TX module is it possible to send a user defined bit stream without CRC
calculation or bit stuffing. There is no CAN bus feedback, so the transmission will not be
terminated, if CAN error Frames are sent. This sending module can be triggered by five Trigger
Units.

Page 74 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 13: Overview of esdACC Error Injection

esdACC Error Injection

Hardware Interface

CAN Bus

CAN Communication with NTCAN-API

Trigger Pattern Matching
This module can be searched for a user defined bit stream. If the bit stream matched on the
sampled CAN bit stream the CAN TX is triggered.

Trigger Arbitration
This module sends via the CAN TX module a bit stream under the rules of arbitration. It is
possible to send correct CAN frames or CAN frames with errors.

Trigger Timestamp
Trigger the CAN TX Module via a timestamp .

Trigger Field Position
It can be defined a position in a CAN frame in the coding of the ECC register (SJA1000)

Trigger external Input
Each Error Injection Unit has a trigger out signal, this Signal can be an external Trigger
source for this Trigger module. Via a bitmask can be chosen, which Trigger Unit is the
trigger source. Additionally it is possible to trigger via a REAR IO pin.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 75 of 289

Figure 14: Error Injection Unit

Trigger Pattern Matching

Trigger Arbitration

Trigger Timestamp

Trigger Field Position

C
A

N
 T

X

Trigger Ext. Input

CAN Communication with NTCAN-API

3.13.2 Usage

In this chapter the typical steps to use the Error Injection are summarized:

1. Create a NTCAN_HANDLE with canOpen().

2. Set the bit rate with canSetBaudrate() for the physical CAN port.

This might be already done by another thread or process. Thus you are
advised to check the baud rate of the CAN bus in advance with
canGetBaudrate().

3. Create an Error Injection Unit with NTCAN_IOCTL_EEI_CREATE command with canIoctl().
The Error Injection Units are defined based on their CAN-ID and the physical CAN port
referenced by the CAN handle. The call will return a handle to the newly created Error
Injection Unit.

4. Configure the Error Injection Unit with NTCAN_IOCTL_EEI_CONFIGURE command with
canIoctl(). The argument is a NTCAN_EEI_UNIT structure which is passed through a
pointer.

5. With NTCAN_IOCTL_EEI_STATUS command as argument for canIoctl() the current status of
the Error Injection Unit will be queried. The argument is a NTCAN_EEI_STATUS structure
which is passed as a pointer.

6. If the Error Injection Unit completed its tasks, it can be reconfigured or released with the
NTCAN_IOCTL_EEI_DESTROY command.

Page 76 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.14 Timestamped TX

3.14.1 Overview

At a first glance Timestamped TX enables you to transmit CAN frames at a certain time using
canSendT() and canWriteT() functions. But this feature goes deeper:

➢ Internally the driver will use this mechanism for the scheduling in Scheduling Mode

➢ On CAN hardware supporting this feature, as for example esd electronics's CAN/400 and
CAN/402 family, Timestamped TX elevates the precision of your TX jobs up to plus/minus
one Bit-time (assuming conditions on CAN bus allow such transmissions)

➢ Additional high priority TX FIFO (only mutually exclusive to timestamped transmission)

The Timestamped TX mode is available on certain CAN controller boards only,
the application needs to check for feature flag NTCAN_FEATURE_TIMESTAMPED_TX
returned with canStatus()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 77 of 289

Figure 15: Timestamped TX with canSendT() and canWriteT() on CAN/40x family

CAN Communication with NTCAN-API

3.14.2 General rules and behaviour

• Timestamped TX won't break any existing code nor any of your applications. If you use
canOpen() without NTCAN_MODE_TIMESTAMPED_TX flag, canSendT() and canWriteT() will
work exactly the same way as they used prior to Timestamped TX and exactly as
canSend() and canWrite() do, except that they will accept CMSG_T structures

• Time of transmission is specified as an absolute time in timestamp format
• Frames with timestamp zero will be transmitted through the normal TX-queue and TX-FIFO,

regardless of the function used or flags set on canOpen()
• CAN frames scheduled for transmission in Timestamped TX mode will be enqueued in

chronological order into the TX-TS-Queue
• Frames scheduled on the same point in time within one TX job (one canSendT() or

canWriteT() call) will keep their given order
• Frames scheduled on the same point in time from different TX jobs (multiple different

canSendT() or canWriteT() calls) will be transmitted in the order of the posting of these
jobs

• TX-TS-Window (see Figure 15):
◦ A user configurable time (default is hardware dependent, usually a “few” milliseconds)

before the actual planned time of transmission the driver will move frames into the so
called TX-TS-Window

◦ CAN Frames within the TX-TS-Window will not be reordered
◦ New frames can be appended to the TX-TS-Window, only
◦ New frames will never be interleaved with frames already residing in the TX-TS-Window
◦ From the TX-TS-Window the driver will provide the CAN hardware with CAN frames for

transmission
◦ This mechanism allows to accommodate different data busses (e.g. PCIe, USB,...),

operating system latencies and hardware capabilities
◦ CAN hardware providing hardware FIFOs or multiple transmission objects will be fed

with multiple CAN frames from the driver
• An arbiter will prioritize CAN frames from the TX-TS path which are ready to send over

frames from the normal TX path (t >= tx with x=[1..m] in Figure 15)
• CAN hardware supporting this mechanism in hardware (like the CAN/400-family) reaches

an accuracy of plus/minus one Bit-time, when sending onto a free CAN bus (tD in Figure 15)
• The arbiter won't take a frame prior to the programmed time of transmission, even if the

time would be reached, while a frame from the normal TX-FIFO is still in the process of
transmission (see CMt2 in Figure 15)

• Frame timeouts (see below) are available on certain hardware only (e.g. CAN/400 and
CAN/402 family)

• All known abort mechanisms (TX timeout, NTCAN_IOCTL_ABORT_TX, …) work with
Timestamped TX as well

Page 78 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.14.3 Timestamped TX via canSendT() and canWriteT()

1. Open a NTCAN handle via canOpen() with NTCAN_MODE_TIMESTAMPED_TX flag set.
2. Write the desired time of transmission into the timestamp field of your CMSG_T structures

before feeding them into canSendT() or canWriteT().

Using canWriteT() in this mode will behave exactly as one should expect. It
will return only after the last frame of the job has been transmitted
(depending on your chosen points of transmission this might be well in the
future...).

canWriteT() will still return the number of successfully transmitted frames,
but as the order of frames depends on the given timestamps, the returned
value can't be mapped directly to your given CMSG_T array, if the
messages were not in chronological order.

Timestamped TX is fully compliant with /2/ and does not break any CAN-
rules of transmission. A scheduled frame will only be transmitted on time, if
the bus is idle and the CAN priority (CAN-ID) qualifies for transmission at
that certain moment. Otherwise it's transmission is delayed until correct
conditions are given or the transmission is aborted (e.g. by timeout).

3.14.4 High priority TX FIFO

If you use Timestamped TX in the same way as described before, but instead of using timestamps
in the future you use timestamps in the past (everything except zero is perfectly fine, one might be
a good timestamp), the frames will be transmitted as soon as possible with the advantage of
having a higher priority than the frames send with canSend() or canWrite().

3.14.5 TX Object mode scheduling

No additional efforts need to be taken. The TX object mode will automatically profit from the
increased scheduling precision, if your CAN hardware supports Timestamped TX.

3.14.6 Frame timeout

On certain hardware it is possible to configure a “per frame timeout” via canIoctl(). The following
rules apply:

• The frame is aborted, if the timeout (tA in Figure 15) is reached at the moment the frame
would be taken from the TX-TS-FIFO

• The frame will not be aborted, when the timeout will only be reached, while it is already in
the process of transmission

• Frame timeouts are specified in timestamp units (see NTCAN_IOCTL_GET_TIMESTAMP_FREQ
in canIoctl())

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 79 of 289

CAN Communication with NTCAN-API

3.15 Transmitter Delay Compensation (TDC)

3.15.1 Overview

The basic idea to reach higher data rates with CAN FD compared to the CAN CC is the
introduction of a high speed data phase (after an arbitration phase with the nominal bit rate) with
only one CAN node transmitting data while all other nodes receiving. During this time the
propagation delay of CAN CC communication does not limit the maximum data rate for the
receiving nodes as they do not drive any bits in this phase.

For the transmitting node, however, the basic operating principle of CAN must be adhered to, that
a transmitter receives its own data and indicates an error if a difference is detected at the sampling
point of a bit. This contradicts the data phase performance improvement of CAN FD described
above, as the CAN bit time in this phase might even become smaller than the Transmitter (Loop)
Delay (TD), which makes a comparison within the current bit time interval impossible. The TD
consists of the following individual (possibly asymmetrical Rx and Tx) delays:

• The CAN FD controller internal delay
• The CAN transceiver delay
• The galvanic isolation delay (see /8/ for further details).

To overcome this problem for the transmitting node in the data phase /2/ introduces a Transmitter
Delay Compensation (TDC) mechanism which defines a Secondary Sample Point (SSP) which
is delayed in a way that the transmitted bit can be correctly compared with the received one. The
position of the SSP is determined, as shown in the picture below, as an offset from the start of the
bit time in a multiple of minimum time quanta (mtq) which are usually CAN clock periods:

Page 80 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 16: Transmitter Delay Compensation (TDC) and Second Sample Point (SSP)

CAN Communication with NTCAN-API

In the data phase the transmitting node keeps the value of the current transmitted bit internally until
its SSP is reached to compare it with the actually received bit value. For the SSP position within
the transmitted bit, dynamic effects like transceiver asymmetries, temperature drift as well as
ringing on the bus have to be considered. According to /8/ the SSP position can be set to an
arbitrary position within the received bit after the CAN bus signal is stable.

The TD can either be calculated based on the individual hardware components data sheets (which
just covers static effects for a delay) or it is measured for each CAN FD frame before the start of
the data phase to compensate dynamic effects, too, as shown in Figure 16. The measurement
mechanism resets the TD Counter in the arbitration phase when the node starts to drive the
(dominant) res bit after the (recessive) FDF bit on the CAN FD controller TX pin. The TD counter is
stopped as soon as the dominant level is received at the CAN FD controller RX pin. The resulting
counter value is the measured TD.

The measurement mechanism described above moves the SSP to the start of the time window the
CAN bus signal of the received bit becomes stable. In order to move it to a more optimal position
within this time window a Second Sample Point Offset (SSPO) can be added, so the effective
Second Sample Point (SSP) is set to :

SSP := TD + SSPO

According to /1/ the TDC mechanism can be enabled or disabled. It must be
enabled for all data phase bit rates with bit times smaller than the transmitter
loop delay (which is usually above 1 Mbit/s). With active TDC the data phase
bit rate pre-scaler must be configured to one or two (see /2/).

Some CAN FD controllers support a manual mode which ignore the measured TD and just use a
configurable offset to define the SSP position.

Some CAN FD controllers support a filter to prevent that a dominant glitch inside the FDF bit
causes a premature end of the TD delay measurement which lead to a wrong SSP position and in
consequence may lead to the indication of a bit error within the data phase. The filter is
implemented by considering a Transmitter Delay Compensation Filter (TDCF) value as a minimum
counter value which has to be exceeded before the TD measurement is stopped.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 81 of 289

CAN Communication with NTCAN-API

3.15.2 SSP Configuration

If a CAN FD bit rate is configured with the NTCAN-API (see chapter 3.3.1), the TDC mechanism is
enabled in the TDC Automatic Mode and the SSP used in the transmitting mode is automatically
configured to the SPO which is the configured data phase SP in the receiving mode. Usually it is
not required to adapt this SSP configuration in this default mode.

The table below contains a description of the timing parameters which are relevant for the NTCAN
TDC configuration mechanism. The basic unit for all parameters is the Minimum Time Quanta
(mtq) and not the Time Quanta (tq) which is used for the CAN bitrate configuration (see appendix
Bus Timing).

Parameter Description

SPO The Sample Point Offset is the configured data phase Sample Point for a
receiving node in mtq.

SSP The Second Sample Point (SSP) is the number of mtq between the start of
the transmitted bit and the secondary sample point. It is the sum of TD and
SSPO.

SSPO The Second Sample Point Offset is added to the measured TD to place the
Secondary Sample Point (SSP) at an appropriate position.

SSPS The Second Sample Point Shift is an application defined shift value in mtq to
move the NTCAN defined default SSP (derived from TD and SPO in
automatic mode).

TD The Transmitter Delay is the measured physical delay in mtq of a
transmitting node receiving its own bit stream.

Page 82 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.15.2.1 TDC Automatic Mode

The configuration of the SSP in the NTCAN TDC Automatic Mode is shown in the picture below as
a data phase with a configured data rate that leads to a CAN bit time smaller than the transmitter
delay.

The CAN FD Controller measures constantly the dynamic Transmitter Delay (TD) in the arbitration
phase as described in chapter 3.15.2.1. The NTCAN driver or firmware will automatically configure
a Second Sample Point Offset (SSPO) identical to the Sample Point Offset (SPO).

SSP = TD + SSPO = TD + (SPO + SSPS)

The application can adapt this default SSP via the configurable Second Sample Point Shift (SSPS)
value (default: 0). As the latter is defined as a signed value in TDC Automatic Mode the SSP can
be shifted in a positive or negative direction.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 83 of 289

Figure 17: SSP configuration in NTCAN TDC Automatic Mode.

CAN Communication with NTCAN-API

3.15.2.2 TDC Manual Mode

The configuration of the SSP in the NTCAN TDC Manual Mode is shown in the picture below as a
data phase with a configured data rate that leads to a CAN bit time smaller than the transmitter
delay.

The CAN FD Controller will ignore the internally measured the Transmitter Delay (TD) in the
arbitration phase and the NTCAN driver or firmware will not automatically configure a Second
Sample Point Offset (SSPO) identical to the Sample Point Offset (SPO). The effective default SSP
without any further configuration is 0 mtq.

SSP = SSPS

The application must define the effective SSP via the Second Sample Point Shift (SSPS). The
application must consider the TD given in the data sheets and an SSPO. In the TDC Manual Mode
the SSPS is defined as an unsigned value as a shift in negative direction makes no sense.

Page 84 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 18: SSP configuration in NTCAN TDC Manual Mode.

CAN Communication with NTCAN-API

3.15.2.3 TDC Mode Parameters

The NTCAN implements an intelligent automatic mode which defines an optimal SSP based on the
continuously measured TD and the data phase bit rate configuration parameters. This default SSP
can be optionally adapted or the automatic can be disabled at all with canSetBaudrateX() which is
usually not required.

The current (configuration) parameters of the TDC mechanism can be requested via canIoctl()
with NTCAN_IOCTL_GET_FD_TDC.

Bit Read Name Description

31..30 RW TDCM The Transmitter Delay Compensation Mode (TDCM) can have
one of the following values:

➢ NTCAN_TDC_MODE_AUTO: See chapter 3.15.2.1.

➢ NTCAN_TDC_MODE_MANUAL: See chapter 3.15.2.2.

➢ NTCAN_TDC_MODE_OFF: TDC disabled. In this mode the bit
time must not be smaller than the TD.

Default: NTCAN_TDC_MODE_AUTO

29..23 RO SSPO Second Sample Point Offset in mtq
0: Invalid
1..63/127 (for TDCEXT = 0/1)

22..16 RW SSPS Second Sample Point Shift in mtq

NTCAN_TDC_MODE_AUTO:
-32..31 (TDCEXT = 0) / -64..63 for (TDCEXT = 1)

NTCAN_TDC_MODE_MANUAL :
0..63 (TDCEXT = 0) / 0..127 for (TDCEXT = 1)

Note: In NTCAN_SET_TDC the values for the two different TDC
modes are mapped to separate variables with appropriate data
type signedness.

15 RO TDCI TDC Mechanism Inactive (0 = Active / 1 = Inactive)

14..8 RO TDCF Transmitter Delay Compensation Filter in mtq
0..63 (for TDCEXT = 0) / 0..127 for (for TDCEXT = 1)

7 RO TDCEXT 0 = Register sizes are 6 bit (According to /1/)
1 = Register sizes are 7 bit (According to /8/)

6..0 RO TD Transmitter Delay in mtq
0..63 (for TDCEXT = 0) / 0..127 for (for TDCEXT = 1)

Table 8: Structure of the NTCAN_IOCTL_GET_FD_TDC argument.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 85 of 289

CAN Communication with NTCAN-API

The macros NTCAN_GET_TDC_FILTER, NTCAN_GET_TDC_SSPS, NTCAN_GET_TDC_TD ease evaluating
a returned value.

Note: The legacy command NTCAN_IOCTL_SET_FD_TDC to configure TDCM and SSPS is still
supported for backward compatibility. An application which adapts the TDC mechanism that way
must set all fields with RO access in the table above to 0.

Page 86 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.16 Switchable Bus Termination

3.16.1 Overview

According to /2/ the physical twisted-pair wires of a CAN network requires a specific impedance,
typically provided by a 120 Ohm resistors on each end of the bus. Some esd electronics CAN
interfaces allow to activate/deactivate a bus termination resistor for each physical CAN port with
the NTCAN API.

The Switchable Bus Termination support is only availabe for a subset of the esd
electronics CAN boards. An application should check for the feature flag
NTCAN_FEATURE_PROG_TERM returned with canStatus().

To prevent an erroneous bus termination please refer to the hardware manual of
your CAN board for the following implementation details of the Switchable Bus
Termination:

➢ Can the software configuration be overridden by a manual configuration ?
➢ Is the default state an activated or deactivated termination resistor ?
➢ Remains a software activated resistor active while the CAN hardware is

unpowered ?

3.16.2 Usage

Do the following steps to activate/deactivate the CAN bus termination:

1. Create a NTCAN_HANDLE with canOpen() for the physical CAN port.

2. Activate or deactivate the CAN bust termination resistor using the arguments
NTCAN_TERM_ENABLE respectively NTCAN_TERM_DISABLE for the he command
NTCAN_IOCTL_SET_TERM_CFG passed via canIoctl().

3. Set the bit rate with canSetBaudrate() or canSetBaudrateX() with this handle and start
transmitting or receiving messages

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 87 of 289

CAN Communication with NTCAN-API

3.17 GPIO Support

3.17.1 Overview

Some esd electronics CAN interfaces allow to control additional General Purpose Input/Output
(GPIO) ports with the NTCAN API.

➢The GPIO hardware support is only availabe for a subset of the esd electronics
CAN boards. An application should check for the feature flag
NTCAN_FEATURE_GPIO returned with canIoctl(NTCAN_IOCTL_GET_INFO) in
NTCAN_INFO::features.

The NTCAN API supports the control of up to 32 I/O channels. The configuration of the I/O
channels is set or can be requested on a per channel basis via canIoctl() based on the
NTCAN_GPIO_CFG structure.

The state of the GPIO channels is updated or requested based on the NTCAN Events mechanism.
This allows a polled as well as event based handling of the GPIOs. There are dedicated NTCAN
Events to:

➢ Set the state of the channels configured as digital outputs (NTCAN_EV_GPIO_SET_DO)
➢ Get the state of the channels configured as digital outputs (NTCAN_EV_GPIO_GET_DO)
➢ Get the state of the channels configured as digital inputs (NTCAN_EV_GPIO_GET_DI)
➢ Change the direction of an I/O channel (NTCAN_EV_GPIO_SET_DIR)

The common state of all up to 32 I/Os is set or returned in the EV_GPIO_DATA structure which
allows to define which channels are included/excluded by the command with a bitmask.

GPIO related I/O operations are only supported on a NTCAN handle openend for
the logical base net of the CAN hardware and will fail on all other logical nets.

Page 88 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.17.2 Polling mode

Do the following steps to control the GPIO ports in a polling mode:

1. Create a NTCAN_HANDLE with canOpen() in FIFO mode with the logical net number of the
base net of the CAN board.

2. Configure each I/O channel with canIoctl() and the NTCAN_IOCTL_SET_GPIO_CFG
command. Set the member irq_mode in the NTCAN_GPIO_CFG structure to
NTCAN_GPIO_CFG_IRQ_NONE to enforce the polling operation mode.

3. Enable the NTCAN Event NTCAN_EV_GPIO_GET_DI in the handle acceptance filter with
canIdAdd() together with other NTCAN events and CAN messages you want to receive
with this handle.

4. Set the state of the digital outputs with a transmit operation like canSend() sending the
NTCAN_EV_GPIO_SET_DO event with a configured EV_GPIO_DATA structure.

5. Get the state of the digital inputs with a transmit operation like canSend() sending the
NTCAN_EV_GPIO_GET_DI event which triggers the device driver to store the current state as
NTCAN_EV_GPIO_GET_DI event in the handle Rx FIFO which can be polled with canTake().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 89 of 289

CAN Communication with NTCAN-API

3.17.3 Event based mode

Do the following steps to control the GPIO ports in an event based mode:

1. Create a NTCAN_HANDLE with canOpen() in FIFO mode with the logical net number of the
base net of the CAN board.

2. Configure each I/O channel with canIoctl() and the NTCAN_IOCTL_SET_GPIO_CFG
command. Set the member irq_mode in the NTCAN_GPIO_CFG structure to a value different
from NTCAN_GPIO_CFG_IRQ_NONE to enforce an event based operation mode.

3. Enable the NTCAN Event NTCAN_EV_GPIO_GET_DI in the handle acceptance filter with
canIdAdd() together with other NTCAN events and CAN messages you want to receive
with this handle.

4. Set the state of the digital outputs with a transmit operation like canSend() sending the
NTCAN_EV_GPIO_SET_DO event with a configured EV_GPIO_DATA structure.

5. The state of the digital inputs is stored by the device driver on change as
NTCAN_EV_GPIO_GET_DI event in the handle Rx FIFO which can be received with a receive
operation as canTake(). Polling the NTCAN_EV_GPIO_GET_DI event concurrently, as
described in the previous section, is still possible.

Page 90 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

3.18 Operating System Support
This chapter gives an overview on which esd electronics CAN board is supported by which
operating system (OS).

In the headings of the tables 10 to 12 in this chapter actively supported OS (versions) are written
with bold faces and legacy OS (versions) are written with grey faces.

Attention!

All further developments for OS (or OS versions) categorised as legacy by esd
electronics have been discontinued. In most cases the latest version of the
device driver files for the respective OS (version) can still be made available
but without any technical support from esd electronics.

As described in chapter 2.1 every NTCAN implementation exports the same set of API functions to
do basic CAN-I/O. The individual implementation for a certain OS (version) and CAN board might
provide additional capabilities (e.g. hardware timestamps, error injection, ...) which are not
supported by other implementation because of hardware and/or OS limitations.

The differences between individual driver implementations with respect to their capabilities is
covered with feature IDs which refer to table 9 on the next page. A simple '+' means that the
platform is supported but no feature of table 9 applies and a '-' means that the hardware is not
supported on this platform.

The background colour of the cells indicates if the hardware is supported with a driver version 1.x,
2.x, 3.x or 4.x (see chapter 2.2) according to the following schema.

Driver V 4.x Driver V 3.x Driver V 2.x Driver V 1.x

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 91 of 289

CAN Communication with NTCAN-API

Feature
ID

Description

1 CAN hardware is only supported by a legacy Windows NT driver on Win 2000/XP.

2 The CAN driver is distributed as source and has to be build for the customer’s system

3 No driver support for EFF (29-bit CAN-IDs). Hardware with the CAN controller Philips
82C200 (manufactured until December 1999) does not support 29-bit-IDs.

4 Support for asynchronous I/O on Windows (Overlapped I/O)

5 Support for RxObject Mode (see chapter 3.11)

6 Support for Listen Only Mode (see chapter 3.3.2)

7 Support for Frame Scheduling (see chapter 3.12)

8 Support for Timestamps (see chapter 3.9)

9 Support for 29-bit ID filter mask (see chapter 3.8.2.2)

10 Support for a firmware update (see /1/).

11 Support for Smart Disconnect from CAN bus (see chapter 3.3.8)

12 Support for Baud Rate Change Event (see chapter 3.7)

13 Support for Automatic Baud Rate Detection (see chapter 3.3.7)

14 Support for Extended CAN Bus Diagnostic (see chapter 3.6.2)

15 Support for Error Injection (see chapter 3.13)

16 Support for Timestamped Tx (see chapter 3.14).

17 The CAN hardware is supported by a Linux-CAN (aka SocketCAN) driver which is part
of Linux since kernel 2.6.25. If the device is not additionally supported by a NTCAN
driver a wrapper library is available which maps from NTCAN to Linux-CAN API.

18 Support for CAN FD (see chapter 1.4).

19 LIN support for enabled hardware (see chapter 1.5). Note: Even if the device driver
supports LIN the CAN hardware must also support the LIN add-on !

20 Support for the Disable Automatic Retransmission (DAR) mode (see chapter 3.3.6)

21 Support for the Transmit Pause mode (see chapter 3.3.5)

Table 9: Driver Features

Page 92 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

The table below shows the CAN driver capabilities for Windows Operating Systems.
CAN

Module
Order no. Non Real-time Windows Operating Systems Real-time

Win
9x / ME

Win
NT

Win
XP / Vista

Win
7/8

Win
10 / 11

RTX RTX64

EtherCAN C.2050.xx - - 9, 10, 13 9, 10, 13 9, 10, 13 - -

EtherCAN/2 C.2051.xx - - 6, 8, 10, 12,
13, 14

6, 8, 10, 12,
13, 14

6, 8, 10, 12,
13, 14

- -

CAN-USB/Mini C.2064.xx 4, 5, 6,
8, 9, 10,
11, 12

- 4, 5, 6, 8, 9,
10, 11, 12

4, 5, 6, 8, 9,
10, 11, 12

- - -

CAN-USB/2 C.2066.xx - - 4,5,6,8,9,10,
11,12,13,14

4,5,6,8,9,10,
11,12,13,14

4,5,6,8,9,10,
11,12,13,14

- -

CAN-USB/Micro C.2068.xx - - 4, 5, 6, 8, 9,
10, 11, 12, 13

4, 5, 6, 8, 9,
10, 11, 12, 13

4, 5, 6, 8, 9,
10, 11, 12, 13

- -

CAN-USB/400 C.2069.xx - - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15,16

4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15,16

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 15, 16

- -

CAN-USB/3-FD C.2076.62 - - - - 4,5,6,8,9,10,
11,12,13,14,
18,20,21

- -

CAN-PCC C.2422.xx 3, 4, 5 3, 4, 5 1, 3, 4, 5 - - - -

CAN-ISA/200
CAN-PC104/200

C.2011.xx
C.2013.xx

4, 5, 9 3, 4, 5,
9

1, 3, 4, 5, 9 - - - -

CAN-ISA/331
CAN-PC104/331

C.2010.xx
C.2012.xx

4, 5, 9,
10

4, 5, 10,
16

1, 4, 5, 9, 10 - - - -

CAN-PCI/200
CPCI-CAN/200

C.2021.xx
C.2035.xx

4, 5, 16 4, 5, 16 4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

5, 6, 7, 8, 9,
11, 12, 13, 14

5, 6, 7, 8, 9,
11, 12, 13,
14

CAN-PCIe/200
CAN-PCI104/200

C.2042.xx
C.2046.xx

- - 4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

5, 6, 7, 8, 9,
11, 12, 13, 14

5, 6, 7, 8, 9,
11,12,13,14

CAN-PCI/266
PMC-CAN/266

C.2036.xx
C.2040.xx

- 4, 5, 16 4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

4, 5, 6, 8, 9,
11, 12, 13, 14

5, 6, 7, 8, 9,
11, 12, 13, 14

5, 6,7,8,9,
11,12,13,14

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

C.2020.xx
C.2027.xx
C.2025.xx

4, 5, 9,
10

4, 5, 9,
10

4, 5, 8, 9, 10,
12

4, 5, 8, 9, 10,
12

4, 5, 8, 9, 10,
12

5, 6, 7, 8, 9,
11, 12

-

CAN-PCI/360
CPCI-CAN/360

C.2022.xx
C.2026.xx

4, 5, 9,
10

4, 5, 9,
10

4, 5, 8, 9, 10 4, 5, 8, 9, 10 4, 5, 8, 9, 10 5, 7, 8, 9 -

CAN-PCI/400
CAN-PCIe/400
CPCI-CAN/400
PMC-CAN/400

C.2048.xx
C.2043.xx
C.2033.xx
C.2047.xx

- - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15,
16

4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15,
16

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 15, 16

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 15

5, 6, 7, 8, 9,
10, 11, 12,
13, 14

CAN-PCIe/402
CAN-PCI/402
CAN-PCIeMini/402
CPCI-CAN/402
CPCIserial-CAN/402

C.2045.xx
C.2049.xx
C.2044.0x
I.2332.xx
I.3001.xx

- - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 16

4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 16,

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 16, 20

5, 6, 7, 8, 9,
10, 11, 12,
13, 14

5, 6, 7, 8, 9,
10, 11, 12,
13, 14,

CAN-PCI/402-FD
CAN-PCIe/402-FD
CAN-PCIeMini/402-FD
CAN-PCIeMiniHS/402
CAN-M.2/402-2-FD
CPCIserial-CAN/402-FD
PMC-CAN/402-FD
XMC-CAN/402-FD

C.2049.xx
C.2045.6x
C.2044.6x
C.2054.6x
C.2074.6x
I.3001.6x
C.2028.xx
C.2018.xx

- - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 16,

18

4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 16,
18,

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 16, 18, 19,
20, 21

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 18

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 18,
19, 20,21

CPCIserial-CAN/402-FD
PMC-CAN/402-FD
XMC-CAN/402-FD

C.2045.9x
C.2028.xx
C.2018.xx

- - - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 16,
18,

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 16, 18, 20,
21

- 5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 18,
20,21

CAN-PCI/405 C.2023.xx - - 4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14

4, 5, 6, 7, 8,
9, 10, 11, 12,
13, 14

4, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14

5, 6, 7, 8, 9,
10, 11, 12,
13, 14

-

Table 10: CAN driver capabilities (Windows operating systems)

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 93 of 289

CAN Communication with NTCAN-API

The table below shows the CAN driver capabilities for UNIX Operating Systems.

CAN
Module

Order no. Unix Operating Systems

Linux
2.4.x / 2.6.x /

3.x/4.x/5.x/6.x
(32-/64 Bit)

LynxOS PowerMAX OS Solaris SGI-IRIX6.5 AIX

EtherCAN C.2050.xx 9, 10, 13 - - - - -

EtherCAN/2 C.2051.xx 6, 8, 10, 12, 13,
14

- - - - -

CAN-USB/Mini C.2064.xx - - - - - -

CAN-USB/Micro
CAN-USB/2

C.2068.xx
C.2066.xx

17 - - - - -

CAN-USB/400 C.2069.xx - - - - - -

CAN-USB/3-FD C.2076.62 - - - - - -

CAN-ISA/200
CAN-PC104/200
(SJA1000 version)

C.2011.xx
C.2013.xx

5, 6, 7, 8, 9, 11,
12, 13, 14

- - - - -

CAN-ISA/331
CAN-PC104/331

C.2010.xx
C.2012.xx

5, 7, 8, 9, 10,
12,

+ - 3 - -

CAN-PC104/200
(82527 version)

C.2013.xx 5, 7, 8, 11, 12,
16

- - - - -

CAN-PCI/200
CAN-PCIe/200
CPCI-CAN/200
CAN-PCI104/200
CAN-PCI/266
PMC-CAN/266

C.2021.xx
C.2042.xx
C.2035.xx
C.2064.xx
C.2036.xx
C.2040.xx

5, 6, 7, 8, 9, 11,
12, 13, 14, 17

- - - - -

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

C.2020.xx
C.2027.xx
C.2025.xx

5, 7, 8, 9, 10,
12

+ - 3 2,3 3

CAN-PCI/360
CPCI-CAN/360

C.2022.xx
C.2026.xx

5, 7, 8, 9, 10,
12

- - - - -

CAN-PCI/400
CAN-PCIe/400
CPCI-CAN/400
PMC-CAN/400

C.2048.xx
C.2043.xx
C.2033.xx
C.2047.xx

5, 6, 7, 8, 9, 10,
11, 12, 13, 14,
15, 16

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 15,
16

- 5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 15

- -

CAN-PCIe/402
CAN-PCI/402
CAN-PCIeMini/402
CPCI-CAN/402
CPCIserial-CAN/402

C.2045.xx
C.2049.xx
C.2044.0x
I.2332.xx
I.3001.xx

5, 6, 7, 8, 9, 10,
11, 12, 13, 14,
16, 20, 21

- - - - -

CAN-PCI/402-FD
CAN-PCIe/402-FD
CAN-PCIeMini/402-FD
CAN-PCIeMiniHS/402
CAN-M.2/402-2-FD
CPCIserial-CAN/402-FD
PMC-CAN/402-FD
XMC-CAN/402-FD

C.2049.xx
C.2045.6x
C.2044.6x
C.2054.6x
C.2074.6x
I.3001.6x
C.2028.xx
C.2018.xx

5, 6, 7, 8, 9, 10,
11, 12, 13, 14,
16, 18, 19, 20,
21

- - - - -

CAN-PCI/405 C.2023.xx 5, 7, 8, 9, 10,
12, 13, 14

- - - 5, 8, 10 -

VME-CAN2 V.1405.xx + + + - - -

VME-CAN4 V.1408.xx + + + + - -

Table 11: CAN driver capabilities (UNIX operating systems)

Page 94 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CAN Communication with NTCAN-API

The table below shows the CAN driver capabilities for Real-Time Operating Systems.

CAN
Module

Order no. Real-Time Operating Systems

INtime OnTime
RTOS-32

QNX 4 QNX 6 QNX 7
(32-/64-Bit)

RTOS-UH VxWorks
5.4/5.5/6.x

VxWorks 7

EtherCAN C.2050.xx - - - - - - -

EtherCAN/2 C.2051.xx - - - - - - -

CAN-USB/Mini C.2064.xx - - - - - - -

CAN-USB/Micro
CAN-USB/2

C.2068.xx
C.2066.xx

5, 6, 7, 8,
9, 11, 12,
13, 14

- - 5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 16

- - -

CAN-USB/400 C.2069.xx - - - - - - -

CAN-USB/3-FD C.2076.62 - - - - - - -

CAN-ISA/200
CAN-PC104/200
(SJA1000 version)

C.2011.xx
C.2013.xx

- + 5, 6, 7, 8,
9, 11, 12,
13, 14

- - 5, 6 ,8 9,
11, 12, 13,
14,

-

CAN-ISA/331
CAN-PC104/331

C.2010.xx
C.2012.xx

- 10 5, 6, 7, 8,
9, 10,
12,

- 5, 6 ,8 9,
10

-

CAN-PC104/200
(82527 version)

C.2013.xx - + 5, 6, 7, 8,
9, 11, 12

- - 5, 6, 8, 9,
11, 12, 14

-

CAN-PCI/200
CAN-PCIe/200
CPCI-CAN/200
CAN-PCI104/200
CAN-PCI/266
PMC-CAN/266

C.2021.xx
C.2042.xx
C.2035.xx
C.2064.xx
C.2036.xx
C.2040.xx

5, 6, 7, 8,
9, 11, 12,
13, 14,
16

- 5, 6, 7, 8,
9, 11, 12,
13, 14

5, 6, 7, 8, 9,
11, 12, 13,
14

- 5, 6, 8, 9,
11, 12, 13,
14

-

CAN-PCI/331
CPCI-CAN/331
PMC-CAN/331

C.2020.xx
C.2027.xx
C.2025.xx

- 10 5, 6, 7, 8,
9, 10, 12,

5, 6, 7, 8, 9,
10,12,

9, 10 5, 8, 9, 10,
12

5, 6, 7, 8,
9, 10,12,

CAN-PCI/360
CPCI-CAN/360

C.2022.xx
C.2026.xx

- - 5, 6, 7, 8,
10, 11,
12, 13,
14, 16

5, 6, 7, 8,
10, 11, 12,
13, 14, 16

- - -

CAN-PCI/400
CAN-PCIe/400
CPCI-CAN/400
PMC-CAN/400

C.2048.xx
C.2043.xx
C.2033.xx
C.2047.xx

5, 6, 7, 8,
9, 10, 11,
12, 13,
14, 15

- 5, 6, 7, 8,
9, 10, 11,
12, 13,
14, 15,
16

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 15,
16

- 5, 6, 7, 8,
9, 10, 11,
12, 13, 14,
15, 16

-

CAN-PCIe/402
CAN-PCI/402
CAN-PCIeMini/402
CPCI-CAN/402
CPCIserial-CAN/402

C.2045.xx
C.2049.xx
C.2044.0x
I.2332.xx
I.3001.xx

5, 6, 7, 8,
9, 10, 11,
12, 13, 14,
20, 21

- - 5, 6, 7, 8,
9, 10, 11,
12, 13,
14, 20,
21

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 20,
21

- 5, 6, 7, 8,
9, 10, 11,
12, 13, 14

5, 6, 7, 8,
9, 10, 11,
12, 13, 14,

CAN-PCI/402-FD
CAN-PCIe/402-FD
CAN-PCIeMini/402-FD
CAN-PCIeMiniHS/402
CAN-M.2/402-2-FD
CPCIserial-CAN/402-FD
PMC-CAN/402-FD
XMC-CAN/402-FD

C.2049.xx
C.2045.6x
C.2044.6x
C.2054.6x
C.2074.6x
I.3001.6x
C.2028.xx
C.2018.xx

5, 6, 7, 8,
9, 10, 11,
12, 13, 14,
18, 19, 20,
21

- - 5, 6, 7, 8,
9, 10, 11,
12, 13,
14, 18,
19, 20,
21

5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 18,
19, 20, 21

- - 5, 6, 7, 8,
9, 10, 11,
12, 13, 14,
18, 19

CAN-PCI/405 C.2023.xx - - 5, 6, 7, 8,
9, 10, 11,
12, 13,
14

5, 6, 7, 8, 9,
10, 11, 12,
13, 14

- - -

VME-CAN2 V.1405.xx - - - - + - -

VME-CAN4 V.1408.xx - - - - - 5, 8, 9, 10,
12

-

Table 12: CAN driver capabilities (Real-time operating systems)

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 95 of 289

CAN Communication with NTCAN-API

The NTCAN-API is also supported on many esd electronics embedded CPU boards with local
CAN controllers. The table below gives an overview for the different supported operating systems.

Embedded
CPU

Order
no.

Local Operating Systems

Linux VxWorks QNX6 RTOS-UH

CAN-CBX-CPU5202
CAN-CBX-CPU5201

C.307x.xx 5, 6, 7, 8, 9, 11, 12, 13,
14,16

- 5, 6, 7, 8, 9, 11, 12, 13,
14,16

-

PMC-CPU/440 V.2027.xx 5, 6, 7, 8, 9, 10, 11, 12,
13, 14

5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16

5, 6, 7, 8, 9, 10, 11, 12,
13, 14

-

PMC-CPU/405 V.2020.xx 5, 6, 7, 8, 9, 11, 12, 13,
14

5, 6 ,8 9, 11, 12, 13,
14

5, 6, 7, 8, 9, 11, 12, 13,
14

9

CPCI-405 I.2306.04 5, 6, 7, 8, 9, 11, 12, 13,
14

5, 6 ,8 9, 11, 12, 13,
14,

5, 6, 7, 8, 9, 11, 12, 13,
14

9

CPCI-CPU/750 I.2402.xx 5, 6, 7, 8, 9, 11, 12, 13,
14

5, 6 ,8 9, 11, 12, 13,
14,

- 9

EPPC-405 I.2001.xx 5, 6, 7, 8, 9, 11, 12, 13,
14

5, 6 ,8 9, 11, 12, 13,
14,

5, 6, 7, 8, 9, 11, 12, 13,
14

9

EPPC-405-HR I.2006.xx 5, 6, 7, 8, 9, 11, 12, 13,
14

- 5, 6, 7, 8, 9, 11, 12, 13,
14

9

EPPC-405-UC I.2005.xx 5, 6, 7, 8, 9, 11, 12, 13,
14

- 5, 6, 7, 8, 9, 11, 12, 13,
14

-

Table 13: CAN driver capabilities (esd electronics embedded CPU boards)

Page 96 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4. API Reference
This chapter describes each NTCAN API function logically grouped into the sections

➢ Initialization and Cleanup.
➢ Configuration
➢ Receiving Data
➢ Transmitting Data
➢ Miscellaneous

Each API function documentation is structured identically into a description of

➢ Syntax
➢ Functionality
➢ Arguments
➢ Return Values
➢ Usage
➢ Requirements
➢ Further References

Arguments
In each function description the arguments are described in a tabular format. A usage type (see
table below) in squared brackets is followed by the description of the argument usage in the
specific function.

Usage Type Meaning

[in] Indicates the parameter is input. The function reads from the buffer. The
caller provides the buffer and initializes it.

[out] Indicates the parameter is output. The function writes to the buffer. The
caller provides the buffer and the function initializes it.

[in/out] Indicates the parameter is input and output. The caller provides the buffer
and initializes it. The function both reads from and writes to the buffer.

Table 14: Parameter Usage Types

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 97 of 289

API Reference

4.1 Initialization and Cleanup
This section describes the functions available to establish and release a logical link to a physical
CAN port.

4.1.1 canOpen

The function establishes a logical link to a physical CAN port, defines the operation mode, the
message type filter, the handle queue sizes and I/O timeouts.

Syntax:
NTCAN_RESULT canOpen
(
 int net, /* Net number */
 uint32_t flags, /* Mode flags */
 int32_t txqueuesize, /* # of entries in message queue */
 int32_t rxqueuesize, /* # of entries in message queue */
 int32_t txtimeout, /* tx-timeout in milliseconds */
 int32_t rxtimeout, /* rx-timeout in milliseconds */
 NTCAN_HANDLE *handle /* CAN handle */
);

Description:
The function establishes a logical link to a physical CAN port by returning a CAN handle on
success which is an input parameter for nearly all NTCAN-API functions described in this
chapter. Every CAN handle represents a virtual CAN controller with an individual I/O
configuration which is independent from other handles apart from common characteristics of the
referenced physical CAN port (e.g. bit-rate and error counters).

The maximum number of available handles is limited by the driver and operating
system specific global or per process limits.

An application can open several handle to the same physical CAN port with different modes of
operation or configuration as well as to different physical CAN ports. Since driver revision 2.x
every handle can by used for a full-duplex communication so it is possible to read from this
handle in one thread while it is used for transmission in another thread at the same time.

Arguments:
net

[in] The logical net number which is assigned to the physical CAN port in the range from 0 to
NTCAN_MAX_NETS.

flags
[in] This parameter is a bit mask which defines the basic operation mode and the message
type filter. This configuration can not be reconfigured at runtime without closing and
reopening the handle.

Page 98 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Flag Description
NTCAN_MODE_OBJECT If this flag is set, the handle is configured to receive

data in the Rx Object Mode instead of the default FIFO
 Mode. The transmission of CAN data is not affected
by this flag. In Object Mode all message type filter
flags are without any effect.

NTCAN_MODE_NO_RTR This flag configures the message type filter of the
handle to discard all received Remote Request (RTR)
CAN frames.

NTCAN_MODE_NO_DATA This flag configures the message type filter of the
handle to discard all received CAN data frames.

NTCAN_MODE_NO_INTERACTION This flag configures the message type filter of the
handle to discard all CAN messages received via the
interaction mechanism.

NTCAN_MODE_MARK_INTERACTION This flag configures the message type filter of the
handle to mark all CAN messages received in FIFO
mode via the interaction mechanism in the mode bit of
the member len of CMSG or CMSG_T structure.

NTCAN_MODE_LOCAL_ECHO This flag configures the message type filter to store
frames in the receive queue of the handle via the
interaction mechanism even if they have been sent on
this handle independent from the configuration of the
CAN-ID or Message Type Filter. The messages are
marked as described above for the mode flag
NTCAN_MODE_MARK_INTERACTION.

NTCAN_MODE_TIMESTAMPED_TX If this flag is set the timestamp of a CMSG_T structure
defines the point of time this message is sent with
canSendT(). If the flag is not set or the driver does not
support the Timestamped Tx mode (see chapter 3.14)
all messages are transmitted immediately.

NTCAN_MODE_FD This flag is required to operate the CAN handle in the
CAN FD mode (if supported by the CAN controller). If
this flag is not set received CAN FD messages will be
discarded on this handle and FD messages to be
transmit will be turned into CAN CC frames without
further notice for backward compatibility.

NTCAN_MODE_LIN This flag is required to open a handle in LIN mode.
The feature requires LIN physics and the usage is
reserved by esd electronics. It is documented here just
for completeness. LIN application developer have to
use the dedicated LIN API.

NTCAN_MODE_OVERLAPPED Only Windows OS (unsupported by RTX / INtime):
This flag opens the handle for asynchronous (also
called overlapped) I/O-operations. If this flag is set,
only overlapped I/O-operations are possible with this
handle ! That means that the overlapped parameters
of canRead() and canWrite() have to be supplied.

Table 15: Mode flags of canOpen()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 99 of 289

API Reference

txqueuesize

[in] Size of the transmit queue in number of CAN messages. The maximum size is limited to
the platform specific NTCAN_MAX_TX_QUEUESIZE. If no queue is required the value can be set
to NTCAN_NO_QUEUE. Passing NTCAN_NO_QUEUE assigns the device driver specific minimum
queue size so transmitting data is possible even than. The queue size can not be
reconfigured at runtime without closing and reopening the handle.

rxqueuesize

[in] Size of the receive queue in number of CAN messages. The maximum size is limited to
the platform specific NTCAN_MAX_RX_QUEUESIZE. If no queue is required the value can be set
to NTCAN_NO_QUEUE. Passing NTCAN_NO_QUEUE assigns the device driver specific minimum
queue size so receiving data is possible even than The queue size can not be reconfigured
at runtime without closing and reopening the handle.

txtimeout

[in] Timeout in milliseconds for a blocking transmit request with canWrite() / canWriteT() /
canWriteX(). If a transmit request can not be completed within this configured timeout the
request is aborted by the driver and the call will return with a timeout error. If the timeout is
set to 0 a transmit request on this handle will be started without timeout and will
consequently return with an error code only if aborted by the application or if a bus error
occurs. The handle transmit timeout might be changed at runtime before the next transmit
request without closing the handle using canIoctl().

If the timeout value is below a driver or operating system specific minimum value
the timeout is set without notice to this minimum. An application can use
canIoctl() with NTCAN_IOCTL_GET_TX_TIMEOUT to read the configured value.

rxtimeout

[in] Timeout in milliseconds for a blocking receive request with canRead() / canReadT() /
canReadX(). If no data is received within this configured timeout the request will return with a
timeout error. If the timeout is set to 0 a receive request on this handle will be started without
timeout and will consequently return with an error code only if aborted by the application. The
handle receive timeout might be changed at runtime before the next receive request without
closing the handle using canIoctl().

If the timeout value is below a driver or operating system specific minimum value
the timeout is set without notice to this minimum. An application can use
canIoctl() with NTCAN_IOCTL_GET_RX_TIMEOUT to read the configured value.

handle

[out] Pointer to a memory location where the CAN driver will store the CAN handle on
success.

Page 100 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Return Values:
On success, the function returns NTCAN_SUCCESS. On error, one of the error codes described in
chapter 7.

Usage:
The function has to be called before any other function described in this chapter because the
returned CAN handle is the input argument for nearly all NTCAN-API functions.

Remark:
If the board contains LIN ports the device driver will also assign them a logical net number. To
prevent that a CAN application uses inadvertently a LIN port opening it will return with the error
code NTCAN_NO_CAN_CAPABILITY instead of NTCAN_NET_NOT_FOUND to indicate that there is a
port available (a logical net number in use) which can not be used for CAN communication.

Requirements:
N/A.

See also:
Further information on the handle returned by this function can be found in the description of the
data structure NTCAN_HANDLE.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 101 of 289

API Reference

4.1.2 canClose

Close the link to the physical CAN port.

Syntax:
NTCAN_RESULT canClose(NTCAN_HANDLE handle); /* CAN Handle */

Description:
The function closes the link to the physical CAN port. As a consequence all handle specific
resources are released. For CAN-IDs which are still enabled in the handle filter mask
canIdDelete() is called implicitly.

Non-blocking pending transmit requests with canSend() / canSendT() are not
guaranteed to be completed when closing the handle.

Blocking receive requests on this handle will return with an error in case of a
kernel mode CAN driver. For a user mode CAN driver this behavior can not be
guaranteed and the application has to take precautions for this situation.

Arguments:
handle

[in] CAN handle.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:
N/A.

Requirements:
A valid CAN handle.

See also:
Description of canOpen().

Page 102 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.2 Configuration
This section describes the functions available to configure the CAN communication in the CAN CC
mode.

4.2.1 canSetBaudrate

The function initializes the nominal bit rate of a physical CAN port for the CAN CC operation
mode.

Syntax:
NTCAN_RESULT CALLTYPE canSetBaudrate
(
 NTCAN_HANDLE handle, /* CAN handle */
 uint32_t baud /* Bit rate to be set */
);

Description:
This function configures the nominal bit rate as described in detail in chapter 3.3. A CAN port is
passive on the CAN bus until the bit rate is set. A change of the bit rate affects all CAN handle
which refer to this physical port.

The system integrator has to verify that all CAN nodes on the bus are set to the
same bit rate. Configuring different bit rates will result in CAN communication
errors even if the device is not sending any data itself.

Arguments:
handle

[in] CAN handle.

baud
[in] This parameter defines the bit rate. The bits 28..31 of this 32-bit argument are used as
configuration flags. The combination of the User Bit Rate (UBR) bit 31 and the User Bit Rate
Numerical (UBRN) bit 29 define the meaning of the value given as bit rate in bit 0..27 of this
argument.
If supported by the CAN controller hardware the Listen Only Mode (LOM) bit 30 and/or the
Self Test Mode (STM) bit 28 can be optionally set in addition to the bit rate to enable the
respective operation mode.

UBR LOM UBRN STM 27... ...24 23... ...16 15... ...8 7... ...0

0 0/1 0 0/1 Reserved (0) Bit rate table index

0 0/1 1 0/1 Reserved (0) Numerical value in Bit/s

1 0/1 0 0/1 CAN Controller specific baud timing register values

1 0/1 1 0/1 Unsupported combination of UBR/UBRN

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 103 of 289

API Reference

The header <ntcan.h> defines NTCAN_USER_BAUDRATE for the UBR bit,
NTCAN_USER_BAUDRATE_NUM for the UBRN bit, NTCAN_LISTEN_ONLY_MODE for the LOM bit
and NTCAN_SELF_TEST_MODE for the STM bit. In addition the special values
NTCAN_NO_BAUDRATE to indicate an unconfigured bit rate and NTCAN_AUTOBAUD to initialize an
automatic bit rate detection are defined for the parameter baud.

Bit rate table index (UBR = 0, UBRN = 0)

The bits 0..15 of baud contain the index of the esd electronics bit rate table defined below
which is CAN controller and operating system independent. It follows the recommendations
of the CiA for the standard bit rates but also contains some intermediate as well as common
higher layer CAN protocol bit rates. For the CiA recommended bit rates the header
<ntcan.h> defines the constants NTCAN_BAUD_XXX where XXX is the bit rate in Kbit/s.

Table index [hex] Bit Rate [kBit/s] NTCAN-API Constant

0 1000 NTCAN_BAUD_1000

E* 800 NTCAN_BAUD_800

1 666.6 -

2 500 NTCAN_BAUD_500

3 333.3 -

4 250 NTCAN_BAUD_250

5 166 -

6 125 NTCAN_BAUD_125

7 100 NTCAN_BAUD_100

10* 83.3 -

8 66.6 -

9 50 NTCAN_BAUD_50

A 33.3 -

B 20 NTCAN_BAUD_20

C 12.5 -

D 10 NTCAN_BAUD_10

Table 16: esd electronics Nominal Bit Rate Table

* This bit rate is not available for all esd electronics CAN boards because of hardware/firmware limitations.
For the CAN/405 family the bit rate will have large deviations and for the CAN/331 family in combination
with a V2.x driver the bit rate table index is unsupported but the bit rate can be configured as a numerical
value.

Page 104 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Numerical bit rate (UBR = 0, UBRN = 1)

The bits 0..23 of baud contain a numerical value in Bit/s and the driver will configure the CAN
controller register based on an internal algorithm which first of all tries to minimize the
deviation from the given bit rate and chooses and optimized result with respect to several
other criteria if more than one CAN controller register configuration is possible.

Due to the algorithm based approach in rare cases the resulting CAN controller
configuration register values may differ from the values configured using the esd
electronics bit rate table for this bit rate.

CAN controller bit rate register (UBR = 1, UBRN = 0)

In this configuration the bits 0..27 of baud contain the values which are programmed directly
into the related register of the CAN controller to configure the bit rate.

The values are hardware specific and together with the knowledge of the CAN
controller clock frequency you have to refer to the data sheet of the respective
CAN controller for details to calculate the resulting bit rate. The required
information for this is returned in NTCAN_INFO or NTCAN_BITRATE.

The table below contains the relation between the bits 0..27 of baud and the Bus Timing
Registers (BTR) of the CAN controller as they are documented in its user manual.

For CAN FD enabled controller the aggregated controller register sizes of the bit-
rate determining values may exceed the overall maximum of 28 bits so some
values must be cropped and are set to 0. If direct configuration of these bits is
required you must use canSetBaudrateX().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 105 of 289

API Reference

CAN Controller Baud (Bit 0..27) Controller BTR

NXP SJA1000 Bit 0..7
Bit 8..15
Bit 16..27 (Reserved)

BTR1 (Bit 0..7)
BTR0 (Bit 0..7)

Intel I82527 Bit 0..7
Bit 8..15
Bit 16..27 (Reserved)

BTR1 (Bit 0..7)
BTR0 (Bit 0..7)

Fujitsu MBxxxxx MCU Bit 0..15
Bit 16..27 (Reserved)

BTR (Bit 0..15)

NXP LPC2xxx Bit 0..23
Bit 24..27 (Reserved)

BTRxCAN (Bit 0..23)

Freescale MCU (MSCAN) Bit 0..7
Bit 8..15
Bit 16..27 (Reserved)

CANBTR0 (Bit 0..7)
CANBTR1 (Bit 0..7)

Atmel ARM Bit 0..24
Bit 25..27 (Reserved)

CAN_BR (0..24)

esd Advanced CAN Core (ESDACC) Bit 0..27 BTR (0..27) (see Annex A:)

ST STM32Fxxx MCU (bxCAN) Bit 0..25
Bit 26..27 (Reserved)

CAN_BTR (0..25)

Bosch CC770 Bit 0..7
Bit 8..15
Bit 16..27 (Reserved)

BTR1 (Bit 0..7)
BTR0 (Bit 0..7)

ST SPEAr320 (C_CAN) Bit 0..15
Bit 16..27 (Reserved)

BTR (Bit 0..15)

Freescale iMX MCU (FlexCAN) Bit 0..15
Bit 16..27 (Reserved)

CTRL (16..31)

TI AM335x (Sitara) MCU (D_CAN) Bit 0..19
Bit 20..27 (Reserved)

BTR (0..19)

Microchip MCP2515 Bit 0..7
Bit 8..15
Bit 16..24
Bit 25..27 (Reserved)

CNF1 (Bit 0..7)
CNF2 (Bit 0..7)
CNF3 (Bit 0..7)

CAST IP Core Bit 0..7
Bit 8..13 (Reserved)
Bit 14..15
Bit 16 (Reserved)
Bit 17..23
Bit 24..27 (Reserved)

Prescaler Register (Bit 0..7)

Additional Register (Bit 6..7)

Bit Timing Register (Bit 1..7)

Microchip SAM E70/S70/V70/V71
(M_CAN)

Bit 0..5
Bit 6..13
Bit 14..19
Bit 20..27

NBTP (Bit 0..5)
NBTP (Bit 8..15)
NBTP (Bit 25..30)
NBTP (Bit 16..23)

Table 17: CAN Controller Specific Bus Timing Register

Listen-Only Mode (LOM = 1)
Any bit rate configuration above can be combined with the listen-only mode flag (see chapter
3.3.2 for details and requirements) which allows to receive CAN messages without the
danger to disturb the CAN bus in case of the wrong bit rate.

Page 106 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Self Test Mode (STM = 1)
Any bit rate configuration above can be combined with the self test mode flag (see chapter
3.3.3 for details and requirements) which allows the CAN controller to receive transmitted
messages by itself just as if they were coming from another node without the requirement for
an acknowledge.

Automatic bit rate detection
The automatic bit rate detection process is started if baud is set to NTCAN_AUTOBAUD (see
chapter 3.3.7 for details and requirements). An application can follow the automatic bit rate
detection process by polling the current bit rate with canGetBaudrate() or by waiting for the
EV_BAUD_CHANGE event. The bit rate detection process is cancelled as soon a bit rate is
detected or can be aborted by the application calling canSetBaudrate() again with a valid
parameter for baud other than NTCAN_AUTOBAUD.

Remove from bus
In order to force the CAN hardware to leave the CAN bus baud has to be set to
NTCAN_NO_BAUDRATE. The support of this feature is hardware/firmware dependent (see
chapter 3.18).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 107 of 289

API Reference

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:
Examples:
/* Set bit rate to 500 Kbit/s in listen-only mode with bit rate table */
canSetBaudrate(NTCAN_LISTEN_ONLY_MODE | NTCAN_BAUD_500);

/* Set CAN controller register to 1 Mbit/s directly on SJA1000 (16 MHz) */
canSetBaudrate(NTCAN_USER_BAUDRATE | 0x0014);

/* Set bit rate to 125 Kbit/s as numerical bit rate */
canSetBaudrate(NTCAN_USER_BAUDRATE_NUM | 125000);

Requirements:
N/A.

See also:
Use canSetBaudrateX() to configure the nominal bit rate of a CAN port in the CAN FD mode.

Page 108 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.2.2 canGetBaudrate

The function returns the configured nominal bit rate of the a CAN port.

Syntax:
NTCAN_RESULT canGetBaudrate(
 NTCAN_HANDLE handle, /* CAN Handle */
 uint32_t *baud /* Pointer to store current bit rate */
);

Description:
The function returns the nominal bit rate configured for the physical CAN port referenced by the
CAN handle.

Arguments:
handle

[in] CAN handle.

baud
[out] Pointer to a memory location where the CAN driver will store the current bit rate on
success. The possible values for baud are the same as described in the argument list of
canSetBaudrate().

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:
The function can be used by the application to check which bit rate for the physical CAN port is
configured or to poll for the result of the automatic bit rate detection process.

Remark:
If the operation mode of the CAN port was originally configured with canSetBaudrateX() to
CAN CC the device driver returns the appropriate representation for baud or returns
NTCAN_BAUD_FD if configured to CAN FD.

Requirements:
N/A.

See also:
Description of canSetBaudrate(). More detailed information about the configured bit rate is
returned in NTCAN_BITRATE with canIoctl().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 109 of 289

API Reference

4.2.3 canSetBaudrateX

The function initializes the nominal bit rate and/or data bit rate of a physical CAN port for the CAN
FD mode or the CAN CC mode.

Syntax:
NTCAN_RESULT CALLTYPE canSetBaudrateX
(
 NTCAN_HANDLE handle, /* CAN handle */
 NTCAN_BAUDRATE_X *baud /* Bit rate configuration */
);

Description:
This function configures the bit rate as described in detail in chapter 3.3. A CAN port is passive
on the CAN bus until the bit rate is set. A change of the bit rate affects all CAN handle which
refer to this physical port.

The system integrator has to verify that all CAN nodes on the bus are set to the
same bit rate. Configuring different bit rates will result in CAN communication
errors even if the device is not sending any data itself.

Arguments:
handle

[in] CAN handle.

baud
[in] Reference to a configured NTCAN_BAUDRATE_X structure.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:

Examples:

/*
 * Set nominal bit rate to 500 Kbit/s and the data phase bit rate to 2MBit/s
 * using the esd electronics bit rate table.
 */

NTCAN_RESULT err;
NTCAN_HANDLE hnd;
NTCAN_BAUDRATE_X baud;

/* Open a CAN handle on net 0 with support for CAN FD operation mode */
err = canOpen(0, NTCAN_MODE_FD, 100, 100, 1000, 1000, &hnd);

baud.mode = NTCAN_BAUDRATE_MODE_INDEX;
baud.flags = NTCAN_BAUDRATE_FLAG_FD;
baud.reserved = 0;
baud.arb.u.idx = NTCAN_BAUD_500;
baud.data.u.idx = NTCAN_BAUD_2000;

/* Set the bit rate for CAN FD operation mode */
err = canSetBaudrateX(hnd, &baud);

Page 110 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Requirements:
A CAN FD enabled CAN controller to configure the CAN FD operation mode.

See also:
canSetBaudrate() and NTCAN_BAUDRATE_X.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 111 of 289

API Reference

4.2.4 canGetBaudrateX

The function returns the configured bit rate of the a CAN port.

Syntax:
NTCAN_RESULT canGetBaudrateX(
 NTCAN_HANDLE handle, /* CAN Handle */

 NTCAN_BAUDRATE_X *baud /* Bit rate configuration */
);

Description:
The function returns the bit rate configured for the physical CAN port referenced by the CAN
handle.

Arguments:
handle

[in] CAN handle.

baud
[out] Pointer to a memory location where the CAN driver will store the current bit rate on
success.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:
The function can be used by the application to check which operation mode (CAN CC / CAN
FD) and nominal bit rate/data bit rate for the physical CAN port.

Remark:
If the operation mode of the CAN port was originally configured with canSetBaudrate() the
device driver creates the appropriate NTCAN_BAUDRATE_X representation internally.

Requirements:
N/A.

See also:
Description of canSetBaudrateX() and NTCAN_BAUDRATE_X.More detailed information about
the configured bit rate is returned in NTCAN_BITRATE with canIoctl().

Page 112 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.2.5 canIdAdd

The function enables a CAN-ID or Event-ID in the handle message filter.

Syntax:
NTCAN_RESULT canIdAdd(
 NTCAN_HANDLE handle, /* Handle */
 int32_t id /* CAN-ID to add to filter */
);

Description:
After a CAN handle is created with canOpen() the ID filter is cleared (no CAN messages will be
received). To receive a CAN message with a certain CAN identifier or an event with a certain
Event-ID it is required to enable this ID in the handle filter as otherwise a received message or
event is discarded by the driver for this handle.

Because of the CAN message filter implementation for 29-bit CAN-IDs it is
sufficient to enable an arbitrary (29-bit) CAN-ID to receive all messages with
29-bit CAN-IDs with this handle.
If the application configures the 29-bit filter as described in chapter 3.8.2.2 for
this handle id is the acceptance code of this filter.

Configuration and I/O requests for a CAN handle are usually serialized by the
device driver. One exception of this rule is the device driver for the CAN-USB/2,
CAN-USB/Micro and CAN-AIR/2 where configuration and I/O requests are
handled with different USB endpoints to improve I/O performance. To make
sure that an I/O request like canRead() does not overtakes the configuration of
the acceptance mask you can e.g. requesting the actual timestamp from the
CAN device with canIoctl() after the last canIdAdd() request. The timestamp
will not be returned before all pending requests are completely processed.

Arguments:
handle

[in] CAN handle.

id
[in] CAN-ID or Event-ID of message to enable for reception on this handle. Valid ranges are:

Range [hex] Description
0x00..0x7FF 11-bit CAN identifier

0x20000000..0x3FFFFFFF 29-bit CAN Identifier

0x40000000..0x400000FF Event-ID

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 113 of 289

API Reference

Usage:

Example:

NTCAN_RESULT result;
int32_t id;

/*
 * Receive all 2.0A CAN-IDs with the handle hnd which was previously
 * opened with canOpen() (not part of this code excerpt)
 */
for(id = 0; id < 0x7FF; id++) {

result = canIdAdd(hnd, id);
if(result != NTCAN_SUCCESS) {

printf(“canIdAdd() returned with error %x\n”, result);
}

}

Remark:
If the driver implements the Smart ID Filter this call is mapped internally to canIdRegionAdd().

Requirements:
N/A.

See also:
Description of canIdDelete().

Page 114 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.2.6 canIdRegionAdd

This function enables a range of CAN-IDs (11- or 29-bit) or Event-IDs in the handle message filter
(only for the SIF).

Syntax:
NTCAN_RESULT canIdRegionAdd(
 NTCAN_HANDLE handle, /* Read Handle */
 int32_t idStart, /* First CAN-ID or Event-ID */
 int32_t *idCount /* IN: Count of requested ID's */
 /* OUT: Successful selected ID's. */
);

Description:
After a CAN handle is created with canOpen() the CAN-ID filter is cleared (no CAN messages
will pass the filter). To receive a CAN message with a certain CAN-ID or an NTCAN-Event with
a certain Event-ID it is required to enable this ID in the handle filter as otherwise a received
message or event is discarded by the driver for this handle.

This function enables a consecutive range of IDs which will pass the filter if received. For one
physical CAN node the same ID can be selected for any number of handles.

Arguments:
handle

[in] CAN handle.

idStart
[in] First CAN-ID or Event-ID of the consecutive range.

idCount
[in] Number of consecutive IDs to enable.
[out] Number of successful enabled consecutive IDs

The ID range is defined by idStart and idCount. It must be within the range specified in one of
the three valid ID areas:

Range [hex] Description
0x00..0x7FF 11-bit CAN identifier

0x20000000..0x3FFFFFFF 29-bit CAN Identifier

0x40000000..0x400000FF NTCAN Event Identifier

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure. As the required memory for the filter depends on the filter configuration
NTCAN_INSUFFICIENT_RESOURCES is returned if system limits are exceeded.

Requirements:
CAN driver V 3.9.x or later.

Remark:
The runtime of this function and the resulting resource (memory) requirement is not constant but
depends on the current and desired filter configuration.

See also:
Description of canIdRegionDelete().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 115 of 289

API Reference

4.2.7 canIdDelete

The function disables a CAN-ID or Event-ID in the handle message filter.

Syntax:
NTCAN_RESULT canIdDelete(
 NTCAN_HANDLE handle, /* Handle */
 int32_t id /* CAN-ID to add to filter */
);

Description:
This function disables receiving messages with the given CAN-ID or Event-ID on this handle.

Because of the CAN message filter implementation for 29-bit CAN-IDs it is
sufficient to disable an arbitrary (29-bit) CAN-ID to stop receiving any
messages with a 29-bit CAN-ID on this handle.

Arguments:
handle

[in] CAN handle.

id
[in] CAN-ID or Event-ID of message to disable for reception on this handle. Valid ranges are:

Range [hex] Description
0x0..0x7FF 11-bit CAN identifier

0x20000000..0x3FFFFFFF 29-bit CAN Identifier

0x40000000..0x400000FF Event-ID

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure

Usage:
N/A.

Remark:
If the driver implements the Smart ID Filter it is is mapped internally to canIdRegionDelete().

Requirements:
Previously id had to be enabled with with canIdAdd().

See also:
Description of canIdAdd() and canClose().

Page 116 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.2.8 canIdRegionDelete

This function disables a range of CAN-IDs (11- or 29-bit) or Event-IDs in the handle message filter
(only for the SIF).

Syntax:
NTCAN_RESULT canIdRegionDelete(
 NTCAN_HANDLE handle, /* Read Handle */
 int32_t idStart, /* First Rx-CAN-Identifier or Event-ID */
 int32_t *idCount /* IN: Count of requested ID's */
 /* OUT: Successful selected ID's. */
);

Description:

This function disables a consecutive range of Ids.

Arguments:
handle

[in] CAN handle.

idStart
[in] First CAN-ID or Event-ID of the consecutive range.

idCount
[in] Number of consecutive IDs to disable.
[out] Number of successful disabled consecutive IDs

The ID range is defined by idStart and idCount. It must be within the range specified in one of
the three valid ID areas:

Range [hex] Description
0x00..0x7FF 11-bit CAN identifier

0x20000000..0x3FFFFFFF 29-bit CAN Identifier

0x40000000..0x400000FF NTCAN Event Identifier

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure. As the required memory for the filter depends on the filter configuration
NTCAN_INSUFFICIENT_RESOURCES is returned if system limits are exceeded.

Requirements:
CAN driver V 3.9.x or later.

Remark:
The runtime of this function and the resulting resource (memory) requirement is not constant but
depends on the current and desired filter configuration.

See also:
Description of canIdRegionAdd() and canClose().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 117 of 289

API Reference

4.2.9 canIoctl

The function performs a variety of control functions on CAN devices.

Syntax:
NTCAN_RESULT canIoctl(
 NTCAN_HANDLE handle, /* Handle */
 uint32_t ulCmd, /* Command specifier */
 void * pArg /* Ptr to command specific argument */
);

Description:
This function is an universal entry to configure or request additional CAN I/O configuration. The
data type of the input or output data referenced by pArg, depends on the control command
ulCmd. The Usage section contains a list of all supported commands together with their input or
output data type.

Arguments:
handle

[in] CAN handle.

ulCmd
[in] Command.

pArg
[in/out] Pointer to ulCmd dependent input or output data.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure

Usage:

List of supported commands with their command specific arguments. If a command does not
require an argument, pArg has to be set to NULL. This list is divided into several sections
covering the following functionality:

➢ CAN communication related I/O controls.

➢ CAN message filter related I/O controls.

➢ CAN bus diagnostic related I/O controls.

➢ CAN message scheduling related I/O controls.

➢ CAN Error Injection related I/O controls.

➢ CAN FD TDC and SSP related I/O controls.

➢ DAR related I/O controls

➢ Timestamped Tx related I/O controls.

➢ Miscellaneous I/O controls.

Page 118 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Communication related I/O controls:

This group of commands change or request handle specific CAN-I/O related configuration
parameter.

NTCAN_IOCTL_FLUSH_RX_FIFO Argument: - N/A

Purges all CAN messages of the handle’s receive queue.

NTCAN_IOCTL_GET_RX_MSG_COUNT Argument: uint32_t Out

The number of available CAN messages in the handle’s receive queue is stored at the
memory location referenced by pArg.

NTCAN_IOCTL_GET_TX_MSG_COUNT Argument: uint32_t Out

The number of available CAN messages in the handle’s transmit queue is stored at the
memory location referenced by pArg.

NTCAN_IOCTL_GET_RX_TIMEOUT Argument: uint32_t Out

The receive timeout (in ms) defined for this handle is stored in at the memory location
referenced by pArg. This value may differ from the value defined in canOpen() due to OS
specific rounding or minimums.

NTCAN_IOCTL_GET_TX_TIMEOUT Argument: uint32_t Out

The transmit timeout (in ms) defined for this handle is stored in at the memory location
referenced by pArg. This value may differ from the value defined in canOpen() due to OS
specific rounding or minimums.

NTCAN_IOCTL_SET_RX_TIMEOUT Argument: uint32_t In

Re-configure the receive timeout of this handle. The argument is a reference to the previously
initialized memory location with the new timeout value in ms. The new value will be used for
the next blocking receive function. A pending receive request is not affected by this change.

NTCAN_IOCTL_SET_TX_TIMEOUT Argument: uint32_t In

Re-configure the transmit timeout of this handle. The argument is a reference to the previously
initialized memory location with the new timeout value in ms. The new value will be used for
the next blocking transmit function. A pending transmit request is not affected by this change.

NTCAN_IOCTL_ABORT_RX Argument: - N/A

A pending blocked receive operation on this handle is aborted but the handle is not closed.

NTCAN_IOCTL_ABORT_TX Argument: - N/A

A pending blocked transmit operation on this handle is aborted but the handle is not closed.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 119 of 289

API Reference

CAN message filter related I/O controls:

This group of commands configure the second stage of the ID acceptance filter (see chapter 3.8
for details).

NTCAN_IOCTL_SET_HND_FILTER Argument: NTCAN_FILTER_MASK In

Configure the handle specific AMR and ACR for the second filter stage of the SIF.

NTCAN_IOCTL_SET_20B_HND_FILTER Argument: uint32_t In

Configure the handle specific AMR for the second filter stage handle of the BIF (Only for 29-bit
CAN-IDs).

CAN bus diagnostics related I/O controls:

This group of commands change or request CAN bus diagnostic related parameters for a
physical CAN port (see chapter 3.6.2 for details).

NTCAN_IOCTL_SET_BUSLOAD_INTERVAL Argument: uint32_t In

Configure the system wide interval time for the bus load event NTCAN_EV_BUSLOAD in ms for
the physical CAN port referenced by handle. Without any configuration the default interval is
1000 ms. As the timer handler within the driver might work with a fixed interval, the given
value might be rounded to the next integral multiple of the timer handler's integral time. An
application can check the really configured value with the command
NTCAN_IOCTL_GET_BUSLOAD_INTERVAL.

NTCAN_IOCTL_GET_BUSLOAD_INTERVAL Argument: uint32_t Out

The value of the interval time for the bus load event NTCAN_EV_BUSLOAD in ms for the physical
CAN port referenced by handle is stored at the memory location referenced by pArg, if this
feature is supported by CAN hardware and/or device driver.

NTCAN_IOCTL_GET_BUS_STATISTIC Argument: NTCAN_BUS_STATISTIC Out

The current CAN bus statistic and diagnostic data for the physical CAN port referenced by
handle is stored at the memory location referenced by pArg. If pArg is set to NULL all statistical
counter are reset.

NTCAN_IOCTL_GET_CTRL_STATUS Argument: NTCAN_CTRL_STATE Out

The current CAN controller state for the physical CAN port referenced by handle is stored at
the memory location referenced by pArg.

NTCAN_IOCTL_GET_BITRATE_DETAILS Argument: NTCAN_BITRATE Out

Detailed information about the configured bit rate of the physical CAN port referenced by
handle is stored at the memory location referenced by pArg.

Page 120 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

CAN board information related I/O controls:

This group of commands request CAN port specific information.

NTCAN_IOCTL_GET_SERIAL Argument: uint32_t Out

The hardware serial number of the CAN board referenced by handle is stored at the memory
location referenced by pArg (if supported by the CAN board). As a CAN board can have
several physical CAN ports the same serial number is returned for all logical CAN networks
related to this board. The serial number is returned in an encoded format. Each of the two
upper nibbles of the value represents one of the leading letters of the production lot number
(0x0 => 'A' , 0x1 => 'B', …,0xF => 'P'). The remaining 24 bits are the numerical part.

Example:
 The value 0x1D012345 is the serial number BN074565.

If reading the serial number is not supported by the device a 0 is returned which results in the
serial number AA000000 according to the encoding described above.

NTCAN_IOCTL_GET_TIMESTAMP_FREQ Argument: uint64_t Out

The resolution of the timestamp counter in Hz of the CAN port referenced by handle is stored
at the memory location referenced by pArg, if timestamps are supported by CAN hardware,
device driver and operating system.

NTCAN_IOCTL_GET_TIMESTAMP Argument: uint64_t Out

The value of the timestamp counter related to the CAN port referenced by handle is stored at
the memory location referenced by pArg , if timestamps are supported by CAN hardware,
device driver and operating system.

NTCAN_IOCTL_GET_HW_TIMESTAMP Argument: uint64_t[3] Out

!! This command is only supported on ESDACC based devices !!
The current value of the OS specific local high resolution counter is stored at array element 0,
followed by the hardware timestamp related to the CAN port referenced by handle stored at
array element 1, followed by current value of the local high resolution counter stored at array
element 2. The frequency of the OS specific local high resolution counter is returned with
NTCAN_INFO.

NTCAN_IOCTL_GET_HW_TIMESTAMP_EX Argument: uint64_t[5] Out

!! This command is only supported on ESDACC based devices !!
The first three array elements are identical to the values stored by the command
NTCAN_IOCTL_GET_HW_TIMESTAMP followed by the value returned with the command
NTCAN_IOCTL_GET_TIMESTAMP stored at array element 3, followed by current value of the
local high resolution counter stored at array element 4.

NTCAN_IOCTL_GET_INFO Argument: NTCAN_INFO Out

A comprehensive information about the device and driver environment stored in the
NTCAN_INFO structure related to the CAN port referenced by handle stored at the memory
location referenced by pArg.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 121 of 289

API Reference

Miscellaneous I/O controls:

This group of commands covers requests which do not fit into any of the other sections.

NTCAN_IOCTL_GET_NATIVE_HANDLE Argument: Native OS handle type Out

The OS specific handle or file descriptor of the CAN device referenced by handle is stored at
the memory location referenced by pArg (see description of NTCAN_HANDLE for details). The
table below contains the native handle type which is returned.

Operating System Native OS handle type

Windows HANDLE

Linux int

QNX int

LynxOS int

Page 122 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

TX Object Mode related I/O controls:

This group of commands covers all commands which are used to configure the TX Object
Mode.

NTCAN_IOCTL_TX_OBJ_CREATE Argument: CMSG In

Creates an object with the CAN-ID defined in the CMSG structure referenced by pArg, which
can be used for scheduling. You will be able to create exactly one object per CAN-ID (11-bit
and 29-bit) per physical CAN port. For 29-bit CAN-IDs you might be restricted by the available
resources, as usually the host system has not enough memory to handle 229 objects.

NTCAN_IOCTL_TX_OBJ_UPDATE Argument: CMSG In

Update CAN data and length for an existing object. The object is referenced by the CAN-ID
defined in the CMSG structure referenced by pArg.

Note: In order to update and transmit one or more previously created TX Objects in a single
step you have to use canSend () / canSendT () or canWrite () / canWriteT ().

NTCAN_IOCTL_TX_OBJ_DESTROY Argument: CMSG In

Destroys a formerly created object (and therefore stops its scheduling). The object is
referenced by the CAN-ID defined in the CMSG structure referenced by pArg.

NTCAN_IOCTL_TX_OBJ_CREATE_X Argument: CMSG_X In

Creates an object with the CAN-ID defined in the CMSG_X structure referenced by pArg, which
can be used for scheduling. You will be able to create exactly one object per CAN-ID (11-bit
and 29-bit) per physical CAN port. For 29-bit CAN-IDs you might be restricted by the available
resources, as usually the host system has not enough memory to handle 229 objects.

NTCAN_IOCTL_TX_OBJ_UPDATE_X Argument: CMSG_X In

Update CAN data and length for an existing object. The object is referenced by the CAN-ID
defined in the CMSG_X structure referenced by pArg.

Note: In order to update and transmit one or more previously created TX Objects in a single
step you have to use canSendX() / canWriteX().

NTCAN_IOCTL_TX_OBJ_DESTROY_X Argument: CMSG_X In

Destroys a formerly created object (and therefore stops its scheduling). The object is
referenced by the CAN-ID defined in the CMSG_X structure referenced by pArg.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 123 of 289

API Reference

NTCAN_IOCTL_TX_OBJ_SCHEDULE Argument: CSCHED In

Configures the scheduling for an existing object. If there are several objects scheduled for the
same time, the order of these NTCAN_IOCTL_TX_OBJ_SCHEDULE commands will define the
order of transmission. This command is only processed as long as scheduling is NOT running
to prevent race conditions with transmission order.

NTCAN_IOCTL_TX_OBJ_SCHED_START Argument: - N/A

This activates all scheduling done with one CAN-handle. All scheduled frames will be
transmitted one time, when ‘timeStart’ has passed and from then on periodically repeatedly
every time ‘timeInterval’ has passed until object is destroyed or scheduling is stopped. As long
as scheduling is running, one can not call NTCAN_IOCTL_TX_OBJ_SCHED.

NTCAN_IOCTL_TX_OBJ_SCHED_STOP Argument: - N/A

Disables the scheduling. In order to prevent a non-deterministic transmission order caused by
configuration changes, this includes deletion of all schedules of this CAN-handle.
The existing TX Objects once created are persistent keeping their configuration, but before
calling NTCAN_IOCTL_TX_OBJ_SCHED_START again, a new schedule configuration has to be
assigned with NTCAN_IOCTL_TX_OBJ_SCHEDULE.

NTCAN_IOCTL_TX_OBJ_AUTOANSWER_ON Argument: CMSG In

Enable the autoanswer mode for an existing object. In this mode the initialized CAN message
will be sent automatically by the driver every time a related RTR is received. Autoanswer can
be enabled independent from scheduling for each object. The object is referenced by the
CAN-ID defined in the CMSG structure referenced by pArg.

Note: As the RTR concept is only supported in CAN CC and not in CAN FD there is no
CMSG_X support.

NTCAN_IOCTL_TX_OBJ_AUTOANSWER_OFF Argument: CMSG In

Disable the autoanswer mode for an existing object. Autoanswer can be disabled independent
from scheduling for each object. The object is referenced by the CAN-ID defined in the CMSG
structure referenced by pArg.

Note: As the RTR concept is only supported in CAN CC and not in CAN FD there is no
CMSG_X support.

NTCAN_IOCTL_TX_OBJ_AUTOANSWER_ONCE Argument: CMSG In

Identical behavior as described for NTCAN_IOCTL_TX_OBJ_AUTOANSWER_ON with the difference
that the reply is sent exactly once after an object update.

Note: As the RTR concept is only supported in CAN CC and not in CAN FD there is no
CMSG_X support.

Page 124 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Error Injection related I/O controls:

This group of commands covers all commands which are used to configure the Error Injection
Module.

NTCAN_IOCTL_EEI_CREATE Argument: uint32_t Out

Allocate an Error Injection Unit and bind it to an esdACC CAN Controller. A Handle to this Unit
will be returned by the argument.

NTCAN_IOCTL_EEI_DESTROY Argument: uint32_t In

Free the Error Injection Unit. The handle defined for this Error Injection Unit is stored in at the
memory location referenced by pArg.

NTCAN_IOCTL_EEI_STATUS Argument: NTCAN_EEI_STATUS In

Checks the Status of an Error Injection Unit. If there is no valid handle in NTCAN_EEI_STATUS,
the ioctl will return units_total and units_free without an error.

NTCAN_IOCTL_EEI_CONFIGURE Argument: NTCAN_EEI_UNIT In

Configures the Error Injection Unit.

NTCAN_IOCTL_EEI_START Argument: uint32_t In

Enables the Error Injection Unit. The handle defined for this Error Injection Unit is stored in at
the memory location referenced by pArg.

NTCAN_IOCTL_EEI_STOP Argument: uint32_t In

Disables the Error Injection Unit. The handle defined for this Error Injection Unit is stored in at
the memory location referenced by pArg.

NTCAN_IOCTL_EEI_TRIGGER_NOW Argument: uint32_t In

Sets trigger now and the CAN TX Module will send the TX Pattern with the next TX Point. The
handle defined for this Error Injection Unit is stored in at the memory location referenced by
pArg.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 125 of 289

API Reference

Timestamped TX related I/O controls:

This group of commands covers all commands which are used in conjunction with Timestamped
TX. These should be used only, if the feature is available and the respective feature bit is set
(FEATURE_TIMESTAMPED_TX, s. 179).

NTCAN_IOCTL_SET_TX_TS_WIN Argument: uint32_t In

Set the size of the planning window for Timestamped TX in ms.

NTCAN_IOCTL_GET_TX_TS_WIN Argument: uint32_t Out

Returns the size of the Timestamped TX planning window in ms.

NTCAN_IOCTL_SET_TX_TS_TIMEOUT Argument: uint32_t In

This I/O control is available on special CAN hardware, only.
Configure a frame timeout for Timestamped TX in timestamp ticks. Please note, the maximum
configurable timeout varies depending on timestamp frequency of the CAN hardware in use.
0: No timeout
n: Timeout, if the frame has not been transmitted after n timestamp ticks (measured from the
scheduled transmission point). See chapter 3.9 for details about the timestamp
implementation.

NTCAN_IOCTL_GET_TX_TS_TIMEOUT Argument: uint32_t Out

Returns the configured frame timeout, which is used for Timestamped TX. See chapter 3.9 for
details about the timestamp implementation.

CAN FD Transmitter Delay Compensation (TDC) related I/O controls:

This group of commands covers all commands which are used in conjunction with the
Transmitter Delay Compensation (TDC) and Second Sample Point (SSP). They are CAN FD
specific and so only available for CAN FD capable hardware (Feature bit FEATURE_CAN_FD, s.
179).

NTCAN_IOCTL_GET_FD_TDC Argument: uint32_t Out

Returns the current TDC configuration (see 3.15.2.3 for details on the argument of the call).

NTCAN_IOCTL_SET_FD_TDC Argument: uint32_t In

Deprecated command to configure the TDC mechanism (see 3.15.2.3 for details on the
argument of the call). An application should use canSetBaudrateX() instead.

Page 126 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Disable Automatic Retransmission (DAR) related I/O controls:

This group of commands covers all commands which are used in conjunction with the Disable
Automatic Retransmission (DAR) capability of the CAN hardware. (Feature bit
NTCAN_FEATURE_DAR and NTCAN_FEATURE_DAR_FRAME, s. 179).

NTCAN_IOCTL_SET_DAR_MODE Argument: uint32_t In

Sets the DAR mode configuration mask.

• If the NTCAN_DAR_DISABLE_ON_ARB_LOST bit is set, the CAN message will be
retransmitted although the arbitration was lost and DAR is enabled.

• If NTCAN_DAR_DISABLE_ON_TX_ERROR bit is set, the CAN message will be
retransmitted although the transmission failed wit an error and DAR is enabled.

The default value for this configuration option is that each bit is reset. Any change is applied
immediately to the next failed transmission with enabled DAR mode.

Note: This IOCTL command option is currently only supported by the ESDACC controller.

NTCAN_IOCTL_SET_DAR_MODE Argument: uint32_t Out

Returns the current value of the DAR mode configuration mask.

Refer to NTCAN_IOCTL_SET_DAR_MODE above for supported options.

Note: This IOCTL command option is currently only supported by the ESDACC controller.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 127 of 289

API Reference

I/O Configuration related I/O controls:

This group of commands change or request configuration parameter of physical I/Os.

NTCAN_IOCTL_SET_TERM_CFG Argument: uint32_t In

If the CAN hardware supports a programmatically switchable CAN bus termination option
(indicated with NTCAN_FEATURE_PROG_TERM), this command configures the state of
termination resistor of the physical port referenced by handle. The value
NTCAN_TERM_DISABLE deactivates the CAN bus termination and the value
NTCAN_TERM_ENABLE activates it.

NTCAN_IOCTL_GET_TERM_CFG Argument: uint32_t Out

If the CAN hardware supports a programmatically switchable CAN bus termination option
(indicated with NTCAN_FEATURE_PROG_TERM), this command returns the state of the physical
port referenced by handle. The returned values to indicate an activated/deactivated bus
termination resistor are described in NTCAN_IOCTL_SET_TERM_CFG.

NTCAN_IOCTL_SET_GPIO_CFG Argument: NTCAN_GPIO_CFG In

If the CAN hardware supports optional GPIO ports (indicated with NTCAN_FEATURE_GPIO),
this command allows the confguration of each I/O channel with an initialized NTCAN_GPIO_CFG
structure.

Note: This IOCTL command is only supported with a handle opened for the base net of the
respective CAN hardware which logical net number is returned in the NTCAN_INFO structure.

NTCAN_IOCTL_GET_GPIO_CFG Argument: NTCAN_GPIO_CFG Out

If the CAN hardware supports optional GPIO ports (indicated with NTCAN_FEATURE_GPIO),
this command returns the current confguration of each I/O channel in a NTCAN_GPIO_CFG
structure.

Note: This IOCTL command is only supported with a handle opened for the base net of the
respective CAN hardware which logical net number is returned in the NTCAN_INFO structure.

Reserved I/O controls:

This group of commands is reserved for internal use by esd electronics and just documented for
completeness.

NTCAN_IOCTL_LIN_MASTER_SEL Argument: N/A N/A

N/A

Requirements:
N/A.

See also:
N/A.

Page 128 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.3 Receiving CAN messages
This section describes the functions available to receive CAN / CAN FD messages and CAN
events. The API offers services to receive data in a blocking (event based) and non-blocking
(polling) way with or without timestamps.

4.3.1 canTake

Non-blocking reception of CAN messages and CAN events without a timestamp.

Syntax:

NTCAN_RESULT canTake(
 NTCAN_HANDLE handle, /* Handle */
 CMSG *cmsg, /* Ptr to application buffer */
 int32_t *len); /* OUT: Size of CMSG-Buffer */
 /* IN: Number of received messages */

Description:

The function returns available CAN messages or CAN events for this handle in a non-blocking
way (polling). The behaviour of the function is different for the FIFO Mode and Object Mode.

FIFO-Mode

For a handle configured with canOpen() to the (default) FIFO-Mode, received CAN messages
or CAN events stored in the Rx FIFO of this handle are copied into the application buffer
referenced by cmsg in the sequential order of their reception. Every copied message is
removed from the handle Rx FIFO afterwards. The maximum size of the application buffer has
to be stored in len as multiple of CMSG objects before calling canTake(). Upon return, len
contains the number of CMSG objects copied into the application buffer.

Object-Mode

For a handle configured with canOpen() to the Object-Mode, the caller has to initialize the
member id of all CMSG objects in the application buffer referenced by cmsg with the CAN
message identifiers of interest. The size of the application buffer has to be stored in len as
multiple of CMSG objects before calling canTake(). Upon return, the application buffer is filled
with the most recently received CAN messages for the requested CAN-IDs. To indicate that no
data has yet been received for a requested CAN identifier, the NTCAN_NO_DATA bit is set in the
member len of the CMSG object in the application buffer.

In Object-Mode the call is limited to return CAN messages with standard CAN
identifiers (11-bit) for driver version V2.x. Extended CAN identifier (29-bit)
support was introduced with driver V3.x (see chapter 3.11.2. for the driver
version specific differences to initialize the object mode). CAN events in object
mode are unsupported by all driver versions.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 129 of 289

API Reference

Arguments:
handle

[in] CAN handle.

cmsg
[in/out] Pointer to the application buffer as array of CMSG objects to store the received CAN
messages or CAN events. In Object-Mode the id member of each single CMSG object of this
array has to be initialized to the requested (11-bit) CAN-ID before the call.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG
object to indicate that this is a CAN event the application can cast the data to an
EVMSG object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG objects which can be stored in the buffer referenced by cmsg. Upon return, the driver
has stored the number of messages copied into the application buffer into this parameter.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a non-blocking call, the return value is NTCAN_SUCCESS even if no CAN
messages are received (copied into the application buffer). For this reason upon
return an application should always check the parameter len.

Usage:

The call is intended for applications which poll (cyclically) for new CAN messages or CAN
events without the need for timestamps.

Requirements:
To receive CAN messages the controller has to be initialized with canSetBaudrate() and an
appropriate filter has to be configured with canIdAdd().

See also:
Description of canIdAdd() and canOpen().

Page 130 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.3.2 canTakeT

Non-blocking reception of CAN messages and CAN events with timestamp.

Syntax:

NTCAN_RESULT canTakeT(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_T *cmsg_t, /* Ptr to application buffer */
 int32_t *len); /* OUT: Size of CMSG_T buffer */
 /* IN: Number of received messages */

Description:

The function returns available timestamped CAN messages or CAN events for this handle in a
non-blocking way (polling). The behaviour of the function is different for the FIFO Mode and
Object Mode.

FIFO-Mode

For a handle configured with canOpen() to the (default) FIFO-Mode, received timestamped
CAN messages or CAN events stored in the Rx FIFO of this handle are copied into the
application buffer referenced by cmsg_t in the sequential order of their reception. Every copied
message is removed from the handle Rx FIFO afterwards. The maximum size of the application
buffer has to be stored in len as multiple of CMSG_T objects before calling canTakeT(). Upon
return, len contains the number of CMSG_T objects copied into the application buffer.

Object-Mode

For a handle configured with canOpen() to the Object-Mode, the caller has to initialize the
member id of all CMSG_T objects in the application buffer referenced by cmsg_t with the CAN
message identifiers of interest. The size of the application buffer has to be stored in len as
multiple of CMSG_T objects before calling canTakeT(). Upon return, the application buffer is filled
with the most recently received CAN messages for the requested CAN-IDs. To indicate that no
data has yet been received for a requested CAN identifier, the NTCAN_NO_DATA bit is set in the
member len of the CMSG object in the application buffer.

In Object-Mode the call is limited to return CAN messages with standard CAN
identifiers (11-bit) for driver version V2.x. Extended CAN identifier (29-bit)
support was introduced with driver V3.x (see chapter 3.11.2. for the driver
version specific differences to initialize the object mode). CAN events in object
mode are unsupported by all driver versions.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 131 of 289

API Reference

Arguments:
handle

[in] CAN handle.

cmsg_t
[in/out] Pointer to the application buffer as array of CMSG_T objects to store the received
timestamped CAN messages and CAN events. In Object-Mode the id member of each single
CMSG_T object of this array has to be initialized to the requested (11-bit) CAN-ID before the
call.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG_T
object to indicate that this is a CAN event the application can cast the data to an
EVMSG_T object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_T objects which can be stored in the buffer referenced by cmsg_t. Upon return, the
driver has stored the number of messages copied into the application buffer into this
parameter.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a non-blocking call, the return value is NTCAN_SUCCESS even if no CAN
messages are received (copied into the application buffer). For this reason upon
return an application should always check the parameter len.

Usage:

The call is intended for applications which poll (cyclically) for new timestamped CAN messages
or CAN events.

Requirements:
The CAN driver or CAN hardware has to support time stamping which is indicated with the
NTCAN_FEATURE_TIMESTAMP flag in CAN_IF_STATUS. To receive timestamped data the CAN
controller has to be initialized with canSetBaudrate() and an appropriate filter has to be
configured with canIdAdd().

See also:
Description of canIdAdd() and canOpen().

Page 132 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.3.3 canTakeX

Non-blocking reception of CAN / CAN FD messages and CAN events with timestamp.

Syntax:

NTCAN_RESULT canTakeX(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_X *cmsg_x, /* Ptr to application buffer */
 int32_t *len); /* OUT: Size of CMSG_X buffer */
 /* IN: Number of received messages */

Description:

The function returns available timestamped CAN / CAN FD messages or CAN events for this
handle in a non-blocking way (polling). The behaviour of the function is different for the FIFO
Mode and Object Mode. The handle has to be opened in CAN FD Mode.

FIFO-Mode

For a handle configured with canOpen() to the (default) FIFO-Mode, received timestamped
CAN / CAN FD messages or CAN events, stored in the Rx FIFO of this handle, are copied into
the application buffer referenced by cmsg_x in the sequential order of their reception. Every
copied message is removed from the handle Rx FIFO afterwards. The maximum size of the
application buffer has to be stored in len as multiple of CMSG_X objects before calling
canTakeX(). Upon return, len contains the number of CMSG_X objects copied into the application
buffer.

Object-Mode

For a handle configured with canOpen() to the Object-Mode, the caller has to initialize the
member id of all CMSG_X objects in the application buffer referenced by cmsg_x with the CAN
message identifiers of interest. The size of the application buffer has to be stored in len as
multiple of CMSG_X objects before calling canTakeX(). Upon return, the application buffer is filled
with the most recently received CAN messages for the requested CAN-IDs. To indicate that no
data has yet been received for a requested CAN identifier, the NTCAN_NO_DATA bit is set in the
member len of the CMSG_X object in the application buffer.

In Object-Mode the call is limited to return CAN messages with standard CAN
identifiers (11-bit) for driver version V2.x. Extended CAN identifier (29-bit)
support was introduced with driver V3.x (see chapter 3.11.2. for the driver
version specific differences to initialize the object mode). CAN events in object
mode are unsupported by all driver versions.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 133 of 289

API Reference

Arguments:
handle

[in] CAN handle opened in CAN FD mode.

cmsg_x
[in/out] Pointer to the application buffer as array of CMSG_X objects to store the received
timestamped CAN messages and CAN events. In Object-Mode the id member of each single
CMSG_X object of this array has to be initialized to the requested (11-bit) CAN-ID before the
call.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG_X
object to indicate that this is a CAN event the application can cast the data to an
EVMSG_T object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_X objects which can be stored in the buffer referenced by cmsg_x. Upon return, the
driver has stored the number of messages copied into the application buffer into this
parameter.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a non-blocking call, the return value is NTCAN_SUCCESS even if no CAN
messages are received (copied into the application buffer). For this reason upon
return an application should always check the parameter len.

Usage:

The call is intended for applications which poll (cyclically) for new timestamped CAN messages
or CAN events.

Requirements:

The CAN driver or CAN hardware has to support CAN FD which is indicated with the
NTCAN_FEATURE_FD flag in CAN_IF_STATUS. To receive CAN / CAN FD messages the CAN FD
controller has to be initialized with canSetBaudrate() and an appropriate filter has to be
configured with canIdAdd().

See also:

Description of canIdAdd() and canOpen().

Page 134 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.3.4 canRead

Blocking reception of CAN messages and CAN events without timestamp.

Syntax:
NTCAN_RESULT canRead(
 NTCAN_HANDLE handle, /* Handle */
 CMSG *cmsg, /* Ptr to application buffer */
 int32_t *len, /* OUT: Size of CMSG-Buffer */
 /* IN: Number of received messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:
The function returns available data for this handle immediately or blocks until

➢ New CAN data or CAN events are received.
➢ The configured receive timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_RX.
➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Received CAN messages or CAN events stored in the Rx FIFO of the this handle are copied
into the application buffer referenced by cmsg in the sequential order of their reception. Every
copied message is removed from the handle Rx FIFO afterwards. The maximum size of the
application buffer has to be stored in len as multiple of CMSG objects before calling canRead().
Upon return, len contains the number of CMSG objects copied into the application buffer.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately even if data is available. The status of the I/O operation has to be
retrieved with canGetOverlappedResult().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 135 of 289

API Reference

Arguments:
handle

[in] CAN handle.

cmsg
[out] Pointer to the application buffer as array of CMSG objects to store the received CAN
messages or CAN events.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG
object to indicate that this is a CAN event the application can cast the data to an
EVMSG object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG objects which can be stored in the buffer referenced by cmsg. Upon return, the driver
has stored the number of messages copied into the application buffer into this parameter.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a blocking call does not support the Object-Mode a handle opened in this
mode will return from this call with NTCAN_INVALID_PARAMETER.

Usage:

The call is intended for applications which want to receive CAN messages or CAN events
without the need for timestamps in an event based way. For this reason it is ideally suited for a
multithreaded implementation where receiving CAN messages can be handled in one or more
independent threads.

Page 136 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Example:

/*
 * This file contains an incomplete example of the NTCAN API
 * manual. Compiling this file will cause warnings of uninitialized
 * handle value !!!!
 */

#include <stdio.h>
#include "ntcan.h"

void incomplete_read_11_bit(void)
{
 CMSG cmsg[100];
 NTCAN_RESULT status;
 int32_t len, i, j;
 NTCAN_HANDLE handle;

 len = 100; /* Initialize maximum size of application buffer */
 status = canRead(handle, cmsg, &len, NULL);
 if(status == NTCAN_SUCCESS) {
 for(i = 0; i < len; i++) {
 printf("id=%03x len=%x data: ", cmsg[i].id, cmsg[i].len);
 for(j = 0; j < cmsg[i].len; j++)
 printf("%02x ", cmsg[i].data[j]);
 printf("\n");
 }
 } else {
 printf("canRead returned %x\n", status);
 }
.
.

Requirements:
To receive CAN messages the controller has to be initialized with canSetBaudrate() and an
appropriate filter has to be configured with canIdAdd().

See also:
Description of canIdAdd() and canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 137 of 289

API Reference

4.3.5 canReadT

Blocking reception of timestamped CAN messages and CAN events.

Syntax:
NTCAN_RESULT canReadT(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_T *cmsg_t, /* Ptr to application buffer */
 int32_t *len, /* OUT: Size of CMSG_T-Buffer */
 /* IN: Number of received messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:
The function returns available data for this handle immediately or blocks until

➢ New CAN data or CAN events are received.
➢ The configured receive timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_RX.
➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Received timestamped CAN messages or CAN events stored in the Rx FIFO of the this handle
are copied into the application buffer referenced by cmsg_t in the sequential order of their
reception. Every copied message is removed from the handle Rx FIFO afterwards. The
maximum size of the application buffer has to be stored in len as multiple of CMSG_T objects
before calling canReadT(). Upon return, len contains the number of CMSG_T objects copied into
the application buffer.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately even if data is available. The status of the I/O operation has to be
retrieved with canGetOverlappedResultT().

Page 138 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Arguments:
handle

[in] CAN handle.

cmsg_t
[out] Pointer to the application buffer as array of CMSG_T objects to store the received CAN
messages or CAN events.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG_T
object to indicate that this is a CAN event the application can cast the data to an
EVMSG_T object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_T objects which can be stored in the buffer referenced by cmsg_t. Upon return, the
driver has stored the number of messages copied into the application buffer into this
parameter.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a blocking call does not support the Object-Mode a handle opened in this
mode will return from this call with NTCAN_INVALID_PARAMETER.

Usage:

The call is intended for applications which want to receive timestamped CAN messages or CAN
events in an event based way. For this reason it is ideally suited for a multithreaded
implementation where receiving CAN messages can be handled in one or more independent
threads.

Requirements:
To receive CAN messages the controller has to be initialized with canSetBaudrate() and an
appropriate filter has to be configured with canIdAdd().

See also:
Description of canIdAdd() and canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 139 of 289

API Reference

4.3.6 canReadX

Blocking reception of timestamped CAN / CAN FD messages and CAN events.

Syntax:
NTCAN_RESULT canReadX(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_X *cmsg_x, /* Ptr to application buffer */
 int32_t *len, /* OUT: Size of CMSG_X-Buffer */
 /* IN: Number of received messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:
The function returns available data for this handle immediately or blocks until

➢ New CAN /CAN FD messages or CAN events are received.
➢ The configured receive timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_RX.
➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Received timestamped CAN / CAN FD messages or CAN events stored in the Rx FIFO of the
this handle are copied into the application buffer referenced by cmsg_x in the sequential order
of their reception. Every copied message is removed from the handle Rx FIFO afterwards. The
maximum size of the application buffer has to be stored in len as multiple of CMSG_X objects
before calling canReadX(). Upon return, len contains the number of CMSG_X objects copied into
the application buffer.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately even if data is available. The status of the I/O operation has to be
retrieved with canGetOverlappedResultX().

Page 140 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Arguments:
handle

[in] CAN handle.

cmsg_x
[out] Pointer to the application buffer as array of CMSG_X objects to store the received CAN /
CAN FD messages or CAN events.

If the NTCAN_EV_BASE bit (Bit 30) is set in the member id of a received CMSG_X
object to indicate that this is a CAN event the application can cast the data to an
EVMSG_T object for further processing.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_X objects which can be stored in the buffer referenced by cmsg_x. Upon return, the
driver has stored the number of messages copied into the application buffer into this
parameter.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

As a blocking call does not support the Object-Mode a handle opened in this
mode will return from this call with NTCAN_INVALID_PARAMETER.

Usage:

The call is intended for applications which want to receive timestamped CAN messages or CAN
events in an event based way. For this reason it is ideally suited for a multithreaded
implementation where receiving CAN messages can be handled in one or more independent
threads.

Requirements:
To receive CAN messages the controller has to be initialized with canSetBaudrate() and an
appropriate filter has to be configured with canIdAdd().

See also:
Description of canIdAdd() and canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 141 of 289

API Reference

4.4 Transmitting CAN messages
This section describes the functions available to transmit CAN messages. The API offers services
to transmit data asynchronously and synchronously.

4.4.1 canSend

Asynchronous transmission of CAN messages.

Syntax:
NTCAN_RESULT canSend(
 NTCAN_HANDLE handle, /* Handle */
 CMSG *cmsg, /* Ptr to application buffer */
 int32_t *len); /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */

Description:
The function copies the CAN messages from the application buffer referenced by cmsg into the
handle's Tx FIFO. The number of messages has to be stored in len as multiple of CMSG objects
before calling canSend(). The function returns immediately and the transmission of the CAN
messages is performed asynchronously by the CAN device driver. Upon return, len contains the
number of CMSG objects copied into the Tx FIFO. The number of messages actually copied into
the handle's Tx FIFO depends on the Tx FIFO size defined with canOpen() and the current
capacity of this FIFO which depends on the number of pending messages from earlier
transmission requests.
The transmission of CAN messages is not affected by the configured operation mode (FIFO- or
Object-Mode).

Arguments:
handle

[in] CAN handle.

cmsg
[in] Pointer to the application buffer as an array of initialized CMSG objects which contain the
CAN messages that should be transmitted.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG objects in the buffer referenced by cmsg. Upon return, the driver has stored the
number of messages copied into the handle's Tx FIFO into this parameter.

Page 142 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

The return value of NTCAN_SUCCESS does not mean that all CAN messages in the
application buffer are copied into the handle's Tx FIFO. This has to be checked
by the application on return with the parameter len.
As an asynchronous call the return value of NTCAN_SUCCESS does not mean that
all CAN messages are transmitted successfully. If a transmission result is
required one of the synchronous transmission services have to be used.

Usage:
The call is intended for applications which have to transmit CAN messages asynchronously.

Requirements:
To transmit CAN messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 143 of 289

API Reference

4.4.2 canSendT

Asynchronous transmission of CAN messages with timestamp.

Syntax:
NTCAN_RESULT canSendT(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_T *cmsg_t, /* Ptr to application buffer */
 int32_t *len); /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */

Description:

By default the timestamp information of the CMSG_T structures is not used by
NTCAN. The API call is just implemented to allow the use of CMSG_T structures
throughout for all CAN I/O operations.
If your CAN hardware supports Timestamped TX (FEATURE_TIMESTAMPED_TX, s.
canIoctl()) and you open a handle with MODE_TIMESTAMPED_TX (s. canOpen()) you
can use the timestamp information in CMSG_T structure to schedule for transmission
at a certain time.

The function copies the CAN messages from the application buffer referenced by cmsg_t into
the handle's Tx FIFO. The number of messages has to be stored in len as multiple of CMSG_T
objects before calling canSendT(). The function returns immediately and the transmission of the
CAN messages is performed asynchronously by the CAN device driver. Upon return, len
contains the number of CMSG_T objects copied into the Tx FIFO. The number of messages
actually copied into the handle's Tx FIFO depends on the Tx FIFO size defined with canOpen()
and the current capacity of this FIFO which depends on the number of pending messages from
earlier transmission requests.
The transmission of CAN messages is not affected by the configured operation mode (FIFO- or
Object-Mode).

Default behaviour:
By default the CAN messages will be transmitted in the given order as soon as possible (exactly
as canSend() would do).

Mode Timestamped TX :
In this mode canSendT() can be utilized in various ways:

• Normal transmission
Setting the timestamps in the given CMSG_T structures to zero will deactivate the
Timestamped TX feature for the given frames. The frames will be transmitted through
the normal TX-FIFO.

• Scheduled transmission
Set the timestamps in the given CMSG_T structures and the CAN messages will be
transmitted as soon as the timestamp value is reached (assuming an idle CAN bus).

• Prioritized transmission
If you set a timestamp in the past (e.g. a value of one, but past value different from zero
will do), the frames will be transmitted as soon as possible and before CAN frames
which have been posted by any other transmission call (canSend() and canWrite()).

You can use canIoctl() to further configure this mode. For example with certain CAN hardware
a “per frame timeout” can be set for CAN messages, which are transmitted by this call.

Page 144 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Arguments:
handle

[in] CAN handle.

cmsg_t
[in] Pointer to the application buffer as an array of initialized CMSG_T objects which contain
the CAN messages that should be transmitted.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_T objects in the buffer referenced by cmsg_t. Upon return, the driver has stored the
number of messages copied into the handle's Tx FIFO into this parameter.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

The return value of NTCAN_SUCCESS does not mean that all CAN messages in the
application buffer are copied into the handle's Tx FIFO. This has to be checked
by the application on return with the parameter len.
As an asynchronous call the return value of NTCAN_SUCCESS does not mean that
all CAN messages are transmitted successfully. If a transmission result is
required one of the synchronous transmission services have to be used.

Usage:
The call is intended for applications which have to transmit CAN messages with timestamps
asynchronously.

Requirements:
To transmit CAN messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 145 of 289

API Reference

4.4.3 canSendX

Asynchronous transmission of CAN CC / CAN FD messages with timestamp.

Syntax:
NTCAN_RESULT canSendX(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_X *cmsg_x, /* Ptr to application buffer */
 int32_t *len); /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */

Description:

By default the timestamp information of the CMSG_X structures is not used by
NTCAN. The API call is just implemented to allow the use of CMSG_X structures
throughout for all CAN I/O operations.
If your CAN hardware supports Timestamped TX (FEATURE_TIMESTAMPED_TX, s.
canIoctl()) and you open a handle with MODE_TIMESTAMPED_TX (s. canOpen()) you
can use the timestamp information in CMSG_X structure to schedule for transmission
at a certain time.

The function copies the CAN messages from the application buffer referenced by cmsg_x into
the handle's Tx FIFO. The number of messages has to be stored in len as multiple of CMSG_X
objects before calling canSendX(). The function returns immediately and the transmission of the
CAN messages is performed asynchronously by the CAN device driver. Upon return, len
contains the number of CMSG_X objects copied into the Tx FIFO. The number of messages
actually copied into the handle's Tx FIFO depends on the Tx FIFO size defined with canOpen()
and the current capacity of this FIFO which depends on the number of pending messages from
earlier transmission requests.

If the NTCAN_FD bit is set in the parameter len of the structure CMSG_X but the handle
was opened without NTCAN_MODE_FD (see chapter 4.1.1) the NTCAN_FD bit will be
implicitly reset which turns the message into a CAN CC frame limited to 8 byte of
data.

If the NTCAN_FD bit is set in the parameter len of the structure CMSG_X but no data bit
rate is configured the NTCAN_NO_BRS bit will be implicitly set which transmits the
frame without a bit rate switch for the data phase.

The transmission of CAN messages is not affected by the configured operation mode (FIFO- or
Object-Mode).

Default behaviour:
By default the CAN messages will be transmitted in the given order as soon as possible (exactly
as canSend() would do).

Mode Timestamped TX :
In this mode canSendX() can be utilized in various ways:

• Normal transmission
Setting the timestamps in the given CMSG_X structures to zero will deactivate the
Timestamped TX feature for the given frames. The frames will be transmitted through
the normal TX-FIFO.

Page 146 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

• Scheduled transmission
Set the timestamps in the given CMSG_X structures and the CAN messages will be
transmitted as soon as the timestamp value is reached (assuming an idle CAN bus).

• Prioritized transmission
If you set a timestamp in the past (e.g. a value of one, but past value different from zero
will do), the frames will be transmitted as soon as possible and before CAN frames
which have been posted by any other transmission call (canSend() and canWrite()).

You can use canIoctl() to further configure this mode. For example with certain CAN hardware
a “per frame timeout” can be set for CAN messages, which are transmitted by this call.

Arguments:
handle

[in] CAN handle.

cmsg_x
[in] Pointer to the application buffer as an array of initialized CMSG_X objects which contain
the CAN messages that should be transmitted.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_X objects in the buffer referenced by cmsg_x. Upon return, the driver has stored the
number of messages copied into the handle's Tx FIFO into this parameter.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

The return value of NTCAN_SUCCESS does not mean that all CAN messages in the
application buffer are copied into the handle's Tx FIFO. This has to be checked
by the application on return with the parameter len.
As an asynchronous call the return value of NTCAN_SUCCESS does not mean that
all CAN messages are transmitted successfully. If a transmission result is
required one of the synchronous transmission services have to be used.

Usage:
The call is intended for applications which have to transmit CAN / CAN FD messages with
timestamps asynchronously.

Requirements:
To transmit CAN / CAN FD messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 147 of 289

API Reference

4.4.4 canWrite

Synchronous transmission of CAN messages.

Syntax:
NTCAN_RESULT canWrite(
 NTCAN_HANDLE handle, /* Handle */
 CMSG *cmsg, /* Ptr to application buffer */
 int32_t *len, /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:
The function copies the CAN messages from the application buffer referenced by cmsg into the
handle's Tx FIFO. The number of messages has to be stored in len as multiple of CMSG objects
before calling canWrite(). The function blocks until

➢ All CAN messages are transmitted.
➢ An I/O error has occurred.
➢ The configured transmit timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_TX.
➢ The I/O operation is aborted by the CAN controller if the DAR mode is enabled (globally

or in the message) and the first and only transmission attempt failed because of
communication errors or a lost arbitration procedure.

➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Upon return, len contains the number of CMSG objects transmitted successfully.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately. The status of the I/O operation has to be retrieved with
canGetOverlappedResult().

Page 148 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

Arguments:
handle

[in] CAN handle.

cmsg
[out] Pointer to the application buffer as an array of initialized CMSG objects which contain the
CAN messages that should be transmitted.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG objects in the buffer referenced by cmsg. Upon return, the driver has stored the
number of messages transmitted successfully into this parameter.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure. The behaviour and error return codes in case of bus error situation while the
I/O operation is in progress is CAN device and/or operating system dependent due to technical
differences.

Usage:

The call is intended for applications which have to transmit CAN messages synchronously.

Requirements:
To transmit CAN messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 149 of 289

API Reference

4.4.5 canWriteT

Synchronous transmission of CAN messages (with timestamp).

Syntax:
NTCAN_RESULT canWriteT(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_T *cmsg_t, /* Ptr to application buffer */
 int32_t *len, /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:

By default the timestamp information of the CMSG_T structures is not used by
NTCAN. The API call is just implemented to allow the use of CMSG_T structures
throughout for all CAN I/O operations.
If your CAN hardware supports Timestamped TX (FEATURE_TIMESTAMPED_TX, s.
canIoctl()) and you open a handle with MODE_TIMESTAMPED_TX (s. canOpen()) you
can use the timestamp information in CMSG_T structure to schedule for transmission
at a certain time.

The function copies the CAN messages from the application buffer referenced by cmsg_t into
the handle's Tx FIFO. The number of messages has to be stored in len as multiple of CMSG_T
objects before calling canWriteT(). The function blocks until

➢ All CAN messages are transmitted.
➢ An I/O error has occurred.
➢ The configured transmit timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_TX.
➢ The I/O operation is aborted by the CAN controller if the DAR mode is enabled (globally

or in the message) and the first and only transmission attempt failed because of
communication errors or a lost arbitration procedure.

➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Upon return, len contains the number of CMSG_T objects transmitted successfully.

The transmission of CAN messages is not affected by the configured operation mode (FIFO- or
Object-Mode).

Default behaviour:
By default the CAN messages will be transmitted in the given order as soon as possible (exactly
as canWrite() would do).

Mode Timestamped TX :
In this mode canWriteT() can be utilized in various ways:

• Normal transmission
Setting the timestamps in the given CMSG_T structures to zero will deactivate the
Timestamped TX feature for the given frames. The frames will be transmitted through
the normal TX-FIFO.

• Scheduled transmission
Set the timestamp in the given CMSG_T structures and the CAN messages will be
transmitted as soon as the timestamp value is reached (assuming an idle CAN bus).

Page 150 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

• Prioritized transmission
If you set a timestamp in the past (e.g. a value of one, but past value different from zero
will do), the frames will be transmitted as soon as possible and before CAN frames
which have been posted by any other transmission call (canSend() and canWrite()).

You can use canIoctl() to further configure this mode. For example with certain CAN hardware
a “per frame timeout” can be set for CAN messages, which are transmitted by this call.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately. The status of the I/O operation has to be retrieved with
canGetOverlappedResultT().

Using canWriteT() with Timestamped TX mode will behave exactly as one
should expect. It will return only after the last frame of the job has been
transmitted (depending on your chosen points of transmission this might be well
in the future...).

Arguments:

handle
[in] CAN handle.

cmsg
[out] Pointer to the application buffer as an array of initialized CMSG_T objects which contain
the CAN messages that should be transmitted.

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_T objects in the buffer referenced by cmsg_t. Upon return, the driver has stored the
number of messages transmitted successfully into this parameter.

canWriteT() will still return the number of successfully transmitted frames,
but as the order of frames depends on the given timestamps, the returned
value can't be mapped directly to your given CMSG_T array, if the
messages were not in chronological order.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure. The behaviour and error return codes in case of bus error situation while the
I/O operation is in progress is CAN device and/or operating system dependent due to technical
differences.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 151 of 289

API Reference

Usage:

The call is intended for applications which have to transmit CAN messages synchronously.

Requirements:
To transmit CAN messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

Page 152 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.4.6 canWriteX

Synchronous transmission of CAN / CAN FD messages (with timestamp).

Syntax:
NTCAN_RESULT canWriteX(
 NTCAN_HANDLE handle, /* Handle */
 CMSG_X *cmsg_x, /* Ptr to application buffer */
 int32_t *len, /* OUT: # of messages to transmit */
 /* IN: # of transmitted messages */
 OVERLAPPED *ovrlppd); /* NULL or overlapped-structure */

Description:

By default the timestamp information of the CMSG_X structures is not used by
NTCAN. The API call is just implemented to allow the use of CMSG_X structures
throughout for all CAN I/O operations.
If your CAN hardware supports Timestamped TX (FEATURE_TIMESTAMPED_TX, s.
canIoctl()) and you open a handle with MODE_TIMESTAMPED_TX (s. canOpen()) you
can use the timestamp information in CMSG_T structure to schedule for transmission
at a certain time.

The function copies the CAN / CAN FD messages from the application buffer referenced by
cmsg_x into the handle's Tx FIFO. The number of messages has to be stored in len as multiple
of CMSG_X objects before calling canWriteX(). The function blocks until

➢ All CAN / CAN FD messages are transmitted.
➢ An I/O error has occurred.
➢ The configured transmit timeout is exceeded.
➢ The I/O operation is aborted with canIoctl() and the command NTCAN_IOCTL_ABORT_TX.
➢ The I/O operation is aborted by the CAN controller if the DAR mode is enabled (globally

or in the message) and the first and only transmission attempt failed because of
communication errors or a lost arbitration procedure.

➢ The handle is closed with canClose().
➢ Change of system or device state like e.g. a power state change.

Upon return, len contains the number of CMSG_X objects transmitted successfully.

If the NTCAN_FD bit is set in the parameter len of the structure CMSG_X but the handle
was opened without NTCAN_MODE_FD (see chapter 4.1.1) the NTCAN_FD bit will be
implicitly reset which turns the message into a CAN CC frame limited to 8 byte of
data.

If the NTCAN_FD bit is set in the parameter len of the structure CMSG_X but no data bit
rate is configured the NTCAN_NO_BRS bit will be implicitly set which transmits the
frame without a bit rate switch for the data phase.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 153 of 289

API Reference

The transmission of CAN / CAN FD messages is not affected by the configured operation mode
(FIFO- or Object-Mode).

Default behaviour:
By default the CAN / CAN FD messages will be transmitted in the given order as soon as
possible (exactly as canWrite() would do).

Mode Timestamped TX :
In this mode canWriteX() can be utilized in various ways:

• Normal transmission
Setting the timestamps in the given CMSG_X structures to zero will deactivate the
Timestamped TX feature for the given frames. The frames will be transmitted through
the normal TX-FIFO.

• Scheduled transmission
Set the timestamp in the given CMSG_X structures and the CAN / CAN FD messages will
be transmitted as soon as the timestamp value is reached (assuming an idle CAN bus).

• Prioritized transmission
If you set a timestamp in the past (e.g. a value of one, but past value different from zero
will do), the frames will be transmitted as soon as possible and before CAN / CAN FD
frames which have been posted by any other transmission call).

You can use canIoctl() to further configure this mode. For example with certain CAN hardware
a “per frame timeout” can be set for CAN / CAN FD messages, which are transmitted by this
call.

Win32/64

On Windows the CAN driver supports the asynchronous (overlapped) I/O
extension which was introduced with Windows NT.
If the flag NTCAN_MODE_OVERLAPPED is not set in canOpen() for this handle the
driver performs a synchronous I/O operation which is described above and the
parameter ovrlppd should be set to 0.
If the flag NTCAN_MODE_OVERLAPPED is set in canOpen() for this handle the
driver performs an asynchronous I/O operation and the driver returns
immediately. The status of the I/O operation has to be retrieved with
canGetOverlappedResultX().

Using canWriteX() with Timestamped TX mode will behave exactly as one
should expect. It will return only after the last frame of the job has been
transmitted (depending on your chosen points of transmission this might be well
in the future...).

Arguments:

handle
[in] CAN handle.

cmsg
[out] Pointer to the application buffer as an array of initialized CMSG_X objects which contain
the CAN / CAN FD messages that should be transmitted.

Page 154 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

len
[in/out] Pointer to a memory location which has to be initialized before the call to the number
of CMSG_X objects in the buffer referenced by cmsg_x. Upon return, the driver has stored the
number of messages transmitted successfully into this parameter.

canWriteX() will still return the number of successfully transmitted frames,
but as the order of frames depends on the given timestamps, the returned
value can't be mapped directly to your given CMSG_X array, if the
messages were not in chronological order.

ovrlppd
[in] This parameter is used to support Windows asynchronous I/O operations and is ignored
by all other supported operating systems. For Windows the pointer has to be set to a valid
and unique OVERLAPPED structure if the handle is opened with the flag
NTCAN_MODE_OVERLAPPED.

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure. The behaviour and error return codes in case of bus error situation while the
I/O operation is in progress is CAN device and/or operating system dependent due to technical
differences.

Usage:

The call is intended for applications which have to transmit CAN / CAN FD messages
synchronously.

Requirements:
To transmit CAN messages the controller has to be initialized with canSetBaudrate().

See also:
Description of canOpen().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 155 of 289

API Reference

4.5 Miscellaneous functions
This section covers the miscellaneous functions to retrieve information about the CAN runtime
environment and the functions which ease writing portable and compact code.

4.5.1 canStatus

Returns status information about the CAN hardware and software environment.

Syntax:
NTCAN_RESULT canStatus(
 NTCAN_HANDLE handle, /* Handle */
 CAN_IF_STATUS *cstat); /* Ptr to status structure */

Description:
The function returns status information about the CAN hardware (board type, hardware revision,
firmware revision and CAN controller type), the software runtime environment (revision of device
driver and NTCAN library) and the supported capabilities (features) of the CAN driver and/or
hardware.

Arguments:
handle

[in] CAN handle.

cstat
[in] Pointer to the application buffer where the driver stores the retrieved status information.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:
Return details about the hardware and software environment to the application which may by
used to adapt the implementation dynamically.

Requirements:
N/A.

See also:
Description of CAN_IF_STATUS.

Page 156 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.2 canGetOverlappedResult

Retrieves the results of an asynchronous (overlapped) operation on the specified CAN handle.

Syntax:
EXPORT NTCAN_RESULT CALLTYPE canGetOverlappedResult(
 NTCAN_HANDLE handle, /* Handle */
 __OVERLAPPED *ovrlppd, /* OUT: Win32 overlapped structure */

 /* IN: N/A */
 int32_t *len, /* OUT: N/A */
 /* IN: # of available CMSG-Buffer */
 BOOL bWait); /* FALSE =>do not wait, else wait */

Description:

Win32/64

This function is required on Windows OS to support the use of asynchronous
(also called overlapped) I/O operations. The call is just a wrapper for the
GetOverlappedResult() function of Windows to return the number of CAN
messages (without timestamps) instead of the number of transferred bytes.
On all other platforms supported by NTCAN the call is available but returns
immediately with an error.

The results reported by the canGetOvelappedResult() function are those of the specified
handle's last overlapped operation to which the specified OVERLAPPED structure was provided,
and for which the operation's results were pending. A pending operation is indicated when
canRead() or canWrite() returns NTCAN_IO_PENDING. When an I/O operation is pending, the
function that started the operation resets the hEvent member (which should be a manual-reset
event object) of the OVERLAPPED structure to the non-signalled state. Then when the pending
operation has been completed, the system sets the event object to the signalled state.
If the bWait parameter is TRUE, canGetOvelappedResult() determines whether the pending
operation has been completed by waiting for the event object to be in the signalled state.

Arguments:
handle

[in] CAN handle. This is the same handle that was specified when the overlapped operation
was started by a call to canRead() or canWrite().

ovrlppd
[in/out] A pointer to an OVERLAPPED structure structure that was specified when the
overlapped operation was started.

len
[in/out] A pointer to a variable that receives the number of CAN messages that were actually
transferred by the read or write operation.

bWait
[in] If this parameter is TRUE, the function does not return until the operation has been
completed. If this parameter is FALSE and the operation is still pending, the function returns
NTCAN_IO_INCOMPLETE.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 157 of 289

API Reference

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:

The call is required for applications which transmit CAN messages asynchronously.

Requirements:
The flag NTCAN_MODE_OVERLAPPED has to be set in canOpen() for this handle.

See also:
Description of canRead() and canWrite().

Page 158 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.3 canGetOverlappedResultT

Retrieves the results of an asynchronous (overlapped) operation on the specified CAN handle.

Syntax:

EXPORT NTCAN_RESULT CALLTYPE canGetOverlappedResultT(
 NTCAN_HANDLE handle, /* Handle */
 OVERLAPPED *ovrlppd, /* OUT: Win32 overlapped structure */

 /* IN: N/A */
 int32_t *len, /* OUT: N/A */
 /* IN: # of available CMSG_T-Buffer */
 BOOL bWait); /* FALSE => do not wait, else wait */

Description:

Win32/64

This function is required on Windows OS to support the use of asynchronous
(also called overlapped) I/O operations. The call is just a wrapper for the
GetOverlappedResult() function of Windows to return the number of CAN
messages (with timestamps) instead of the number of transferred bytes.
On all other platforms supported by NTCAN the call is available but returns
immediately with an error.

The results reported by the canGetOvelappedResultT() function are those of the specified
handle's last overlapped operation to which the specified OVERLAPPED structure was provided,
and for which the operation's results were pending. A pending operation is indicated when
canReadT() or canWriteT() returns NTCAN_IO_PENDING. When an I/O operation is pending, the
function that started the operation resets the hEvent member (which should be a manual-reset
event object) of the OVERLAPPED structure to the nonsignalled state. Then when the pending
operation has been completed, the system sets the event object to the signalled state.
If the bWait parameter is TRUE, canGetOvelappedResultT() determines whether the pending
operation has been completed by waiting for the event object to be in the signalled state.

Arguments:
handle

[in] CAN handle. This is the same handle that was specified when the overlapped operation
was started by a call to canReadT() or canWriteT().

ovrlppd
[in/out] A pointer to an OVERLAPPED structure structure that was specified when the
overlapped operation was started.

len
[in/out] A pointer to a variable that receives the number of CAN messages that were actually
transferred by the read or write operation.

bWait
[in] If this parameter is TRUE, the function does not return until the operation has been
completed. If this parameter is FALSE and the operation is still pending, the function returns
NTCAN_IO_INCOMPLETE.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 159 of 289

API Reference

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:

The call is required for applications which transmit CAN messages asynchronously.

Requirements:
The flag NTCAN_MODE_OVERLAPPED has to be set in canOpen() for this handle.

See also:
Description of canReadT() or canWriteT().

Page 160 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.4 canGetOverlappedResultX

Retrieves the results of an asynchronous (overlapped) operation on the specified CAN handle.

Syntax:

EXPORT NTCAN_RESULT CALLTYPE canGetOverlappedResultX(
 NTCAN_HANDLE handle, /* Handle */
 OVERLAPPED *ovrlppd, /* OUT: Win32 overlapped structure */

 /* IN: N/A */
 int32_t *len, /* OUT: N/A */
 /* IN: # of available CMSG_X-Buffer */
 BOOL bWait); /* FALSE => do not wait, else wait */

Description:

Win32/64

This function is required on Windows OS to support the use of asynchronous
(also called overlapped) I/O operations. The call is just a wrapper for the
GetOverlappedResult() function of Windows to return the number of CMSG_X
instead of the number of transferred bytes.
On all other platforms supported by NTCAN the call is available but returns
immediately with an error.

The results reported by the canGetOvelappedResultX() function are those of the specified
handle's last overlapped operation to which the specified OVERLAPPED structure was provided,
and for which the operation's results were pending. A pending operation is indicated when
canReadT() or canWriteT() returns NTCAN_IO_PENDING. When an I/O operation is pending, the
function that started the operation resets the hEvent member (which should be a manual-reset
event object) of the OVERLAPPED structure to the nonsignalled state. Then when the pending
operation has been completed, the system sets the event object to the signalled state.
If the bWait parameter is TRUE, canGetOvelappedResultX() determines whether the pending
operation has been completed by waiting for the event object to be in the signalled state.

Arguments:
handle

[in] CAN handle. This is the same handle that was specified when the overlapped operation
was started by a call to canReadT() or canWriteT().

ovrlppd
[in/out] A pointer to an OVERLAPPED structure structure that was specified when the
overlapped operation was started.

len
[in/out] A pointer to a variable that receives the number of CMSG_X messages that were
actually transferred by the read or write operation.

bWait
[in] If this parameter is TRUE, the function does not return until the operation has been
completed. If this parameter is FALSE and the operation is still pending, the function returns
NTCAN_IO_INCOMPLETE.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 161 of 289

API Reference

Return Values:

Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Usage:

The call is required for applications which transmit CAN / CAN FD messages asynchronously.

Requirements:
The flag NTCAN_MODE_OVERLAPPED has to be set in canOpen() for this handle.

See also:
Description of canReadT() or canWriteT().

Page 162 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.5 canFormatError

Generate a platform independent textual description of an NTCAN error or status code.

Syntax:
NTCAN_RESULT canFormatError(
 NTCAN_RESULT error, /* Error code */
 uint32_t type, /* Error message type */
 char *pBuf, /* Pointer to destination buffer */
 uint32_t bufsize); /* Size of the buffer above */

Description:
The function copies a textual description of an error or status code in the format defined by the
parameter type for the error code error into the application output buffer referenced by pBuf
which size is defined with the parameter bufsize. In case of an unknown error the numerical
value of the error code in a hexadecimal representation is appended to the error text.

Arguments:
error

[in] Numerical error code returned by an NTCAN API function.

type
[in] This parameter specifies the format of the returned string. Supported values are:

NTCAN_ERROR_FORMAT_LONG – Return a textual (English) error description.
NTCAN_ERROR_FORMAT_SHORT – Return error constant as text.

pBuf
[out] A pointer to a buffer that receives the null-terminated error message.

bufsize
[in] This parameter specifies the size of the output buffer pBuf in bytes.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 163 of 289

API Reference

Usage:
An application should use this function to implement a platform independent error signalling
which is capable to indicate error messages for error codes introduced with updated versions of
the NTCAN library without the need to modify the application.

Example:

char szErrorText[60];
NTCAN_RESULT status = NTCAN_RX_TIMEOUT; /* Set to Rx timeout error */

/* Format short error message */
canFormatError(status, NTCAN_ERROR_FORMAT_SHORT, szErrorText,
 sizeof(szErrorText));
printf("%s -", szErrorText);

/* Format long error message */
canFormatError(status, NTCAN_ERROR_FORMAT_LONG, szErrorText,
 sizeof(szErrorText));
printf("%s\n", szErrorText);

/* Expected console output:
 * NTCAN_RX_TIMEOUT - Receive operation timed out
 */

Requirements:
N/A.

See also:
Chapter 7 for the list of implemented status and error return codes.

Page 164 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.6 canFormatEvent

Generate a platform independent textual interpretation of an NTCAN event.

Syntax:
NTCAN_RESULT canFormatEvent(
 EVMSG *event, /* Event message */
 NTCAN_FORMATEVENT_PARAMS *para, /* Parameters */
 char *pBuf, /* Pointer to destination buffer */
 uint32_t bufsize); /* Size of the buffer above */

Description:
The function copies a textual interpretation of an NTCAN event in the format defined by the
parameter para for the event event into the application output buffer referenced by pBuf which
size is defined with the parameter bufsize..

Arguments:
event

[in] Reference to an NTCAN event.

para
[in/out] Reference to an initialized NTCAN_FORMATEVENT_PARAMS structure which has to be at
least initialized to 0 (see Remarks below).

pBuf
[out] A pointer to a buffer that receives the null-terminated event message.

bufsize
[in] This parameter specifies the size of the output buffer pBuf in bytes.

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

Remark:
As the EVMSG does not contain the net number and can therefore not be linked to the CAN
device which indicated the event to the application canFormatEvent() requires additional meta
information for some event types. These additional data has to be passed by the application
with the NTCAN_FORMATEVENT_PARAMS structure. For some event types the call even returns with
meta information stored into this structure with the intention that the application keeps them
persistent until the next call for this event type. The table below gives an overview which event
types require meta information and/or require persistence to work properly.

Event Input data Persist Remark
NTCAN_EV_CAN_ERROR N/A No N/A

NTCAN_EV_BAUD_CHANGE N/A No N/A

NTCAN_EV_CAN_ERROR_EXT ctrl_type No Only supported for SJA1000 and
esdACC CAN controller.

NTCAN_EV_BUSLOAD timestamp_freq
num_baudrate

Yes Returns NTCAN_INVALID_PARAMETER
for the first call.

The currently unused definition of NTCAN_FORMATEVENT_SHORT can be used at compile time to
check if the canFormatEvent() function is available.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 165 of 289

API Reference

Usage:
An application should use this function to implement a platform independent CAN event
handling which is capable to show textual interpretation for CAN events introduced with updated
versions of the NTCAN library or without the need to modify the application.

Example:

char szMsg[60];
EVMSG evmsg;
NTCAN_FORMATEVENT_PARAMS para;

/* Create a CAN event (usually returned with e.g. canRead()) */
evmsg.evid = NTCAN_EV_CAN_ERROR;
evmsg.len = 4;
evmsg.can_status = NTCAN_BUSSTATE_BUSOFF;

/* Initialize parameter structure */
memset(para, 0, sizeof(para);

/* Create a textual event description */
if(NTCAN_SUCCESS == canFormatEvent(&evmsg, ¶, szMsg, sizeof(szMsg)) {

printf("%s\n", szMsg);
}

/* Expected console output: “Controller bus-off” */

Requirements:
N/A.

See also:
Chapter 7 for the list of implemented status and error return codes.

Page 166 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

API Reference

4.5.7 canFormatFrame

Generate the bitstream for error injection based on a CAN message.

Syntax:
NTCAN_RESULT canFormatFrame(CMSG *msg, /* CAN message */
 CMSG_FRAME *frame, /* CAN Frame + Information*/
 uint32_t eccExt);/* ECC Errors + Features */

Description:
This function simplifies generating the CAN bitstream used by the error injection units based on
an initialized CAN message (CMSG) by calculating the CRC and the position of stuff-bits.
Additionally to the bitstream are also the individual positions of the frame parts stored in the
frame structure. Via the eccExt errors can be incorporated into the bitstream, such as stuff-
errors or form-erros in a certain position in the frame.

Arguments:
msg

[in] Reference to the completely initialized CMSG structure.

frame
[out] Pointer to the memory location to store the resulting bitstream as a CMSG_FRAME
structure.

eccExt
[in] Specifies the position of an error in the CAN-Frame in the coding of the ECC register
form NXP SJA1000

Return Values:
Upon success, NTCAN_SUCCESS is returned or one of the error codes described in chapter 7 in
case of a failure.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 167 of 289

API Reference

Usage:
Fill CMSG with valid data an call canFormatFrame().

Example:
CMSG canMsg;
CMSG_FRAME canFrame;

canMsg.id = 42;
canMsg.len = 2;
canMsg.data[0] = 12;
canMsg.data[1] = 34;

memset(&canFrame, 0, sizeof(canFrame));
ret = canFormatFrame(&canMsg, &canFrame, 0);
if (ret != NTCAN_SUCCESS) {
 printf("canFormatFrame returned: %d\n", ret);
 return 0;
}
printf("Generated CAN bitstream:\n Length: %d\n", canFrame.length);
printf("\0x%x 0x%x 0x%x 0x%x 0x%x\n",
 canFrame.can_frame.l[0], canFrame.can_frame.l[1],
 canFrame.can_frame.l[2], canFrame.can_frame.l[3],
 canFrame.can_frame.l[4]);

Requirements:
N/A.

See also:
N/A.

Page 168 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Macros

5. Macros
This chapter describes the macros in the header <ntcan.h> which simplify writing applications and
make the code more readable.

5.1 NTCAN_DATASIZE_TO_DLC
Convert the payload size of a CAN FD message into a DLC value.

Syntax:
#define NTCAN_DATASIZE_TO_DLC(dataSize)

Description:
This macro returns the DLC value of a CAN FD message for a given payload size in bytes.

Remark:
Compliant with /2/ payloads with more than 8 bytes (for CAN FD frames) can only be mapped to
certain discrete DLC values. The mapping is performed by this macro rounding up to the next
DLC value which payload can hold the given number of bytes. The argument is internally limited
to 64.

Arguments:
dataSize

Payload in bytes in the range from 0..64.

5.2 NTCAN_DLC
Return the Data Length Code (DLC)

Syntax:
#define NTCAN_DLC(len)

Description:
This macro returns the DLC code of a CAN message without additional meta information which
may be coded in the parameter len of the CMSG, CMSG_T or CMSG_X structure.

Arguments:
len

Member len of CMSG, CMSG_T or CMSG_X.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 169 of 289

Macros

5.3 NTCAN_DLC_AND_TYPE
Return the data length code and the message type.

Syntax:
#define NTCAN_DLC_AND_TYPE(len)

Description:
This macro returns the data length code of a CAN message together with the message type
information (RTR message or data message) but without additional optional meta information
which may be coded in the parameter len of the CMSG or CMSG_T structure.

Arguments:
len

Member len of CMSG or CMSG_T.

Note:
This macro is still available for backward compatibility reasons but deprecated as the
specification /2/ removes the RTR bit for CAN FD messages and so the meta information (bit 4)
in the parameter len to mark a message as RTR is only valid for CAN CC messages and is
used with a different meaning for CAN FD messages by the NTCAN API. To check if a received
message is a RTR message the CAN FD aware macro NTCAN_IS_RTR should be used.

5.4 NTCAN_GET_BOARD_STATUS
Return the hardware status.

Syntax:
#define NTCAN_GET_BOARD_STATUS(boardstatus)

Description:
This macro returns the CAN controller HW status.

Arguments:
boardstatus

Member boardstatus of CAN_IF_STATUS.

5.5 NTCAN_GET_CTRL_TYPE
Return the CAN controller type.

Syntax:
#define NTCAN_GET_CTRL_TYPE(boardstatus)

Description:
This macro returns the CAN controller type according to table 21.

Arguments:
boardstatus

Member boardstatus of CAN_IF_STATUS.

Page 170 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Macros

5.6 NTCAN_GET_TDC_FILTER
Return the configured TDC filter.

Syntax:

#define NTCAN_GET_TDC_FILTER(val)

Description:

This macro returns the configured TDC filter (see chapter 3.15.2) from the 32 bit value returned
with NTCAN_IOCTL_GET_FD_TDC.

Remark:

Supported only by CAN FD controllers. A CAN controller without TDC filter support will return 0.

Arguments:

val
Value returned with NTCAN_IOCTL_GET_FD_TDC.

5.7 NTCAN_GET_TDC_MODE

This macro returns the configured TDC mode.

Syntax:

#define NTCAN_GET_TDC_MODE(val)

Description:

This macro returns the configured TDC mode (see chapter 3.15.2) from the 32 bit value
returned with NTCAN_IOCTL_GET_FD_TDC. Supported modes are:

➢ NTCAN_TDC_MODE_AUTO: TDC automatic mode (See chapter 3.15.2.1).

➢ NTCAN_TDC_MODE_MANUAL: TDC Manual Mode (See chapter 3.15.2.2).

➢ NTCAN_TDC_MODE_OFF: TDC is disabled.

Remark:

Supported only by CAN FD controllers.

Arguments:

val
Value returned with NTCAN_IOCTL_GET_FD_TDC.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 171 of 289

Macros

5.8 NTCAN_GET_TDC_SSPO
Return the current SSP Offset as a multiple of CAN clock cycles.

Syntax:

#define NTCAN_GET_TDC_SSPO(val)

Description:

This macro returns the current SSP Offset (SSPO) (see chapter 3.15.2) from the 32 bit value
returned with NTCAN_IOCTL_GET_FD_TDC.

Remark:

Supported only by CAN FD controllers.

Arguments:

val
Value returned with NTCAN_IOCTL_GET_FD_TDC.

5.9 NTCAN_GET_TDC_SSPS
Return the configured TDC shift as a multiple of CAN clock cycles.

Syntax:

#define NTCAN_GET_TDC_SSPS(val)

Description:

This macro returns the configured TDC shift value (see chapter 3.15.2) from the 32 bit value
returned with NTCAN_IOCTL_GET_FD_TDC.

Remark:

Supported only by CAN FD controllers. For backward compatibility this macro is also available
with the legacy name NTCAN_GET_TDC_OFFSET.

Arguments:

val
Value returned with NTCAN_IOCTL_GET_FD_TDC.

Page 172 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Macros

5.10 NTCAN_GET_TDC_TD
Get the current measured TD value as multiple of CAN clock cycles.

Syntax:

#define NTCAN_GET_TDC_TD(val)

Description:

This macro returns the current measured TD value (see chapter 3.15.2) from the 32 bit value
returned with NTCAN_IOCTL_GET_FD_TDC.

Remark:

Supported only by CAN FD controllers. For backward compatibility this macro is also available
with the legacy name NTCAN_GET_TDC_VALUE.

Arguments:

val
Value returned with NTCAN_IOCTL_GET_FD_TDC.

5.11 NTCAN_IS_FD
Check for FD message.

Syntax:
#define NTCAN_IS_FD(len)

Description:
This macro returns a value different from 0 if the message is a CAN FD frame and 0 in case of a
CAN CC frame.

Arguments:
len

Member len of CMSG_X.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 173 of 289

Macros

5.12 NTCAN_IS_FD_WITHOUT_BRS
Check if a FD frame is transmitted without bit rate change during the data phase.

Syntax:
#define NTCAN_IS_FD_WITHOUT_BRS(len)

Description:
This macro returns a value different from 0 if the CAN controller which transmitted the received
CAN FD message did this without changing the bit rate during the data phase but keeping the
configured nominal bit rate.

Remark:
Supported only by CAN FD controllers transmitting CAN FD messages.

Arguments:
len

Member len of CMSG_X

5.13 NTCAN_IS_RTR
Check for a RTR message.

Syntax:
#define NTCAN_IS_RTR(len)

Description:
This macro returns a value different from 0 if the message is a RTR frame and 0 in case of a
data frame.

Arguments:
len

Member len of CMSG, CMSG_T or CMSG_X.

5.14 NTCAN_IS_INTERACTION
Check for an interaction message.

Syntax:
#define NTCAN_IS_INTERACTION(len)

Description:
This macro returns a value different from 0 if the message is receive via the interaction
mechanism and 0 if not.

Remark:
The interaction indication has to be enabled with canOpen() otherwise the macro will always
return 0 because of the disabled indication.

Arguments:
len

Member len of CMSG, CMSG_T or CMSG_X.

Page 174 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Macros

5.15 NTCAN_LEN_TO_DATASIZE
Convert the DLC of a CAN message into a the payload size in bytes.

Syntax:
#define NTCAN_LEN_TO_DATASIZE(len)

Description:
This macro returns the length of a CAN message in bytes regarding the CAN message type
(Data or RTR) and CAN message format (Classic or FD).

Remark:
Compliant to /2/ for all CAN CC Data frames with DLC values between 9..15 a payload size of 8
bytes is returned and for CAN CC RTR frames a payload of 0 bytes is returned independent of
the DLC value.

Arguments:
len

Member len of CMSG, CMSG_T or CMSG_X.

5.16 NTCAN_SET_TDC

Set the TDC mode and SSP shift.

Syntax:

#define NTCAN_SET_TDC(mode, shift)

Description:

This macro returns the 32 bit value to configure the TDC operation mode and SSP shift value
(see chapter 3.15.2) which is passed to the driver with NTCAN_IOCTL_SET_FD_TDC.

Remark:

Supported only by CAN FD controllers.

Arguments:

mode
TDC mode (see chapter 5.7 for supported values).

shift
Mode specific signed or unsigned SSP shift value.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 175 of 289

Data Types

6. Data Types
In 1997 the NTCAN-API was defined to support 32-bit CPUs with 32-bit operating systems using
standard C data types according to the so called ILP32 data model (see table with data type
models below) which is used by all (32-bit) operating systems. With the ongoing move to 64-bit
CPUs and 64-bit operating systems, which execute 32-bit code as well as 64-bit code, it became
necessary to change the API to use data size neutral abstract data types. For 64-bit operating
systems the LP64 as well as the LLP64 data models are prevalent.

Data type ILP32 LP64 LLP64

int 32 32 32

long 32 32 64

pointer 32 64 64

Table 18: Data type size in bits for different data models

In order to stay cross-platform portable with respect to different CPU architectures and compilers
newer versions of the NTCAN-API header <ntcan.h> do not use the native standard integer data
types of the C language any more. Instead the data types in the header <stdint.h> are supported
which defines various integer types and related macros with size constraints.

Specifier Signing Bytes Range
int8_t Signed 1 −128...127
uint8_t Unsigned 1 0...255
int16_t Signed 2 −32,768...32767
uint16_t Unsigned 2 0...65535
int32_t Signed 4 −2,147,483,648...2,147,483,647
uint32_t Unsigned 4 0...4,294,967,295
int64_t Signed 8 −9,223,372,036,854,775,808...9,223,372,036,854,775,807
uint64_t Unsigned 8 0...18,446,744,073,709,551,615

Table 19: Simple C99 data types used by NTCAN-API

These data types are part of the ISO/IEC 9899:1999 standard which is also commonly referred to
as C99 standard.

For platforms which do not follow the C99 standard (e.g. Windows) these types
are defined in the <ntcan.h> header using compiler- and OS-specific
knowledge of the native data types.

Caveat: The introduction of the C99 data types has not affected the binary
interface of the NTCAN-API on any platform.
Nevertheless there are several C/C++ compiler which issue warning messages
if existing applications based on C native data types are re-compiled with a
NTCAN header with C99 data types, even if the data type size in bits and the
data type signedness have not been changed.

Page 176 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.1 Simple Data Types
This section describes the simple data types defined by the NTCAN-API in alphabetical order.
They all start with the prefix NTCAN_ with respect to a clean namespace.

6.1.1 NTCAN_HANDLE

The type defines an opaque operating system specific reference to a physical CAN port. This
handle is the input or output parameter of most NTCAN-API functions. As an input parameter the
handle is validated by the called function. This type should be used in applications instead of the
platform specific native type for cross-platform portability.

It is not guaranteed that the returned handle is identical with the OS specific
reference to the device and a current NTCAN-API implementation might even
change in the future. Usually this handle (Windows) or file descriptor (POSIX
compatible OS) is not required for the CAN communication. In rare cases it
might be necessary to obtain this reference. In this case an application can
call canIoctl() with NTCAN_IOCTL_GET_NATIVE_HANDLE as argument but
working with this handle or file descriptor might cause unwanted side effects.

If an application wants to indicate that a handle is invalid the portable
definition NTCAN_NO_HANDLE should be used for this instead of the native
representation of an invalid handle.

6.1.2 NTCAN_RESULT

The type defines the operating system specific data type for the return value of every NTCAN-API
function. This type should be used in applications instead of an OS specific native type for cross-
platform portability.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 177 of 289

Data Types

6.2 Compound Data Types
This section describes the compound data types defined by the NTCAN-API in alphabetical order.

6.2.1 CAN_FRAME_STREAM

The CAN_FRAME_STREAM union is used for Error Injection as part of the data types CMSG_FRAME and
NTCAN_EEI_UNIT. It's a union of 160 bits for a complete CAN frame with stuff bits that can be
accessed as 8-Bit, 16-Bit or 32-Bit array.

Syntax:

typedef union {
 uint8_t c[20];
 uint16_t s[10];
 uint32_t l[5];
} CAN_FRAME_STREAM;

Members:
c

Access as array of 8-Bit values.
s

Access as array of 16-Bit values..
l

Access as array of 32-Bit values.

Page 178 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.2 CAN_IF_STATUS

The CAN_IF_STATUS is returned by canStatus() with information about the CAN hardware and the
runtime environment.

Syntax:
typedef struct
{
 uint16_t hardware; /* Hardware version */
 uint16_t firmware; /* Firmware version (0 for passive hardware) */
 uint16_t driver; /* Driver version */
 uint16_t dll; /* NTCAN library version */
 uint32_t boardstatus; /* Hardware status, CAN controller type */
 uint8_t boardid[14]; /* Board ID string */
 uint16_t features; /* Device/driver capability flags */
} CAN_IF_STATUS;

Members:
hardware

The hardware revision. Refer to the remarks at the end of this abstract for the encoding of
the 16-Bit version number.

firmware
The firmware version. Returned as 0 on passive CAN interfaces. Refer to the remarks at the
end of this abstract for the encoding of the 16-Bit version number.

driver
The driver version. Refer to the remarks at the end of this abstract for the encoding of the 16-
Bit version number.

dll
The NTCAN-API library version. Refer to the remarks at the end of this abstract for the
encoding of the 16-Bit version number.

boardstatus
This 32-Bit value is divided into three parts:

Bit 31..24 Bit 23..16 Bit 15..0

CAN Controller Type Reserved Hardware Status

The Hardware Status reflects device specific errors or problems usually detected during
hardware initialization. The table below gives an overview about the supported values:

Constant Hardware Status
NTCAN_BSTATUS_OK No error.

NTCAN_BSTATUS_NEED_FW_OK Driver and FW are incompatible. Update the FW.

NTCAN_BSTATUS_HW_ERROR Hardware error (usually during initialization).

Table 20: CAN Hardware Status

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 179 of 289

Data Types

The CAN Controller Type returns a value defined in <ntcan.h> for the manufacturer and type
of the CAN controller according to the table below.

Constant CAN Controller
NTCAN_CANCTL_SJA1000 NXP SJA1000 / Philips 82C200

NTCAN_CANCTL_I82527 Intel I82527

NTCAN_CANCTL_FUJI Fujitsu MBxxxxx MCU

NTCAN_CANCTL_LPC NXP LPC2xxx / LPC17xx MCU

NTCAN_CANCTL_MSCAN Freescale MCU (MSCAN)

NTCAN_CANCTL_ATSAM Atmel ARM CPU

NTCAN_CANCTL_ESDACC esd electronics CAN FD IP Core (Advanced CAN
Core)

NTCAN_CANCTL_STM32 ST STM32Fxxx MCU (bxCAN)

NTCAN_CANCTL_CC770 Bosch CC770 (Intel 82527 compatible)

NTCAN_CANCTL_SPEAR ST SPEAr320 (Bosch C_CAN compatible)

NTCAN_CANCTL_FLEXCAN Freescale I.MX SoC (FlexCAN)

NTCAN_CANCTL_SITARA TI AM335x (Sitara) SoC (Bosch D_CAN compatible)

NTCAN_CANCTL_MCP2515 Microchip MCP2515

NTCAN_CANCTL_MCAN Bosch CAN FD IP Core (M_CAN)

NTCAN_CANCTL_CAST CAST CAN CC IP Core

NTCAN_CANCTL_ESDLIN esd electronics LIN Core

NTCAN_CANCTL_MSAM Microchip SAM E70/S70/V70/V71

Table 21: CAN Controller Types

The macros NTCAN_GET_CTRL_TYPE and NTCAN_GET_BOARD_STATUS are available to extract
the controller type and the hardware status field from the boardstatus.

As storing the CAN controller type in the MSB of boardstatus was
introduced at a later time it might be possible that a driver returns invalid
values. Please contact esd electronics if a driver update is available.

boardid
The device description as zero terminated ASCII string.

features
This member is a bit mask with hardware and/or device driver specific capabilities which
should be evaluated by an application to check if a certain feature is supported.

Caveat: The number of indicated features is limited to 16 due to the data type
in this structure. The table below covers a 32 bit data type so only the LSW is
returned with this data type. The complete bitmask of features is just returned
in the NTCAN_INFO structure. If NTCAN_INFO is not supported all features
indicated in the MSW can be assumed by an application to be 0.

Page 180 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

Bit Flag Meaning

0 NTCAN_FEATURE_FULL_CAN If the flag is set, the CAN board is based on
a FullCAN controller otherwise on a
BasicCAN controller.

1 NTCAN_FEATURE_CAN_20B If the flag is set, CAN messages with 29-bit
and 11-bit CAN-IDs (extended and base
frame format) can be transmitted and
received. Otherwise just 11-bit CAN-IDs
(base frame format) are supported.

2 NTCAN_FEATURE_DEVICE_NET If the flag is set, the firmware supports the
CAN protocol DeviceNet.

3 NTCAN_FEATURE_CYCLIC_TX If the flag is set, the CAN interface runs with
a customer specific firmware with support for
an autonomous and cyclic transmission of
CAN messages (driver revision <= 2.x).

3 NTCAN_FEATURE_TIMESTAMPED_TX If the flag is set, the driver supports the
transmission of CAN messages at a given
time with canSendT() (driver revision >=
3.x).

4 NTCAN_FEATURE_RX_OBJECT_MODE If the flag is set, the driver supports the
Object Mode in addition to the FIFO mode.

5 NTCAN_FEATURE_TIMESTAMP If the flag is set, the CAN hardware/firmware
supports time-stamping of received CAN
messages (see chapter 3.9).

6 NTCAN_FEATURE_LISTEN_ONLY_MODE If the flag is set, the CAN hardware supports
the Listen-Only mode (see chapter 3.3.2)

7 NTCAN_FEATURE_SMART_DISCONNECT If the flag is set, the CAN hardware/firmware
operates in the Smart Disconnect mode (see
chapter 3.3.8)

8 NTCAN_FEATURE_LOCAL_ECHO If the flag is set, the driver supports receiving
interaction frames in FIFO mode with the
same handle they are sent.

9 NTCAN_FEATURE_SMART_ID_FILTER If the flag is set, the driver supports the
adaptive ID filter for 29-bit CAN-IDs.

10 NTCAN_FEATURE_SCHEDULING If the flag is set, the driver supports to
schedule the transmission of CAN messages
periodically or at a given point in time (see
chapter 3.12).

11 NTCAN_FEATURE_DIAGNOSTIC If the flag is set, the driver and the hardware
and/or firmware support extended CAN bus
diagnostic (see chapter 3.6.2).

12 NTCAN_FEATURE_ERROR_INJECTION If the flag is set, the driver and the hardware
support error injection (see chapter 3.13).

13 NTCAN_FEATURE_IRIGB If the flag is set, the hardware supports clock
synchronization based on the IRIG B
standard.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 181 of 289

Data Types

Bit Flag Meaning

14 NTCAN_FEATURE_PXI If the flag is set, the hardware supports using
the PXI back plane clock in addition to the
internal clock.

15 NTCAN_FEATURE_CAN_FD If the flag is set, the hardware supports
communication according to the CAN FD
standard.

16 NTCAN_FEATURE_SELF_TEST If the flag is set, the hardware supports a self
test mode (see chapter 3.3.3).

17 NTCAN_FEATURE_TRIPLE_SAMPLING If the flag is set, the CAN controller supports
a triple sampling mode (see chapter 3.3.4).

18 NTCAN_FEATURE_TX_PAUSE If the flag is set, the CAN controller supports
a Tx pause mode (see chapter 3.3.5).

19 NTCAN_FEATURE_DAR If the flag is set the CAN controller supports
a mode to globally disable the automatic
retransmission after a transmission failure
(see chapter 3.3.6)

20 NTCAN_FEATURE_DAR_FRAME If the flag is set the CAN controller supports
a mode to disable on a per frame basis the
automatic retransmission after a
transmission failure (see chapter 3.3.6)

21 NTCAN_FEATURE_PROG_TERM If the flag is set the hardware supports to
enable or disable an on-board bus
termination programmatically.

22 NTCAN_FEATURE_GPIO If the flag is set the hardware supports GPIO
ports which are controlled via the NTCAN
API.

23..26 N/A Reserved for future use.

27 NTCAN_FEATURE_LIN Network has LIN physics.

28..31 N/A Reserved for future use.

Table 22: NTCAN Feature Flags

Remarks:
The members which contain a version are composed of major version (4 bit), minor version (4
bit) and a revision (8 bit).

Bit 12..15 Bit 8..11 Bit 0..7

Major Minor Revision

Example: The version 1.2.3 is represented as 0x1203.

Page 182 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.3 CMSG

The CMSG structure contains a CAN message with the CAN identifier (CAN-ID), the number of data
bytes (DLC), additional message specific meta data and up to 8 data bytes.

Syntax:
typedef struct
{

int32_t id; /* CAN-ID (11-/29-bit) or Event-ID [Tx, Rx] */
uint8_t len; /* Bit 0-3 = Data Length Code [Tx, Rx] */

/* Bit 4 = RTR (CAN CC) [Tx, Rx] */
 /* = No_BRS (CAN FD) [Tx, Rx] */

/* Bit 5 = No_Data (Object Mode) [Rx] */
 /* = Interaction Data (FIFO Mode) */
 /* Bit 6 = Reserved [Rx] */
 /* Bit 7 = Type(CAN FD / CAN CC) [Tx, Rx] */

uint8_t msg_lost; /* Counter for lost Rx messages [Rx] */
uint8_t reserved[1]; /* Reserved */
uint8_t esi; /* Error State Indicator (CAN FD) [Rx] */
uint8_t data[8]; /* 8 data bytes [Tx, Rx] */

} CMSG;

Members:
id

Identifier (CAN-ID) of the CAN message.

Bit 29 of id is used to distinguish an 11-bit CAN identifier from a 29-bit CAN identifier. In order
to transmit a message with a 29-bit identifier this bit has to be set in addition to the CAN
identifier. This can be achieved by bit wise OR the identifier with NTCAN_20B_BASE
(defined in <ntcan.h>). If a message with a 29-bit identifier is received, this bit is set.

Bit 30 of id is used to distinguish an CAN message from a CAN event (refer to chapter 6.2.12
for details).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 183 of 289

Bit number
of i d

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 030

Bit assignment
of i d
for

11-bit ID

11-bit CAN ID

10 9 8 7 6 5 4 3 2 1 0X X X X X X X X X X X X X X X X X X0

Flag: 29-bit ID (0 -> 11 bit)
Flag: Event message (0 -> no event)

Bit assignment
of i d
for

29-bit ID

29-bit CAN ID

10 9 8 7 6 5 4 3 2 1 01

reserved

Flag: 29-bit ID (1 -> 29 bit)

Flag: Event message (0 -> no event)

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

0

0

0

0

reserved

Data Types

len
The structure member len contains the Data Length Code (DLC) with the number of valid
data bytes for transmitted and received CAN messages in the bits 0..3. The bits 4..7 are used
to store additional meta information.

Bit 7 6 5 4 3 2 1 0

Description CAN Message Meta Information CAN Message DLC

The Data Length Code (DLC) of a CAN message indicates the number of valid bytes in the
data array of a received or transmitted CMSG. For CAN CC messages /1/ defines a direct
mapping between the DLC values 0..8 and the number of data bytes. For all DLC values
greater 8 the maximum number of data bytes is limited to 8.

DLC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bytes 0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8

Table 23: Mapping between DLC and payload size for CAN CC

For CAN FD messages /1/ defines a direct mapping between the DLC values 0..8 and the
number of data bytes. All DLC values greater 8 are mapped to non consecutive maximum
numbers of data bytes according to the table below.

DLC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bytes 0 1 2 3 4 5 6 7 8 12 16 20 24 32 48 64

Table 24: Mapping between DLC and payload size for CAN FD

You should use the macro NTCAN_DLC in your application if you just need to refer to the DLC
of the message. The macros NTCAN_DATASIZE_TO_DLC and Error: Reference source
 not found will help to convert between DLC values and payload size.

The payload of a Remote Request Transmission (RTR), defined only for a CAN
CC messages, is always 0 independent of the DLC value. The Error:
 Reference source not found macro takes care of this.

Page 184 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

The meaning of the four meta information bits depend on the message direction (Tx/Rx), the
CAN message type (CAN CC / CAN FD) and/or the handle mode (FIFO mode/Object mode)
according to the table below:

Dir Len
Bit

Value

0 1

Tx

7 Classcical CAN Message CAN FD Message

6 Reserved for future use (Set to 0) Reserved for future use (Set to 0)

5 Retransmit CAN message in case of
communication errors or a lost
arbitration procedure (Default
behavior of a CAN controller)

No retransmission of the CAN
message in case of a communication
error or a lost arbitration procedure

4 CAN CC
Data Frame

CAN FD
Data Frame with Bit Rate Switch

CAN CC
Remote Transmission Request (RTR)

CAN FD
Data Frame without Bit Rate Switch

Rx

7 Classcical CAN Message CAN FD Message

6 Don't care (Reserved for internal use) Don't care (Reserved for internal use)

5 Handle FIFO Mode:
Frame received via physical port

Handle Object Mode:
Returned Data Valid

Handle FIFO Mode:
Frame received via Interaction

Handle Object Mode:
Returned Data Invalid

4 CAN CC (Bit 7 = 0)
Data Frame

CAN FD (Bit 7 = 1)
Data Frame with Bit Rate Switch

CAN CC (Bit 7 = 0)
Remote Transmission Request (RTR)

CAN FD (Bit 7 = 1)
Data Frame without Bit Rate Switch

Table 25: Meta Information of the CMSG len.

Bit 7 (Message Type):

The bit 7 of len (defined as NTCAN_FD in <ntcan.h>) is used to mark a message as CAN CC
or CAN FD for transmitted as well as received messages. The state of this bit affects the
meaning of bit 4 (RTR vs. BRS) as well as mapping between DLC value and size of data
bytes. You should use the macro NTCAN_IS_FD to distinguish between the message types.

Bit 6 (Reserved):

Bit 6 is reserved for internal use and should be set to 0 for transmitted messages.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 185 of 289

Data Types

Bit 5 (Interaction / Data Valid / DAR Mode):

The meaning of the bit depends on the communication direction (Receive or Transmit)

Receive:

The meaning of the bit depends on the handle type (Object Mode or FIFO Mode).

FIFO Mode:
The bit (defined as NTCAN_INTERACTION in <ntcan.h>) indicates if the message is received
via the interaction mechanism, i.e. from another application using the same physical CAN
port.
The bit is set if the handle used to receive the message is either explicitly opened with the
mode flag NTCAN_MODE_MARK_INTERACTION or NTCAN_MODE_LOCAL_ECHO. You should use
the macro NTCAN_IS_INTERACTION to check if a frame is received via interaction (local
echo) or not.

Value of Bit 5 Mode flag of canOpen() Function

0
1

NTCAN_MODE_MARK_INTERACTION Message not received via interaction
Message received via interaction

0
1

NTCAN_LOCAL_ECHO Message not send on this handle
Message send on this handle

Object Mode:
The bit (defined as NTCAN_NO_DATA in <ntcan.h>) indicates that no data is received for this
object yet or the data might be updated while the CAN controller was disconnected from the
CAN bus. The bit is only set if the handle used to receive the message is explicitly opened
with the mode flag NTCAN_MODE_OBJECT.

Transmit:

The bit (defined as NTCAN_DAR in <ntcan.h>) controls the DAR mode and indicates if the
CAN controller should retransmit (default behaviour) the message in case of a bus error or
a lost arbitration procedure. If the bit is set, the automatic retransmission is disabled for this
message.

The ability of a CAN controller to enable/disable the DAR mode per frame is
hardware dependent and can be checked by the application with the feature
flag NTCAN_FEATURE_DAR_FRAME

Page 186 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

Bit 4 (RTR / BRS):

The meaning of the bit depends on the message type (CAN CC / CAN FD).

Remote Transmisiion Request (RTR):

The bit 4 of len (defined as NTCAN_RTR in <ntcan.h>) is used to distinguish a CAN CC (Bit 7
= 0) data frame from a remote request (RTR) frame for received and transmitted messages.
In both cases the bits 0..3 of len are valid but in case of a RTR frame the bytes of the data
array are invalid. You should use the macro NTCAN_IS_RTR to distinguish between the frame
types.

The ability of Full CAN controller to send/receive
arbitrary RTR frames might be limited by the hardware.

Bit Rate Switch (BRS):

The bit 4 of len (defined as NTCAN_NO_BRS in <ntcan.h>) is used to distinguish a CAN FD
(Bit 7 = 1) transmitted or received frame with a bit rate switch in the data phase from a frame
without bit rate switch. You should use the macro NTCAN_IS_FD_WITHOUT_BRS to figure out
the mode for received messages.

msg_lost

FIFO Mode:
If the receive FIFO of the handle gets overrun by new messages, the oldest messages are
overwritten and the msg_lost counter is increased so the application can detect this data
overrun. A counter different from 0 indicates that the application program processes the CAN
data flow slower than the driver provides new data.

Message-Lost Counter Meaning

msg_lost = 0
0 < msg_lost < 255
msg_lost = 255

no lost messages
number of lost frames = value of msg-lost
number of lost frames ≥ 255

RX Object Mode (Driver V4.1.x and later):
The counter value is incremented with each update of the CAN message and revolves from
255 to 0. An application which polls the object in regular intervals can use the counter to
figure out if and how many times the object was updated between consecutive read
operations.

Note:

Caveat: Basically it is possible to transmit and receive CAN FD messages in a
CMSG structure if the handle was opened with NTCAN_MODE_FD. If a CAN FD
message with more than 8 bytes is transmitted or received the DLC will
represent the real data size but the data itself is obviously limited to 8 bytes by
the device driver.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 187 of 289

Data Types

6.2.4 CMSG_T

The CMSG_T structure contains a CAN message with the CAN identifier (CAN-ID), the number of
data bytes (DLC), additional message specific meta data, up to 8 data bytes and a 64-Bit
timestamp.

Syntax:
typedef struct
{

int32_t id; /* CAN-ID (11-/29-bit) or Event-ID [Tx, Rx] */
uint8_t len; /* Bit 0-3 = Data Length Code [Tx, Rx] */

/* Bit 4 = RTR (CAN CC) [Tx, Rx] */
 /* = No_BRS (CAN FD) [Tx, Rx] */

/* Bit 5 = No_Data (Object Mode) [Rx] */
 /* = Interaction Data (FIFO Mode) */
 /* Bit 6 = Reserved [Rx] */
 /* Bit 7 = Type(CAN FD / CAN CC) [Tx, Rx] */

uint8_t msg_lost; /* Counter for lost Rx messages [Rx] */
uint8_t reserved[1];/* Reserved */
uint8_t esi; /* Error State Indicator (CAN FD) [Rx] */
uint8_t data[8]; /* 8 data bytes [Tx, Rx] */
uint64_t timestamp; /* Timestamp of this message [Tx, Rx] */

} CMSG_T;

Members:
All structure members but timestamp are identical to the CMSG structure. Please refer to chapter
6.2.3 for details.

timestamp
64-Bit timestamp (see chapter 3.9 for details).

Note:

Caveat: Basically it is possible to transmit and receive CAN FD messages in a
CMSG_T structure if the handle was opened with NTCAN_MODE_FD. If a CAN FD
message with more than 8 bytes is transmitted or received the DLC will
represent the real data size but the data itself is obviously limited to 8 bytes by
the device driver.

Page 188 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.5 CMSG_X

The CMSG_X structure contains a complete CAN CC or FD CAN message with the CAN identifier
(CAN-ID), the number of data bytes (DLC), additional message specific meta data, up to 64 data
bytes and a 64-Bit timestamp.

Syntax:
typedef struct
{

int32_t id; /* CAN-ID (11-/29-bit) or Event-ID [Tx, Rx] */
uint8_t len; /* Bit 0-3 = Data Length Code [Tx, Rx] */

/* Bit 4 = RTR (CAN CC) [Tx, Rx] */
 /* = No_BRS (CAN FD) [Tx, Rx] */

/* Bit 5 = No_Data (Object Mode) [Rx] */
 /* = Interaction Data (FIFO Mode) */
 /* Bit 6 = Reserved [Rx] */
 /* Bit 7 = Type(CAN FD / CAN CC) [Tx, Rx] */

uint8_t msg_lost; /* Counter for lost Rx messages [Rx] */
uint8_t reserved[1]; /* Reserved */
uint8_t esi; /* Error State Indicator (CAN FD) [Rx] */
uint8_t data[64]; /* 64 data bytes [Tx, Rx] */
uint64_t timestamp; /* Timestamp of this message [Tx, Rx] */

} CMSG_X;

Members:

All structure members are identical to the CMSG_T structure with the difference that the message
payload can be up to 64 data bytes. Please refer to chapter 6.2.3 and 6.2.4 for details.

Caveat: As for CAN FD messages with payloads of more than 8 bytes the
DLC no longer represent the payload size in bytes this information has to be
either part of the protocol or has to be part of an agreement between sender
and receiver of the message.
The application is responsible to initialize unused protocol bytes in the
CMSG_X which are transmitted because of the nonconsecutive discrete CAN
FD message size to appropriate values.

esi
The Error State Indicator (ESI) of a received CAN FD message is set to
NTCAN_ESI_FD_ERROR_PASSIVE if the transmitting node is in the state Error Passive (see
chapter 3.2).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 189 of 289

Data Types

6.2.6 CMSG_FRAME

The CMSG_FRAME structure is part of the NTCAN_EEI_UNIT structure and can be initialized with
canFormatFrame().

Syntax:

typedef struct _CMSG_FRAME {
 CAN_FRAME_STREAM can_frame; /* Complete CAN Frame */
 CAN_FRAME_STREAM stuff_bits; /* Mask of Stuff bits */
 uint16_t crc; /* CRC of CAN Frame */
 uint8_t length; /* Length of CAN Frame in Bit */
 uint8_t pos_id11; /* Position of Identifier 11 Bit */
 uint8_t pos_id18; /* Position of Identifier 18 Bit */
 uint8_t pos_rtr; /* Position of RTR Bit */
 uint8_t pos_crtl; /* Position of Control Field */
 uint8_t pos_dlc; /* Position of DLC Bits */
 uint8_t pos_data[8]; /* Position of Data Field */
 uint8_t pos_crc; /* Position of CRC Field */
 uint8_t pos_crc_del; /* Position of CRC delimiter */
 uint8_t pos_ack; /* Position of ACK Field */
 uint8_t pos_eof; /* Position of End of Frame */
 uint8_t pos_ifs; /* Position of Inter Frame Space */
 uint8_t reserved[3];
} CMSG_FRAME;

Members:
can_frame

Complete CAN Frame as bit stream
stuff_bits

A mask of stuff bits, marked with a 1 at the position of a stuff bit.
crc

Contains the calculated CRC.
pos_id11

Contains the bit position of ID 11
pos_id18

Contains the bit position of ID 18
pos_rtr

Contains the bit position of RTR Bit
pos_crtl

Contains the bit position of CRTL Field
pos_dlc

Contains the bit position of DLC
pos_data[8]

Contains the bit position of Data Field
pos_crc

Contains the bit position of CRC Field
pos_crc_del

Contains the bit position of CRC delimiter bit
pos_ack

Contains the bit position of Acknowledge bit
pos_eof

Contains the bit position of End Of Frame
pos_ifs

Contains the bit position of Inter Frame Space.

Page 190 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.7 CSCHED

The CSCHED structure is the argument of the NTCAN_IOCTL_TX_OBJ_SCHEDULE command of
canIoctl() which is used to configure the scheduling of a CAN message in Tx object mode.

Syntax:
typedef struct
{
 int32_t id; /* 11-bit or 29-bit CAN identifier [in] */
 int32_t flags; /* Mode configuration bitmask [in] */
 uint64_t time_start; /* Start time (absolute or relative) [in] */
 uint64_t time_interval; /* Interval time [in] */
 uint32_t count_start; /* Start value for counting. [in] */
 uint32_t count_stop; /* Stop value for counting. [in] */
} CSCHED;

Members:
id

The 11-bit or 29-bit CAN identifier of an existing TX Object Mode entry. See parameter id of
CMSG for details.

flags
A bitmask to configure the scheduling behaviour of an object according to the table below:

Flag Description
NTCAN_SCHED_FLAG_EN Enable this object for scheduling.

NTCAN_SCHED_FLAG_DIS Disable this object for scheduling.

NTCAN_SCHED_FLAG_REL The configured start time is a relative time.

NTCAN_SCHED_FLAG_ABS The configured start time is a absolute time.

NTCAN_SCHED_FLAG_INC8 The configured counter is an 8-Bit incrementer.

NTCAN_SCHED_FLAG_INC16 The configured counter is a 16-Bit incrementer.

NTCAN_SCHED_FLAG_INC32 The configured counter is a 32-Bit incrementer.

NTCAN_SCHED_FLAG_DEC8 The configured counter is an 8-Bit decrementer.

NTCAN_SCHED_FLAG_DEC16 The configured counter is a 16-Bit decrementer.

NTCAN_SCHED_FLAG_DEC32 The configured counter is a 32-Bit decrementer.

NTCAN_SCHED_FLAG_OFS0 The configured counter starts at CAN data byte 0.

NTCAN_SCHED_FLAG_OFS1 The configured counter starts at CAN data byte 1.

NTCAN_SCHED_FLAG_OFS2 The configured counter starts at CAN data byte 2.

NTCAN_SCHED_FLAG_OFS3 The configured counter starts at CAN data byte 3.

NTCAN_SCHED_FLAG_OFS4 The configured counter starts at CAN data byte 4.

NTCAN_SCHED_FLAG_OFS5 The configured counter starts at CAN data byte 5.

NTCAN_SCHED_FLAG_OFS6 The configured counter starts at CAN data byte 6.

NTCAN_SCHED_FLAG_OFS7 The configured counter starts at CAN data byte 7.

Table 26: Flags to configure the scheduling in TX Object Mode

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 191 of 289

Data Types

time_start
Start time to schedule the object which is interpreted as an absolute time if
NTCAN_SCHED_FLAG_ABS is set in flags otherwise a relative time (see chapter 3.9 for details).

time_interval
Interval time for a periodic scheduling or 0 for a single-shot configuration (see chapter 3.9 for
details).

count_start
Counter start value if an incrementer or decrementer is configured in flags for this object. If
no counter start position is configured the default position is data byte 0.

count_stop
Counter stop value if an incrementer or decrementer is configured for this object. After
reaching this value, the counter is set to count_start.

Page 192 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.8 EV_BAUD_CHANGE

The EV_BAUD_CHANGE structure is the payload of the NTCAN_EV_BAUD_CHANGE event which is
signalled each time the CAN controller changes the bit rate. If the CAN controller is operated in the
CAN FD mode the application will receive two consecutive events. The first event contains the bit
rate configured for the data phase and the second event the configured nominal bit rate.

Syntax:
typedef struct
{
 uint32_t baud; /* New NTCAN baudrate value */
 uint32_t num_baud; /* New numerical baudrate value (optional) */
} EV_CAN_BAUD_CHANGE;

Members:
baud

New baudrate parameter as returned by canGetBaudrate() or the value NTCAN_BAUD_FD for
the configured data phase bit rate.

num_baud
New bit rate as numerical value in Bit/s.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 193 of 289

Data Types

6.2.9 EV_CAN_ERROR

The EV_CAN_ERROR structure is the payload of the NTCAN_EV_CAN_ERROR event which is signalled
each time the CAN controller state has changed or an internal problem processing received
messages occurred.

Syntax:
typedef struct
{
 uint8_t reserved1; /* Reserved for future use */
 uint8_t can_status; /* CAN controller status */
 uint8_t dma_stall; /* DMA stall counter (HW dependent) */
 uint8_t ctrl_overrun; /* Controller overruns */
 uint8_t reserved3; /* Reserved for future use */
 uint8_t fifo_overrun; /* Driver FIFO overruns */
} EV_CAN_ERROR;

Members:
can_status

The current CAN controller status according to the table below (see chapter 3.2 for details):

Flag Value Description
NTCAN_BUSSTATE_OK 0x00 The controller status is in state Error Active.

NTCAN_BUSSTATE_WARN 0x40 The CAN controller warning limit is exceeded.

NTCAN_BUSSTATE_ERRPASSIVE 0x80 The controller status is in state Error Passive.

NTCAN_BUSSTATE_BUSOFF 0xC0 The controller status is in state Bus Off.

Table 27: CAN controller state

dma_stall
This value is incremented if a bus master DMA capable hardware has stalled it’s DMA state
machine as otherwise CAN messages in the FIFO of the host DMA memory would be
overwritten. The reason is usually that the hosts kernel or system thread which should
process the CAN messages are not scheduled in time. This indication does not mean that
messages are lost if not received in combination with one of the other counters. After this
event is fired this counter is reset to 0.

ctrl_overrun
This value is incremented if the CAN controller was unable to receive a CAN message
because its internal buffer was overrun. This is usually the result of a host system interrupt or
kernel/system thread which isn't scheduled fast enough. After this event is fired this counter
is reset to 0.

fifo_overrun
According to driver and hardware architecture the CAN controller interrupt handler stores a
received message into a common FIFO for later processing. This value is incremented each
time the CAN driver was unable to store a received CAN message because this internal
FIFO was overrun. This is usually the result of an overloaded target system. After this event
is fired this counter is reset to 0.

Page 194 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.10 EV_CAN_ERROR_EXT

The EV_CAN_ERROR_EXT structure is the payload of the NTCAN_EV_CAN_ERROR_EXT event which is
signalled each time the CAN controller detects an error on the bus. The support for this event and
the payload is very CAN controller specific. If the event is supported by the CAN controller
hardware this capability allows a very detailed analysis of a bus error situation.

Syntax:
typedef union
{
 struct {
 uint8_t status; /* (SJA1000) CAN controller status */
 uint8_t ecc; /* Error Capture Register */
 uint8_t rec; /* Rx Error Counter */
 uint8_t tec; /* Tx Error Counter */
 } sja1000;
 struct {
 uint8_t status; /* (esdACC) CAN controller status */
 uint8_t ecc; /* Error Capture Register */
 uint8_t rec; /* Rx Error Counter */
 uint8_t tec; /* Tx Error Counter */
 uint8_t txstatus; /* (esdACC) CAN controller TX status */
 } esdacc;
} EV_CAN_ERROR_EXT;

Members:

sja1000.status
The SJA1000 Status Register. Please refer to table 27 for details.

sja1000.ecc
The SJA1000 Error Code Capture register. Please refer to to Annex B: for details.

sja1000.rec
The value of the Receive Error Counter register.

sja1000.tec
The value of the Transmit Error Counter register.

esdacc.status
The ESDACC Status Register. Please refer to table 27 for details.

esdacc.ecc
The ESDACC Error Code Capture register. Please refer to Annex B: for details.

esdacc.rec
The value of the Receive Error Counter register.

esdacc.tec
The value of the Transmit Error Counter register.

esdacc.txstatus
The value of the controller transmit status register.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 195 of 289

Data Types

6.2.11 EV_GPIO_DATA

The EV_GPIO_DATA structure is the payload of the NTCAN_EV_GPIO_GET_DO,
NTCAN_EV_GPIO_GET_DI, NTCAN_EV_GPIO_SET_DO and NTCAN_EV_GPIO_SET_DIR events which
are sent to or received by the driver to request or receive the current state of the GPIOs. The
support for this event and the number of supported IO channels is hardware specific.

Syntax:
typedef struct
{
 uint32_t value; /* GPIO channel value */
 uint32_t mask; /* GPIO channel (change) mask */
} EV_GPIO_DATA;

Members:

value
Value of the GPIO channel 0..31.

mask
Bitmask for GPIO channel 0..31. The mask is only valid if the length parameter of the event
message is set to 8 bytes. If received as payload for the NTCAN_EV_GPIO_GET_DI event, this
parameter indicates which channels have changed. If transmitted as payload for the
NTCAN_EV_GPIO_SET_DO and NTCAN_EV_GPIO_SET_DIR event, this parameter indicates
which channels should be changed.

Page 196 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.12 EVMSG

This message is sent by the CAN driver or firmware as out-of-band data to indicate hardware state
changes, error situations, etc. It consists of an 8-Bit event ID, an event specific payload and the
length of this payload in bytes.

Syntax:

typedef struct
{
 int32_t evid; /* event-id: possible range:EV_BASE...EV_LAST */
 uint8_t len; /* length of message: 0-8 */
 uint8_t reserved[3]; /* reserved */
 union
 {
 uint8_t c[8];
 uint16_t s[4];
 uint32_t l[2];
 uint64_t q;
 EV_CAN_ERROR error;
 EV_CAN_BAUD_CHANGE baud_change;
 EV_CAN_ERROR_EXT error_ext;
 EV_GPIO_DATA gpio;
 } evdata;
} EVMSG;

Members:

evid
Identifier of the event message. Bit 30 of evid is used to distinguish an event from standard
CAN messages. In order to transmit an event this bit has to be set in addition to the event
identifier. This can be achieved by bitwise OR the identifier with NTCAN_EV_BASE (defined in
<ntcan.h>).

At the moment the range of valid events is limited to 255 and partitioned according to the
table below.

Range [hex] Description

0x40000000 ... 0x4000007F Common events for all CAN modules

0x40000080 ... 0x400000FF Firmware and/or hardware specific events

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 197 of 289

Bit number
of evi d

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 030

Bit assignment
of evi d

for

Event IDs

8-bit Event ID

7 6 5 4 3 2 1 0

Flag: Event message (1 -> event)

reserved

10 0 0 0 0 0 0 0 0 0 0 0 0 00

Flag: 29-bit ID (here not used, set always to '0')

0 0 0 0 0 0 0 0

Data Types

In <ntcan.h> in addition to NTCAN_EV_BASE (0x40000000) the constants NTCAN_EV_USER
(0x40000080) and NTCAN_EV_LAST (0x400000FF) are defined.

The EVMSG has the same structure size and layout as the CMSG so it can
be received together with CAN messages with canRead() or canTake()
in FIFO mode. The application has to test if bit 30 (NTCAN_EV_BASE) is
set to perform a C cast operation to EVMSG for further event handling.

len
The structure member len indicates the number of data bytes of the event specific payload.

Value of len [binary] Pyload size

Bit 7..4 Bit 3..0 [bytes]

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

0000
0001
0010
0011
0100
0101
0110
0111
1000

0
1
2
3
4
5
6
7
8

Bits 7...4 are reserved for future use and should be set to ‘0’.

evdata
This union contains the event specific payload.

Page 198 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.13 EVMSG_T

This message is sent by the CAN driver or firmware as out-of-band data to indicate hardware state
changes, error situations, etc. It consists of an 8-Bit event ID, an event specific payload, the length
of this payload in bytes and a 64-Bit timestamp.

Syntax:
typedef struct
{
 int32_t evid; /* Event-id: possible range:EV_BASE...EV_LAST */
 uint8_t len; /* Length of message: 0-8 */
 uint8_t reserved[3]; /* Reserved */
 union
 {
 uint8_t c[8];
 uint16_t s[4];
 uint32_t l[2];
 uint64_t q;
 EV_CAN_ERROR error;
 EV_CAN_BAUD_CHANGE baud_change;
 EV_CAN_ERROR_EXT error_ext;
 EV_GPIO_DATA gpio;
 } evdata;
 uint64_t timestamp; /* Time stamp of this message */
} EVMSG_T;

Members:

All structure members but timestamp are identical to the EVMSG structure. Please refer to
chapter 6.2.12 for details.

The EVMSG_T has the same structure size and layout as the CMSG_T so
it can be received together with CAN messages with canReadT() or
canTakeT() in FIFO mode. The application has to test if bit 30
(NTCAN_EV_BASE) is set to perform a C cast operation to EVMSG_T for
further event handling.

Timestamp

64-Bit timestamp (see chapter 3.9 for details).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 199 of 289

Data Types

6.2.14 EVMSG_X

This message is sent by the CAN driver or firmware as out-of-band data to indicate hardware state
changes, error situations, etc. It consists of an 8-Bit event ID, an event specific payload, the length
of this payload in bytes and a 64-Bit timestamp.

Syntax:
typedef struct
{
 int32_t evid; /* Event-id: possible range:EV_BASE...EV_LAST */
 uint8_t len; /* Length of message: 0-8 */
 uint8_t reserved[3]; /* Reserved */
 union
 {
 uint8_t c[64];
 uint16_t s[32];
 uint32_t l[16];
 uint64_t q[8];
 EV_CAN_ERROR error;
 EV_CAN_BAUD_CHANGE baud_change;
 EV_CAN_ERROR_EXT error_ext;
 EV_GPIO_DATA gpio;
 } evdata;
 uint64_t timestamp; /* Time stamp of this message */
} EVMSG_T;

Members:

All structure members but the size of evdata are identical to the EVMSG_T structure. Please refer
to chapter 6.2.13 for details.

The EVMSG_X has the same structure size and layout as the CMSG_X so
it can be received together with CAN messages with canReadX() or
canTakeX() in FIFO mode. The application has to test if bit 30
(NTCAN_EV_BASE) is set to perform a C cast operation to EVMSG_X for
further event handling.

Page 200 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.15 NTCAN_BAUDRATE_CFG

The NTCAN_BAUDRATE_CFG union is part of the NTCAN_BAUDRATE_X structure to define the nominal
or the data bit rate. The union member is defined by the parameter mode of NTCAN_BAUDRATE_X.

Syntax:
typedef struct {
 union {
 uint32_t idx; /* esd electronics bit rate table index
*/
 uint32_t rate; /* Numerical bit rate */
 uint32_t btr_ctrl; /* BTR register (CAN Controller layout) */
 struct {
 uint16_t brp; /* Bit rate pre-scaler */
 uint16_t tseg1; /* TSEG1 register */
 uint16_t tseg2; /* TSEG2 register */
 uint16_t sjw; /* SJW register */
 } btr;
 } u;
} NTCAN_BAUDRATE_CFG

Members:
idx

Valid if parameter mode of NTCAN_BAUDRATE_X is set to NTCAN_BAUDRATE_MODE_INDEX.
For a CAN CC configuration any index of the esd electronics (CiA) bit rate configuration (see
table 16) for the nominal bit rate can be used. For a CAN FD configuration additional index
values for the data bit rate are available but only a limited number of combinations of the
ratio between nominal bit rate and data bit rate are supported (see table below).

Table index
[hex]

Bit Rate
[kBit/s]

NTCAN-API
Constant

Supported nominal bit rate
[kBit/s]

0x02 500 NTCAN_BAUD_500 250

0x00 1000 NTCAN_BAUD_1000 250, 500

0x11 2000 NTCAN_BAUD_2000 250, 500, 1000

0x12 4000 NTCAN_BAUD_4000 250, 500, 1000

0x13 5000 NTCAN_BAUD_5000 250, 500, 1000

0x14 8000 NTCAN_BAUD_8000 500, 1000

0x15 10000 NTCAN_BAUD_10000 500, 1000

Table 28: esd electronics Data Phase Bit Rate Table

rate
Valid if parameter mode of NTCAN_BAUDRATE_X is set to NTCAN_BAUDRATE_MODE_NUM.
For a CAN CC configuration any numerical value up to 1000000 can be used. For a CAN FD
configuration only the numerical values of the supported combinations listed in table 28 are
supported.

btr_ctrl
Valid if parameter mode of NTCAN_BAUDRATE_X is set to NTCAN_BAUDRATE_MODE_BTR_CTRL.
The BTR register in a controller specific representation (see table 17).

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 201 of 289

Data Types

btr
Valid if parameter mode of NTCAN_BAUDRATE_X is set to NTCAN_BAUDRATE_MODE_BTR_CANONICAL.
A structure which contains the bit timing configuration parameter (BRP, TSEG1, TSEG2 and
SJW) in a canonical format.

The current ESDACC CAN FD implementation uses a shared prescaler for
the bit rate configuration (see /2/) of the arbitration and the data phase. For
this reason the BRP value of the data phase configuration is ignored and
only the BRP value of the arbitration phase value is configured.

Page 202 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.16 NTCAN_BAUDRATE_X

The NTCAN_BAUDRATE_X structure is used to define the CAN bit timing configuration of the CAN
controller in CAN FD mode as well as CAN CC mode.

Syntax:
typedef struct {
 uint16_t mode; /* Mode word */
 uint16_t flags; /* Control flags */
 NTCAN_TDC_CFG tdc; /* TDC configuration parameters */
 NTCAN_BAUDRATE_CFG arb; /* Nominal bit rate configuration */
 NTCAN_BAUDRATE_CFG data; /* Data bit rate configuration */
} NTCAN_BAUDRATE_X;

Members:
mode

The bit rate configuration mode.

Mode Description
NTCAN_BAUDRATE_MODE_DISABLE Detach the CAN port from the CAN bus.

NTCAN_BAUDRATE_MODE_INDEX Configuration mode for the NTCAN_BAUDRATE_CFG
unions arb and/or data.

NTCAN_BAUDRATE_MODE_BTR_CTRL Configuration mode for the NTCAN_BAUDRATE_CFG
unions arb and/or data.

NTCAN_BAUDRATE_MODE_BTR Configuration mode for the NTCAN_BAUDRATE_CFG
unions arb and/or data.

NTCAN_BAUDRATE_MODE_NUM Configuration mode for the NTCAN_BAUDRATE_CFG
unions arb and/or data.

NTCAN_BAUDRATE_MODE_AUTOBAUD Start automatic bit rate detection as described in
chapter 3.3.7 (only supported for CAN CC
configurations).

flags

Flags to control the CAN bus operation mode. Any flag to enable a mode which is not
supported by the hardware is ignored silently.

Flags Description
NTCAN_BAUDRATE_FLAG_FD Has to be set to configure the CAN port to the CAN FD

operation mode where the bit rate configuration in the
union arb for the nominal bit rate as well as the bit rate
configuration in the union data for the data phase is
considered. If unset the CAN port is configured to
operate in the CAN CC operation mode and the union
data is ignored.

NTCAN_BAUDRATE_FLAG_LOM Enable the listen only mode (see chapter 3.3.2)

NTCAN_BAUDRATE_FLAG_STM Enable the self test mode (see chapter 3.3.3)

NTCAN_BAUDRATE_FLAG_TRS Enable the triple sampling mode (see chapter 3.3.4)

NTCAN_BAUDRATE_FLAG_TXP Enable the transmit pause mode (see chapter 3.3.5)

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 203 of 289

Data Types

Flags Description
NTCAN_BAUDRATE_FLAG_TDC If the flag is set, the member tdc of the data type

NTCAN_TDC_CFG contains valid parameters.

NTCAN_BAUDRATE_FLAG_DAR If the flag is set, retries of failed transmissions in case
of bus errors or a lost arbitration procedure are
disabled (see chapter 3.3.6)

tdc
Configuration parameters of the TDC mechanism during the data phase in CAN FD mode.
The data is only valid if the flag NTCAN_BAUDRATE_FLAG_TDC in flags is set.

arb

Configuration of the nominal bit rate for CAN FD mode as well as CAN CC mode.

data
Configuration of the data bit rate for CAN FD mode.

The current ESDACC CAN FD implementation uses a shared prescaler
(see /2/) for the nominal bit rate and the data bit rate. For this reason the
BRP value of the data phase configuration in mode
NTCAN_BAUDRATE_MODE_BTR/NTCAN_BAUDRATE_MODE_BTR_CTRL is ignored
and the BRP value of the arbitration phase value is used, too.

Page 204 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.17 NTCAN_BITRATE

The NTCAN_BITRATE structure is initialized by canIoctl() if called with the command
NTCAN_IOCTL_GET_BITRATE_DETAILS with a detailed information about the configured bit rate.

Syntax:
typedef struct
{
 uint32_t baud; /* value configured by user via canSetBaudrate() */
 /* or NTCAN_BAUD_FD if canSetBaudrateX() was used */
 uint32_t valid; /* validity of all _following_ infos */
 /* (-1 = invalid, NTCAN_SUCCESS */
 uint32_t rate; /* CAN nominal/arbitration bitrate in Bit/s */
 uint32_t clock; /* Clock frequency of CAN controller */
 uint8_t ctrl_type; /* NTCAN_CANCTL_XXX defines */
 uint8_t tq_pre_sp; /* Number of time quanta before samplep. (SYNC + TSEG1)*/
 uint8_t tq_post_sp; /* Number of time quanta after samplepoint (TSEG2) */
 uint8_t sjw; /* Synchronization jump width in time quantas (SJW) */
 uint32_t error; /* Actual deviation of configured baudrate in (% * 100)*/
 uint32_t flags; /* Baudrate flags (possibly ctrl. specific, e.g. SAM) */
 uint32_t rate_d; /* CAN data phase bit rate in bit/s */
 uint8_t tq_pre_sp_d; /* Number of time quantas before samplepoint (DTSEG1) */
 uint8_t tq_post_sp_d; /* Number of time quantas past samplepoint (DTSEG2) */
 uint8_t sjw_d; /* Syncronization jump width in time quanta(DSJW) */
 uint8_t mode; /* NTCAN_BAUDRATE_MODE_XXX defines */
 uint32_t reserved[1]; /* for future use */
} NTCAN_BITRATE;

Members:
baud

The bit rate value configured with canSetBaudrate(). If the bit rate was configured with
canSetBaudrateX() this value is set to NTCAN_BAUD_FD.

valid
Set to NTCAN_SUCCESS if the data of all members is valid. Any other value indicates invalid
information.

rate
The nominal configured bit rate in Bit/s of CAN CC and CAN FD.

clock
The clock frequency of the CAN controller in Hz. You need this information together with
ctrl_type and the CAN controller data sheet to configure the bit rate register (BRP, TSEG1,
TSEG2, SJW) with canSetBaudrate() or canSetBaudrateX() directly.

ctrl_type
CAN controller type according to table 21.

tq_pre_sp
Number of time quanta before the sample point (SYNC + TSEG1) for the configured nominal
bit rate. To be precise this is the sum of the time quanta, which belong to “Sync Segment”,
“Propagation Segment” and “Phase Segment 1”, as described in /2/.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 205 of 289

Data Types

tq_post_sp
Number of time quanta after the sample point (TSEG2) for the configured nominal bit rate.
In /2/ this is described as “Phase Segment 2”.

sjw
Number of time quanta of the Synchronous Jump Width (SJW) for the configured nominal bit
rate.

error
Deviation of the desired bit rate in percent multiplied with 100 if the exact bit rate can not be
matched because of hardware restrictions. This information is only populated for a CAN CC
bit rate configuration with a numerical value. For a CAN FD configuration it is set to 0.

flags
Controller specific flags.

Flag Controller Description
NTCAN_BITRATE_FLAG_SAM N/A Set if triple sampling (see chapter

3.3.4) is supported and active.

rate_d
The current bit rate in Bit/s for the data phase of a CAN FD configuration. For a CAN CC
configuration it is set to 0.

tq_pre_sp_d
Number of time quanta before the sample point (SYNC + TSEG1) for the configured data
phase bit rate. To be precise this is the sum of the time quanta, which belong to “Sync
Segment”, “Propagation Segment” and “Phase Segment 1”, as described in /2/. For a CAN
CC configuration it is set to 0.

tq_post_sp_d
Number of time quanta after the sample point (TSEG2) for the configured configured data
phase bit rate. In /2/ this is described as “Phase Segment 2”. For a CAN CC configuration it
is set to 0.

sjw_d
Number of time quanta of the Synchronous Jump Width (SJW) for the configured data phase
bit rate. For a CAN CC configuration it is set to 0.

reserved
Reserved for future use.

Page 206 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.18 NTCAN_BUS_STATISTIC

The NTCAN_BUS_STATISIC structure is initialized by canIoctl() if called with the command
NTCAN_IOCTL_GET_BUS_STATISTIC with detailed statistical information about the CAN bus
communication.

Syntax:
typedef struct
{
 uint64_t timestamp; /* Timestamp */
 NTCAN_FRAME_COUNT rcv_count; /* # of received frames */
 NTCAN_FRAME_COUNT xmit_count; /* # of transmitted frames */
 uint32_t ctrl_ovr; /* # of controller overruns */
 uint32_t fifo_ovr; /* # of FIFO overflows */
 uint32_t err_frames; /* # of error frames */
 uint32_t rcv_byte_count; /* # of received bytes */
 uint32_t xmit_byte_count; /* # of transmitted bytes */
 uint32_t aborted_frames; /* # of aborted frames */
 uint32_t rcv_count_fd; /* # of received CAN FD frames */
 uint32_t xmit_count_fd; /* # of transmitted CAN FD frames */
 uint64_t bit_count; /* # of received bits */
} NTCAN_BUS_STATISTIC;

Members:
timestamp

64-Bit timestamp (see chapter 3.9 for details) the statistical data is captured.

rcv_count
Number of received CAN frames as NTCAN_FRAME_COUNT structure subdivided according to
the frame type.

xmit_count
Number of transmitted CAN frames as NTCAN_FRAME_COUNT structure subdivided according
to the frame type.

ctrl_ovr
Number of controller overruns. The accumulated value which is also indicated with the
EV_CAN_ERROR event.

fifo_ovr
Number of FIFO overruns. The accumulated value which is also indicated with the
EV_CAN_ERROR event.

err_frames
Number of received error frames (if supported by CAN controller hardware).

rcv_byte_count
Number of received data bytes.

xmit_byte_count
Number of transmitted data bytes.

aborted_frames
Number of aborted frames. Aborting a frame can be forced explicitly by the application or is
done implicitly because a transmission timeout is exceeded.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 207 of 289

Data Types

rcv_count_fd
Number of received CAN FD frames. The total number of received CAN CC frames is the
difference between the sum of all counters of rcv_count and this value.

xmit_count_fd
Number of transmitted CAN FD frames. The total number of transmitted CAN CC frames is
the difference between the sum of all counters of xmit_count and this value.

bit_count
Number of bits on the CAN bus. This value in combination with the timestamp can be used to
calculate a bus load.

For the reason of synchronization a CAN controller inserts stuff-bits into a
CAN frame (see 3.2 for details). These bits are already removed by any
CAN controller if the CAN frame is passed to the device driver and
calculating the number of stuff-bits at run time would degrade the system
performance too much. For this reason the number of stuff-bits is derived
from a table with empiric data which usually returns good results.

The FPGA based esd electronics Advanced CAN Controller (esdACC)
allows access to the exact number of stuff-bits.

Remarks:

All counters will wrap around without notice if the maximum value is exceeded which can be
stored in its data type.

Page 208 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.19 NTCAN_CTRL_STATE

The NTCAN_CTRL_STATE structure is initialized by canIoctl() if called with the command
NTCAN_IOCTL_GET_CTRL_STATE with information about the current CAN controller bus state (see
chapter 3.2 for details).

Syntax:
typedef struct
{
 uint8_t rcv_err_counter; /* Receive error counter */
 uint8_t xmit_err_counter; /* Transmit error counter */
 uint8_t status; /* CAN controller status */
 uint8_t type; /* CAN controller type */
} NTCAN_CTRL_STATE;

Members:
rcv_err_counter

Current CAN controller Receive Error Counter.

xmit_err_counter
Current CAN controller Transmit Error Counter.

status
Current CAN controller bus status according to table 27.

type
CAN controller type according to table 21.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 209 of 289

Data Types

6.2.20 NTCAN_EEI_STATUS

The NTCAN_EEI_STATUS structure is part of Error Injection and the argument of canIoctl() with the
command NTCAN_IOCTL_EEI_STATUS.

Syntax:

typedef struct _NTCAN_EEI_STATUS {
 uint32_t handle; /* Handle for ErrorInjection Unit */
 uint8_t status; /* Status form Unit */
 uint8_t unit_index; /* Error Injection Unit ID */
 uint8_t units_total; /* Max Error Units in esdacc core */
 uint8_t units_free; /* Free Error Units in esdacc core */
 uint64_t trigger_timestamp; /* Timestamp of trigger time */
 uint16_t trigger_cnt; /* Count of trigger in Repeat mode */
 uint16_t reserved0;
 uint32_t reserved[27];
} NTCAN_EEI_STATUS;

Members:
handle

Handle for an Error Injection Unit, returned from NTCAN_IOCTL_EEI_CREATE

status
The status of an Error Injection Unit:

0 EEI_STATUS_OFF
1 EEI_STATUS_WAIT_TRIGGER
2 EEI_STATUS_SENDING
3 EEI_STATUS_FINISHED

unit_index
Index of the Error Injection Unit.

units_total
Number of Error Injection Units.

units_free
Number of free Error Injection Units.

trigger_timestamp
Timestamp (see chapter 3.9) of the trigger time.

trigger_cnt
Count of trigger in Repeat mode

Page 210 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.21 NTCAN_EEI_UNIT

The NTCAN_EEI_UNIT structure is part of the Error Injection implementation and the argument of
canIoctl() with the command NTCAN_IOCTL_EEI_CONFIGURE.

Syntax:

typedef struct _NTCAN_EEI_UNIT {
 uint32_t handle; /* Handle for ErrorInjection Unit */
 uint8_t mode_trigger; /* Trigger mode */
 uint8_t mode_trigger_option; /* Options to trigger */
 uint8_t mode_triggerarm_delay; /* Enable delayed arming of trigger
 unit*/
 uint8_t mode_triggeraction_delay; /* Enable delayed TX out */
 uint8_t mode_repeat; /* Enable repeat */
 uint8_t mode_trigger_now; /* Trigger with next TX point */
 uint8_t mode_ext_trigger_option; /* Switch between trigger and sending
 uint8_t mode_send_async; /* Send without timing
 synchronization*/
 uint8_t reserved1[4];
 uint64_t timestamp_send; /* Timestamp for Trigger Timestamp*/
 CAN_FRAME_STREAM trigger_pattern; /* Trigger for mode Pattern Match */
 CAN_FRAME_STREAM trigger_mask; /* Mask to trigger Pattern */
 uint8_t trigger_ecc; /* ECC for Trigger Field Position */
 uint8_t reserved2[3];
 uint32_t external_trigger_mask; /* Enable Mask for external Trigger*/
 uint32_t reserved3[16];
 CAN_FRAME_STREAM tx_pattern; /* TX pattern */
 uint32_t tx_pattern_len; /* Length of TX pattern */
 uint32_t triggerarm_delay; /* Delay for mode triggerarm delay */
 uint32_t triggeraction_delay; /* Delay for mode trigger delay */
 uint32_t number_of_repeat; /* Number of repeats in mode repeat*/
 uint32_t reserved4;
 CAN_FRAME_STREAM tx_pattern_recessive; /* Internal use only (set to 0 */
 uint32_t reserved5[9];
} NTCAN_EEI_UNIT;

Members:
handle

Handle for an Error Injection Unit returned by canIoctl() called with the command
NTCAN_IOCTL_EEI_CREATE.

mode_trigger
Trigger Mode:

0 Trigger Pattern Matching (EEI_TRIGGER_MATCH)
1 Trigger Arbitration (EEI_TRIGGER_ARBITRATION)
2 Trigger Timestamp (EEI_TRIGGER_TIMESTAMP)
3 Trigger Field Position (EEI_TRIGGER_FIELD_POSITION)
4 Trigger External Input (EEI_TRIGGER_EXTERNAL_INPUT)

mode_trigger_option
Some Trigger Modes have an Option

• Trigger Pattern Matching
Compare with destuffed sampled bits (EEI_TRIGGER_MATCH_OPTION_DESTUFFED)

• Trigger Arbitration:
Abort on Error Frame (EEI_TRIGGER_ARBITRATION_OPTION_ABORT_ON_ERROR)

• Trigger Timestamp
Trigger on bus free (EEI_TRIGGER_TIMESTAMP_OPTION_BUSFREE)

mode_triggerarm_delay
Enable the arm delay in repeat mode to delay the next activation of the trigger module.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 211 of 289

Data Types

mode_triggeraction_delay
Enable the action delay to delay the output of the trigger module.

mode_repeat
Enable the repeat mode. After the CAN TX module finished the Error Injection Unit will be
reactivated.

mode_trigger_now
Set trigger now to send immediately after enabling the Error Injection Unit.

mode_ext_trigger_option
Only for the Trigger out on GPIO Pin
0: The trigger out sends only a puls on trigger time.
1: The trigger out is HIGH during CAN TX is active.

mode_send_async
Send without timing synchronization

timestamp_send
Timestamp (see chapter 3.9) for Trigger Timestamp.

trigger_pattern
Trigger Pattern for Trigger Pattern Matching.

trigger_mask
Trigger Pattern Mask for Trigger Pattern Matching.

trigger_ecc
Trigger ECC for Trigger Field Position. It will only use the lower 5 bits in the coding of the
ECC register form NXP SJA1000

external_trigger_mask
External Trigger Mask for Trigger Ext. Trigger. The Bits 0 to 3 are the Trigger Out of the Error
Injection Units. Bit 31 is the ext. Trigger In over a GPIO Pin.

tx_pattern
This TX Pattern would be sent by the CAN TX module on trigger time.

tx_pattern_len
The length in bits of the TX Pattern.

triggerarm_delay
Delay in bit times.

triggeraction_delay
Delay in bit times.

number_of_repeat
Number of repeats in mode repeat (0 = forever)

tx_pattern_recessive
Internal use only (has to be setto 0).

Page 212 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.22 NTCAN_FORMATEVENT_PARAMS

The NTCAN_FORMATEVENT_PARAMS structure is one argument of canFormatEvent().

Syntax:
typedef struct
{
 uint64_t timestamp; /* Timestamp (for busload) */
 uint64_t timestamp_freq; /* Timestamp frequency (for busload)*/
 uint32_t num_baudrate; /* Numerical baudrate (for busload) */
 uint32_t flags; /* Flags */
 uint64_t busload_oldts; /* <---+-- used internally, set to */
 uint64_t busload_oldbits; /* <---+ zero on first call */
 uint8_t ctrl_type; /* Controller type (for ext_error) */
 uint8_t reserved[7]; /* Reserved (7 bytes) */
 uint32_t reserved2[4]; /* Reserved (16 bytes) */
} NTCAN_FORMATEVENT_PARAMS;

Members:
timestamp

The current timestamp.

timestamp_freq
The timestamp frequency of the CAN board used in combination with the NTCAN_EV_BUSLOAD
event. This parameter can be obtained with canIoctl() and the argument
NTCAN_IOCTL_GET_TIMESTAMP_FREQ.

num_baudrate
The numerical CAN bit rate of the CAN board used in combination with the
NTCAN_EV_BUSLOAD event. This parameter can be obtained with canIoctl() and the argument
NTCAN_IOCTL_GET_BITRATE_DETAILS.

flags
Special flags.

busload_oldts
Used internally to keep previous timestamp. Has to be set to 0 with the initial call.

busload_oldbits
Used internally to keep previous value of received bits. Has to be set to 0 with the initial call.

ctrl_type
The controller type of the CAN board used in combination with the NTCAN_EV_EXT_ERROR
event. This parameter can be obtained with canStatus().

Remarks:
All counters will wrap around without notice if the maximum value which can be stored in a
variable of type uint32_t is exceeded.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 213 of 289

Data Types

6.2.23 NTCAN_FILTER_MASK

The NTCAN_FILTER_MASK structure is the argument of canIoctl() with the command
NTCAN_IOCTL_SET_HND_FILTER.

Syntax:
typedef struct
{
 uint32_t acr; /* Acceptance Code Register */
 uint32_t amr; /* Acceptance Mask Register */
 uint32_t idArea; /*
} NTCAN_FILTER_MASK;

Members:
acr

Acceptance code register for the area defined by idArea.

amr
Acceptance mask register for the area defined by idArea.

idArea
The NTCAN-ID area where the acr and amr are applied. The following arguments are
supported:

NTCAN_IDS_REGION_20A:
11-bit CAN-Ids in the range from 0x00000000...0x000007FF.

NTCAN_IDS_REGION_20B:
29-bit CAN-Ids in the range from 0x20000000...0x3FFFFFFF.

NTCAN_IDS_REGION_EV:
CAN-Events in the range from 0x40000000...0x400000FF.

Remarks:
If amr exceeds the range defined by idArea the mask is reduced to this range and acr is
always masked with this amr.

Page 214 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

6.2.24 NTCAN_FRAME_COUNT

The NTCAN_FRAME_COUNT structure is part of NTCAN_BUS_STATISTIC.

Syntax:
typedef struct {
 uint32_t std_data; /* # of std CAN messages */
 uint32_t std_rtr; /* # of std RTR requests */
 uint32_t ext_data; /* # of ext CAN messages */
 uint32_t ext_rtr; /* # of ext RTR requests */
} NTCAN_FRAME_COUNT;

Members:
std_data

Number of CAN data frames in standard frame format (11-bit CAN-IDs).

std_rtr
Number of CAN Remote Request (RTR) frames in standard frame format.

ext_data
Number of CAN data frames in extended frame format (29-bit CAN-IDs).

ext_rtr
Number of CAN Remote Request (RTR) frames in extendef frame format.

Remarks:
All counters will wrap around without notice if the maximum value which can be stored in a
variable of type uint32_t is exceeded.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 215 of 289

Data Types

6.2.25 NTCAN_GPIO_CFG

The NTCAN_GPIO_CFG structure is used to get or set the configuration of GPIO ports as argument
of canIoctl() with the commands NTCAN_IOCTL_GET_GPIO_CFG and NTCAN_IOCTL_SET_GPIO_CFG.

Syntax:
typedef struct _NTCAN_GPIO_CFG {
 uint8_t channel; /* I/O channel */
 uint8_t reserved; /* Reserved for alignment */
 uint16_t properties; /* Configuration property mask */
 uint8_t direction; /* I/O channel direction */
 uint8_t voltage; /* I/O channel voltage */
 uint8_t pull; /* I/O channel pulling */
 uint8_t irq_mode; /* I/O channel IRQ mode flags */
 uint32_t input_filter; /* (Global) Input filter */
} NTCAN_GPIO_CFG;

Members:

channel
Channel/Port number 0… (number of channels – 1) as returned in NTCAN_INFO.

properties
Bitmask according to Table 30 which defines the supported configuration options when called
with NTCAN_IOCTL_GET_GPIO_CFG. The bits must be set to indicate the configuration options
which should be evaluated by the driver when called with NTCAN_IOCTL_SET_GPIO_CFG.

direction
I/O direction configured as

➢ Digital input (NTCAN_GPIO_CFG_DIR_IN)
➢ Dgital output in Push-Pull mode (NTCAN_GPIO_CFG_DIR_OUT)
➢ Dgital output in Low-Side mode (NTCAN_GPIO_CFG_DIR_OUT_LS)
➢ Dgital output in High-Side mode (NTCAN_GPIO_CFG_DIR_OUT_HS)

voltage
I/O voltage configured as

➢ 3,3V (NTCAN_GPIO_CFG_VOLTAGE_3V3)
➢ 5V (NTCAN_GPIO_CFG_VOLTAGE_5V)

pull_mode
I/O pull mode configured as

➢ No pulling (NTCAN_GPIO_CFG_PULL_NONE)
➢ Pull-Up (NTCAN_GPIO_CFG_PULL_UP)
➢ Pull-Down (NTCAN_GPIO_CFG_PULL_DOWN)

irq_mode
IRQ mode mask (for inputs) configured to:

➢ Never indicate an I/O change (NTCAN_GPIO_CFG_IRQ_NONE)
➢ Indicate a change on the rising edge (NTCAN_GPIO_CFG_IRQ_RISING_EDGE)
➢ Indicate a change on the falling edge (NTCAN_GPIO_CFG_IRQ_FALLING_EDGE)
➢ Indicate a change on both edges (Logical OR of the previous values)

Page 216 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

input_filter
Input glitch filter which suppresses input signals with a pulse width of less than the given
value.

This value is global for all channels and hardware dependent !!

For the esdACC the minimum pulse width is determined by the number
of "input_filter" clock cycles. The initial value of 160 therefore
corresponds to a minimum pulse width of 2µs at 80MHz clock.

Remarks:
Please refer to the hardware manual which option is supported by the GPIO circuity.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 217 of 289

Data Types

6.2.26 NTCAN_INFO

The NTCAN_INFO structure contains comprehensive information about the driver and the device
environment. The NTCAN_INFO structure is initialized by canIoctl() if called with the command
NTCAN_IOCTL_GET_INFO. Most of the information can also be obtained with consecutive calls of
canStatus() and canIoctl() with other commands but this data simplifies the handling by
combining everything at a single place.

Syntax:
typedef struct
{
 uint16_t hardware; /* Hardware version */
 uint16_t firmware; /* Firmware / FPGA version (0 = N/A) */
 uint16_t driver; /* Driver version */
 uint16_t dll; /* NTCAN library version */
 uint32_t features; /* Device/driver capability flags */
 uint32_t serial; /* Serial # (0 = N/A) */
 uint64_t timestamp_freq; /* Timestamp frequency (in Hz,1=N/A) */
 uint32_t ctrl_clock; /* CAN controller frequency (in Hz) */
 uint8_t ctrl_type; /* Controller type (NTCAN_CANCTL_XXX) */
 uint8_t base_net; /* Base net number */
 uint8_t ports; /* Number of physical ports */
 uint8_t transceiver; /* Transceiver type (NTCAN_TRX_XXX) */
 uint16_t boardstatus; /* Hardware status */
 uint16_t firmware2; /* Second firmware version (0 = N/A) */
 char boardid[32]; /* Board ID string */
 char serial_string[16]; /* Serial # as string */
 char drv_build_info[64]; /* Build info of driver */
 char lib_build_info[64]; /* Build info of library */
 uint16_t open_handle; /* Number of open handle */
 uint8_t ports_lin; /* Number of physical LIN ports */
 uint8_t reserved; /* Reserved for future use */
 uint64_t sw_timestamp_freq; /* SW timestamp resolution (in Hz) */
 char order_number[12]; /* Order number as string */
 uint16_t gpio_ver; /* GPIO: Version of core */
 uint16_t gpio_cfg; /* GPIO: Supported config options */
 uint8_t gpio_cnt; /* GPIO: Number of physical channels */
} NTCAN_INFO;

Members:

hardware
The hardware revision. Refer to the remarks at the end of this abstract for the encoding of
the 16-Bit version number.

firmware
The firmware version. Returned as 0 on passive CAN interfaces. Refer to the remarks at the
end of this abstract for the encoding of the 16-Bit version number.

driver
The driver version. Refer to the remarks at the end of this abstract for the encoding of the 16-
Bit version number.

dll
The NTCAN-API library version. Refer to the remarks at the end of this abstract for the
encoding of the 16-Bit version number.

Page 218 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

features
This member is a bit mask with hardware and/or device driver specific capabilities which
should be evaluated by an application to check if a certain feature is supported. Refer to
table 22 for a description of the feature flags.

Please note that the bitmask returned here is a 32-bit value in comparison to
the bitmask returned via CAN_IF_STATUS which is just a 16-bit value. Current
and future feature flags defined as bit 16..31 are just returned here.

serial
The hardware serial number of the CAN board. If the hardware does not suppport returning a
serial number this value is 0. Refer to the description of NTCAN_IOCTL_GET_SERIAL for
canIoctl() how the 32-bit numerical value is converted into a serial string.

timestamp_freq
The resolution of the timestamp counter in Hz. If no timestamp support is available a value of
1 Hz is returned (to prevent division by zero errors).

ctrl_clock
The clock frequency of the CAN controller in Hz.

ctrl_type
CAN controller type according to table 21.

base_net
The configured base net number for this CAN port.

ports
Number of physical CAN and LIN ports made available by the hardware.

transceiver
A value defined in <ntcan.h> for the manufacturer and type of the CAN transceiver
according to the table below.

Constant CAN Transceiver
NTCAN_TRX_PCA82C251 NXP PCA82C251

NTCAN_TRX_SN65HVD251 TI SN65HVD251

NTCAN_TRX_SN65HVD255 TI SN65HVD255

NTCAN_TRX_MCP2561FD Microchip MCP2561FD

NTCAN_TRX_TCAN1051G TI TCAN1051G

NTCAN_TRX_TCAN1051G TI SN65HVD230

NTCAN_TRX_TJA1462 NXP TJA1462 (SIC transceiver)

Table 29: CAN Transceiver Types

boardstatus
Reflects device specific errors or problems detected during hardware initialization.

firmware2
If the hardware contains a 2nd firmware (e.g. the IRIG B implementation together with an
esdACC) this version is returned here, otherwise 0. Refer to the remarks at the end of this
abstract for the encoding of the 16-Bit version number.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 219 of 289

Data Types

boardid
The device description as zero terminated ASCII string.

serial_string
The serial number as a zero terminated ASCII string.

In rare cases the serial number can not be coded as 32-bit value returned as
member serial because of coding scheme limitations. In this case the string is
the only source for the serial number.

drv_build_info
The driver build info string with compiler (version) and build time as a zero terminated ASCII
string.

lib_build_info
The library build info string with compiler (version) and build time as a zero terminated ASCII
string.

open_handle
The number of open handles. If this value is 0 the device driver does not (yet) return this
information. A value of 65535 means that 65535 or more handles are open.

ports_lin
Number of physical LIN ports made available by the hardware.

sw_timestamp_frequency
The frequency of the driver internal high resolution (software) timestamp.

order_number
Product order number as a zero terminated ASCII string.

gpio_ver
Version of the GPIO core implementation in the ESDACC..

gpio_cfg
A bitmask which defines which aspects of the GPIO ports are configurable according to the
flags defined the table below.

Constant Description
NTCAN_GPIO_CFG_DIR Configuration of I/O direction.

NTCAN_GPIO_CFG_VOLTAGE Configuration of I/O voltage

NTCAN_GPIO_CFG_PULL Configuration of I/O pull mode

NTCAN_GPIO_CFG_IRQ Configuration of (input) IRQ mode

NTCAN_GPIO_CFG_FILTER Configuration of (input) filter.

Table 30: GPIO Port Configuration Options

gpio_cnt
Number of physical GPIO channels supported by the hardware.

Page 220 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Data Types

Remarks:
The members which contain a version are composed of major version (4 bit), minor version (4
bit) and a revision (8 bit).

Bit 12..15 Bit 8..11 Bit 0..7

Major Minor Revision

Example: The version 1.2.3 is represented as 0x1203.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 221 of 289

Data Types

6.2.27 NTCAN_TDC_CFG

The NTCAN_TDC_CFG structure is part of the type NTCAN_BAUDRATE_X to get/set parameters of the
TDC mechanism which affect the SSP position and the TDC mechanism.

Syntax:
typedef struct {
 uint8_t tdc_mode; /* TDC Mode */
 uint8_t ssp_offset; /* SSP Offset */
 int8_t ssp_shift; /* SSP Shift */
 uint8_t tdc_filter; /* TDC Filter */
} NTCAN_TDC_CFG;

Members:
tdc_mode

The TDC mode.

◦ NTCAN_TDC_MODE_AUTO: TDC automatic mode (See chapter 3.15.2.1).

◦ NTCAN_TDC_MODE_MANUAL: TDC Manual Mode (See chapter 3.15.2.2).

◦ NTCAN_TDC_MODE_OFF: TDC is disabled.

ssp_offset
The (positive) SSP offset in the mode NTCAN_TDC_MODE_MANUAL in mtq.

ssp_shift
The (positive or negative) SSP shift in the mode NTCAN_TDC_MODE_AUTO in mtq.

tdc_filter
The TDC filter in mtq (Ignored if unsupported by the CAN controller).

The minimum value which can be configured for the ESDACC if TDC is
enabled is 2 mtq. Any smaller value is set to 2mtq.

Page 222 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

7. Return Codes
All NTCAN-API functions return a status starting with the prefix ’NTCAN_‘ which should always be
be evaluated by the application. If the call returns an error code, the content of all returned values
referenced by pointers are undefined and must not be evaluated by the application.
The constants for the returned values are defined in <ntcan.h>. For cross-platform portability an
application should refer only to these constants, because each operating system has got it’s own
‘number area’ for the numerical values of errors. Therefore different numerical values are used for
the same return status on different operating systems. Furthermore a few constants for errors
which are not CAN specific and are usually generated autonomously by the operating system
(such as NTCAN_INVALID_HANDLE) are mapped to already existing error constants of the operating
system to increase the portability.
Below all returned values are listed in a table. The values are divided into the severity categories
Successful, Warning and Error. Furthermore a description of the error reason, a possible solution
as well as the NTCAN-API functions which might return this result are part of the description.
Status codes which are listed in the header file but are not described here, are not returned by the
driver any more and have only not been removed to ensure the compatibility of existing source
code.

7.1 General Return Codes

NTCAN_SUCCESS

No error.

Category Successful

Cause The call was terminated without errors. The content of all returned
values referenced by pointers are valid and must only be evaluated by
the application.

Function All functions

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 223 of 289

Return Codes

NTCAN_CONTR_BUSY

The capacity of the internal transmit FIFO has been exceeded.

Category Error/Warning

Cause The capacity of the internal transmit FIFO is too small to receive
further messages/commands.

Solution Repeat the unsuccessful call after a short period.

Function canSend(), canSendEvent(), canIdAdd(), canIdDelete()

NTCAN_CONTR_ERR_PASSIVE

Transmission error.

Category Error/Warning

Cause The CAN controller has changed into the state Error Passive during a
blocking transmit operation, because the REC or TEC exceeded a
value of 128.

Solution Repeat the call after a short period, because the driver automatically
tries to recover from the error situation. If the error still occurs, you
should check, whether the CAN bus is correctly wired and all bus
devices transmit with the same baud rate.

Function canWrite(), canWriteT(), canWriteX(), canSend(), canSendT(),
canSendX()

NTCAN_CONTR_OFF_BUS

Internally bus-state triggered cancellation of a transmit operation.

Category Error

Cause The CAN controller has changed into Off Bus state during a blocking
transmit operation, because too many CAN error frames have been
received.

Solution Repeat the call after a short period, because the driver automatically
tries to recover from the error situation. If the error still occurs, you
should check, whether the CAN bus is correctly wired and all bus
devices transmit with the same baud rate.

Function canWrite(), canWriteT(), canWriteX(), canSend(), canSendT(),
canSendX()

Page 224 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

NTCAN_CONTR_WARN

Reception error.

Category Error

Cause The CAN controller has changed into Error Passive status during a
transmit operation, because too many CAN error frames have been
received.

Solution Repeat the call after a short period, because the driver automatically
tries to recover from the error situation. If the error still occurs, you
should check, whether the CAN bus is wired correctly and all bus
devices transmit with the same baud rate.

Function canWrite(), canWriteT(), canWriteX(), canSend(), canSendT(),
canSendX()

NTCAN_ERROR_NO_BAUDRATE

Transmission error.

Category Error

Cause A CAN message could not be transmitted because the bit rate of the
CAN controller is not set or a CAN FD message is requested to be
sent and no data phase bit is configured.

Solution Configure the bit rate with canSetBaudrate().

Function canWrite(), canWriteT(), canWriteX(), canSend(), canSendT(),
canSendX()

NTCAN_ERROR_LOM

Transmission error.

Category Error

Cause A CAN message could not be transmitted because the CAN controller
is configured in listen-only mode which prevents sending CAN
messages.

Solution Disable the listen-only mode with canSetBaudrate().

Function canWrite(), canWriteT(), canWriteX(), canSend(), canSendT(),
canSendX()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 225 of 289

Return Codes

NTCAN_HANDLE_FORCED_CLOSE

Abortion of a blocking transmit/receive operation.

Category Warning/Error

Cause A blocking transmit or receive operation was canceled, because
another thread called canClose() for this handle or the driver was
terminated. If a call returns with this error code the handle is no longer
valid.

Solution If the procedure was unintended by the application, check why
handles are being closed.

Function canRead(), canReadT(), canReadX(), canWrite(), canWriteT(),
canWriteX()

NTCAN_ID_ALREADY_ENABLED

The CAN-ID for this handle has already been activated.

Category Warning

Cause The CAN identifier for this handle has already been activated.

Solution Activate each CAN-ID only once per handle. If a 29-bit ID is activated,
all other 29-bit IDs are regarded as being activated as well.

Function canIdAdd()

NTCAN_ID_NOT_ENABLED

The CAN-ID has not been activated for this handle.

Category Warning

Cause The CAN-ID has not been activated for this handle.

Solution Deactivate each CAN-ID only once per handle. If a 29-bit ID is
deactivated, all other 29-bit IDs are regarded as being deactivated as
well.

Function canIdDelete()

Page 226 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

NTCAN_INSUFFICIENT_RESOURCES

Insufficient internal resources.

Category Error

Cause The operation could not be completed because of insufficient internal
resources.

Solution ➢ If the error occurs when calling canOpen(), the handle queue
size should be decreased.

➢ If the error occurs when calling canIdAdd(), this CAN-ID has
already been activated for too many other handles.

Function canOpen(), canIdAdd()

NTCAN_INVALID_DRIVER

Driver and NTCAN library are not compatible.

Category Error

Cause The version of the NTCAN library requires a more recent driver
version.

Solution Use a more recent driver version.

Function canOpen()

NTCAN_INVALID_FIRMWARE

Driver and firmware are incompatible.

Category Error

Cause The version of the device driver requires a more recent firmware
version.

Solution Update the firmware of the active CAN board.

Function canOpen()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 227 of 289

Return Codes

NTCAN_INVALID_HANDLE

Invalid CAN handle.

Category Error

Cause An invalid handle was passed to a function call.

Solution ➢ Check whether the handle was correctly opened with
canOpen().

➢ Check whether the handle was not closed previously with
canClose().

➢ Check if canReadEvent() is called with a handle that has
enabled IDs which don’t belong to the ID range of events.

Function All functions except canOpen()

NTCAN_INVALID_HARDWARE

Driver and hardware are incompatible.

Category Error

Cause The version of the device driver is incompatible with the hardware.

Solution Use another driver version.

Function canOpen()

NTCAN_INVALID_PARAMETER

Invalid parameter.

Category Error

Cause An invalid parameter was passed to the library.

Solution ➢ Check all arguments for this call for validity.
➢ Call canRead() with a handle which was opened for the object

mode.

Function All functions.

NTCAN_IO_INCOMPLETE

Operation has not yet been terminated (Win32 only).

Category Error/Warning

Cause A function to return the result of an asynchronous (overlapped) I/O
request was called with FALSE for parameter bWait before the
operation has not been completed. Refer to the Win32 platform SDK
help for mpre information about overlapped I/O.

Solution See Win32 platform SDK help about GetOverlappedResult().

Function canGetOverlappedResult(), canGetOverlappedResultT(),
canGetOverlappedResultX()

Page 228 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

NTCAN_IO_PENDING

Operation has not been terminated (Win32 only).

Category Warning

Cause An asynchronous read or write operation with valid overlapped
structure has not been completed.

Solution See Win32 platform SDK about ‘Asynchronous Input and Output’ for
further details.

Function canRead(), canReadT(), canReadX(), canWrite(), canWriteT(),
canWriteX() canSendX()

NTCAN_NET_NOT_FOUND

CAN device not found.

Category Error

Cause The logical network number specified when opening canOpen() does
not exist.

Solution ➢ Check the logical CAN network number.
➢ Check whether the driver to which this network number should

be assigned was started correctly.

Function canOpen()

NTCAN_NO_CAN_CAPABILITY

The physical port has no CAN capability.

Category Error

Cause The physical network referenced by the logical net number has no
CAN capability (e.g. is a LIN network).

Solution Do not use this network with the NTCAN-API but with the API for the
respective bus physics (e.g. NTLIN-API).

Function canOpen()

NTCAN_NO_ID_ENABLED

Read handle without any enabled CAN identifier.

Category Warning

Cause For this handle canIdAdd() has not been called.

Solution canIdAdd() has to be called before canRead() is called.

Function canRead(), canReadT(), canReadX(), canTake(), canTakeT(),
canTakeX()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 229 of 289

Return Codes

NTCAN_NO_LIN_CAPABILITY

The physical port has no LIN capability.

Category Error

Cause The physical network referenced by the logical net number has no LIN
capability (e.g. is a CAN network).

Solution Do not use this network with the NTLIN-API but with the API for the
respective bus physics (e.g. NTCAN-API).

Function canOpen()

NTCAN_NOT_IMPLEMENTED

Command for canIoctl() is not implemented.

Category Error

Cause The argument ulCommand of canIoctl() is not implemented or
supported by the library, device driver or hardware.

Solution ➢ Check the ulCommand parameter for validity.
➢ If the argument is valid, check if a newer driver/library is

available which supports this command.

Function canIoctl()

NTCAN_NOT_SUPPORTED

The argument of the call is valid but not supported.

Category Error

Cause The argument of the call is valid but the requested property is not
supported because of hardware and/or firmware limitations.

Solution ➢ Check all arguments for this call for validity.
➢ If the arguments are valid, check if a newer or different

firmware for this hardware is available which supports this
feature.

➢ If the requested feature can not be supported due to hardware
constraints, you might have to use a different esd electronics
CAN board.

➢ Refer to the chapter 3.18 to check, which features are
supported. esd electronics is always aimed to provide the
maximum of features for the CAN hardware / operating system
combination. Please visit www.esd.eu to check for the latest
software version.

Function canIoctl(), canIdAdd(), canIdDelete(), canSetBaudrate()

Page 230 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

NTCAN_OPERATION_ABORTED

Explicitly triggered cancellation of a blocking transmit/receive operation.

Category Warning/Error

Cause A blocking transmit or receive operation was aborted, because
another thread called canIoctl() with the argument
NTCAN_IOCTL_ABORT_TX or NTCAN_IOCTL_ABORT_RX for this
handle.

Solution If the procedure was unintended by the application, check why I/O
operations are being aborted.

Caveats It isn’t possible with all operating systems supported by the NTCAN-
API to distinguish between the abort and the forced close case,
described below. These operating systems will return this error code
even if the reason for the abort was a forced close of the handle.

Function canRead(), canReadT(), canReadX(), canWrite(), canWriteT(),
canWriteX()

NTCAN_PENDING_READ

Receive operation could not be executed.

Category Warning/Error

Cause No receive operation was initiated, because the handle is already
being used by another thread for a receive operation.

Solution ➢ Use operating system specific synchronization mechanism to
avoid that another thread uses the handle simultaneously for
reception.

➢ Use threads with different handles.

Function canRead(), canReadT(), canReadX(), canTake(), canTakeT(),
canTakeX()

NTCAN_PENDING_WRITE

Transmit operation could not be executed.

Category Warning/Error

Cause No transmit operation was initiated, because the handle is already
being used by another thread for a transmit operation.

Solution ➢ Use operating system specific synchronization mechanism to
avoid that another thread uses the handle simultaneously for
transmission.

➢ Use threads with different handles.

Function canWrite(), canWriteT(),canWriteX()

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 231 of 289

Return Codes

NTCAN_RX_TIMEOUT

Timeout event for blocking receive operation.

Category Warning

Cause No data has been received within the Rx-timeout declared in
canOpen().

Solution ➢ Increase Rx-timeout in canOpen().
➢ Ensure that data is transmitted by other CAN nodes on the

expected CAN-IDs.

Function canRead(), canReadT(),canReadX()

NTCAN_TX_ERROR

Internally triggered cancellation of a blocking transmit operation.

Category Error

Cause The message transmission was canceled by the CAN controller
and/or CAN driver for the following reasons:

• An internal Tx message watchdog expired.
• During the transmission of a CAN Remote Frame the Data

Frame with this CAN-ID was transmitted at the very same time
so the RTR frame was never “visible” on the bus.

• The CAN message was sent in DAR mode and the
transmission failed due to errors or a lost arbitration
procedure.

Solution If the result was not expected (e.g. in DAR mode) repeat the call after
a short period, because the driver automatically tries to recover from
the error situation. If the error still occurs, you should check, whether
the CAN bus is correctly wired and all bus devices transmit with the
same baud rate.

Function canWrite(), canWriteT(),canWriteX()

NTCAN_TX_TIMEOUT

Timeout triggered cancellation of a blocking transmit operation.

Category Error

Cause The transmission was canceled because the Tx timeout configured
via canOpen() or via canIoctl() with the command
NTCAN_IOCTL_SET_TX_TIMEOUT.was exceeded

Solution Repeat the call after a short period, because the driver automatically
tries to recover from the error situation. If the error still occurs, you
should check, whether the CAN bus is correctly wired and all bus
devices transmit with the same baud rate.

Function canWrite(), canWriteT(),canWriteX()

NTCAN_WRONG_DEVICE_STATE
Page 232 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Return Codes

The actual device state prevents I/O-operations (Win32 only).

Category Warning/Error

Cause The system state is changing to the sleep mode.

Solution Prevent state changing to the sleep mode.

Function all functions

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 233 of 289

Return Codes

7.2 Specific Return Values of the EtherCAN Driver

NTCAN_SOCK_CONN_TIMEOUT

Only applicable for EtherCAN module under Linux and Windows:
Within the timeout time ConnTimeout[x], defined under Linux in /etc/esd-plugin no network
connection can be established.

Category Error

Cause no network connection established;
connection runtime to exceeded

Solution ➢ check network connection (ping)
➢ increase timeout
➢ faster connection

Function canOpen()

NTCAN_SOCK_CMD_TIMEOUT

Only applicable for EtherCAN module under Linux and Windows:
TCP-socket timeout while sending a special command to EtherCAN server (under Linux
parameter CmdTimeout[x] in /etc/esd-plugin).

Category Error

Cause runtime of TCP/IP-packages exceeded

Solution ➢ increase timeout
➢ faster connection

Function all functions

NTCAN_SOCK_HOST_NOT_FOUND

Only applicable for EtherCAN module under Linux and Windows:
Resolving hostname specified by PeerName[x] in /etc/esd-plugin (under Linux) failed.

Category Error

Cause wrong name, incorrect name server configuration, ...

Solution ➢ use correct name
➢ configure name server correctly

Function canOpen()

Page 234 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8. Example C Source
This chapter contains complete code example receiving and transmitting CAN messages with the
NTCAN-API.

8.1 Receiving messages (CAN CC /FIFO Mode)

#include <stdio.h>
#include <ntcan.h>

/*
* This example demonstrates how the NTCAN-API can be used to open a handle,
* set a baudrate and wait for reception of a CAN frame with an
* identifier that has been previously enabled for this handle.
* Finally all proper cleanup operations are performed
*/
int example_rx_fifo(void)
{
 int net = 0; /* Logical net number (here: 0) */
 uint32_t mode = 0; /* Mode bits for canOpen */
 /* -> Default (0): FIFO mode */
 int32_t txqueuesize = NTCAN_NO_QUEUE; /* No Tx queue required */
 int32_t rxqueuesize = 8; /* Maximum number of Rx messages */
 int32_t txtimeout = 0; /* No Tx timeout required */
 int32_t rxtimeout = 10000; /* Rx timeout in ms */
 NTCAN_HANDLE rxhandle; /* CAN handle returned by canOpen() */
 NTCAN_RESULT retvalue; /* Return values of NTCAN API calls */
 uint32_t baud = NTCAN_BAUD_500; /* Configured CAN baudrate */
 /* -> 500 kBit/s */
 CMSG cmsg[8]; /* Buffer for can messages */
 int i,j; /* Loop counter */
 int32_t count; /* # of messages for canRead() */

 /* ### */

 retvalue = canOpen(net,
 mode,
 txqueuesize,
 rxqueuesize,
 txtimeout,
 rxtimeout,
 &rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canOpen() failed with error %d!\n", retvalue);
 return(-1);
 }

 printf("function canOpen() returned OK !\n");

 /* ############################### ################################ */

 retvalue = canSetBaudrate(rxhandle, baud);

 if (retvalue != 0)
 {
 printf("canSetBaudrate() failed with error %d!\n", retvalue);
 canClose(rxhandle);
 return(-1);
 }

 printf("function canSetBaudrate() returned OK !\n");

 /* ### */

 retvalue = canIdAdd(rxhandle, 0); /* Enable CAN-ID 0 */

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canIdAdd() failed with error %d!\n", retvalue);
 canClose(rxhandle);
 return(-1);

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 235 of 289

Example C Source

 }

 /* ### */

 do {
 /*
 * Set max numbers of messages that should be returned with
 * a single canRead() call according to the availablre buffer size
 * every time you do the canRead() call.
 */
 count = (int32_t)(sizeof(cmsg) / sizeof(cmsg[0]));

 retvalue = canRead(rxhandle, &cmsg[0], &count, NULL);

 if (retvalue == NTCAN_RX_TIMEOUT)
 {
 printf("canRead() returned timeout\n");
 continue;
 }
 else if (retvalue != NTCAN_SUCCESS)
 {
 printf("canRead() failed with error %d!\n", retvalue);
 }
 else
 {
 printf("Function canRead() received %d message(s) !\n", count);
 for (j = 0; j < (int)count; j++) {
 int len = NTCAN_LEN_TO_DATASIZE(cmsg[j].len);
 printf("CAN-ID of received message %d : %03x\n",
 j, NTCAN_ID(cmsg[j].id));
 if (NTCAN_IS_RTR(cmsg[j].len)) {
 printf(" Received a RTR message (%d)", len);
 } else {
 printf(" Received a data message with %d bytes : ", len);
 for (i = 0; i < len; i++) {
 printf("%02x ", cmsg[j].data[i]);
 }
 }
 printf("\n");
 }
 }

 break;
 } while (1);

 /* ### */

 retvalue = canIdDelete(rxhandle, 0);

 if (retvalue != NTCAN_SUCCESS)
 printf("canIdDelete() failed with error %d!\n", retvalue);

 printf("function canIdDelete() returned OK !\n");
 /* ### */

 retvalue = canClose(rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 printf("canClose() failed with error %d!\n", retvalue);
 else
 printf("canClose() returned OK !\n");

 /* ### */

 return(0);
}

Page 236 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.2 Receiving messages (CAN CC and CAN FD / FIFO Mode)
In the text box below is an example to receive CAN CC and/or CAN FD message. The differences
to the example code to receive just CAN CC messages are marked (especially the use of the new
data structures and functions which end on 'X' and the macros to get/set data of the CAN message
length field which should be used for all CAN message variants).

#include <stdio.h>
#include <ntcan.h>

/*
 * This example demonstrates how the NTCAN-API can be used to open a handle,
 * set a baudrate and wait for reception of a CAN CC frames or CAN FD
 * frames with an identifier that has been previously enabled for this
 * handle.
 * Finally all proper cleanup operations are performed
 */
int example_rx_fd(void)
{
 int net=42; /* Logical net number (here: 42) */
 uint32_t mode=NTCAN_MODE_FD; /* Mode bits for canOpen */
 int32_t txqueuesize=8; /* Maximum number of messages to transmit */
 int32_t rxqueuesize=8; /* Maximum number of messages to receive */
 int32_t txtimeout=100; /* Timeout for transmit in ms */
 int32_t rxtimeout=10000; /* Timeout for receiving data in ms */
 NTCAN_HANDLE rxhandle; /* CAN handle returned by canOpen() */
 NTCAN_RESULT retvalue; /* Return values of NTCAN API calls */
 NTCAN_BAUDRATE_X baud; /* Bit rate configuration */
 CMSG_X cmsg[8]; /* Buffer for can messages */
 int i; /* Loop counter */
 int32_t len; /* Size in # of messages for canReadX() */

 /* ### */

 retvalue = canOpen(net,
 mode,
 txqueuesize,
 rxqueuesize,
 txtimeout,
 rxtimeout,
 &rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canOpen() failed with error %d!\n", retvalue);
 return(-1);
 }

 printf("function canOpen() returned OK !\n");

 /* ############################### ################################ */
 baud.mode = NTCAN_BAUDRATE_MODE_INDEX;
 baud.flags = NTCAN_BAUDRATE_FLAG_FD;
 baud.arb.u.idx = NTCAN_BAUD_500; /* Nominal bit rate: 500KBit/s */
 baud.data.u.idx = NTCAN_BAUD_2000; /* Data phase bit rate: 2 MBit/s */
 retvalue = canSetBaudrateX(rxhandle, &baud);

 if (retvalue != 0)
 {
 printf("canSetBaudrateX() failed with error %d!\n", retvalue);
 canClose(rxhandle);
 return(-1);
 }

 printf("function canSetBaudrateX() returned OK !\n");

 /* ### */

 retvalue = canIdAdd(rxhandle, 0); /* Enable CAN-ID 0 */

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canIdAdd() failed with error %d!\n", retvalue);
 canClose(rxhandle);

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 237 of 289

Example C Source

 return(-1);
 }

 printf("function canIdAdd() returned OK !\n");

 /* ### */

 for(;;) {
 /*
 * Set max numbers of messages that can be returned with
 * one canReadX() call according to buffer size.
 */
 len = 8;

 retvalue = canReadX(rxhandle, &cmsg[0], &len, NULL);

 if (retvalue == NTCAN_RX_TIMEOUT)
 {
 printf("canReadX() returned timeout\n");
 continue;
 }
 else if(retvalue != NTCAN_SUCCESS)
 {
 printf("canReadX() failed with error %d!\n", retvalue);
 }
 else
 {
 printf("Function canReadX() returned OK !\n");
 printf("ID of received message :%x!\n", cmsg[0].id);
 printf("DLC of received message :%x!\n", NTCAN_DLC(cmsg[0].len));
 if(NTCAN_IS_FD(cmsg[0].len)) {
 printf("BRS of received message :%x!\n", !

NTCAN_IS_FD_WITHOUT_BRS(cmsg[0].len));
 } else {
 printf("RTR of received message :%x!\n", NTCAN_IS_RTR(cmsg[0].len));
 }
 for (i=0;i<NTCAN_LEN_TO_DATASIZE(cmsg[0].len);i++)
 printf("Byte %d of received message :%x!\n", i, cmsg[0].data[i]);
 }

 break;
 };

 /* ### */

 retvalue = canIdDelete(rxhandle, 0);

 if (retvalue != NTCAN_SUCCESS)
 printf("canIdDelete() failed with error %d!\n", retvalue);

 printf("function canIdDelete() returned OK !\n");
 /* ### */

 retvalue = canClose (rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 printf("canClose() failed with error %d!\n", retvalue);
 else
 printf("canClose() returned OK !\n");

 /* ### */

 return(0);
}

Page 238 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.3 Receiving Messages (CAN CC / Object Mode)
In the text box below is an example to receive CAN CC messages using the Rx Object Mode.

#include <stdio.h>
#include <ntcan.h>

/*
 * This example demonstrates how the NTCAN-API can be used to open a handle
 * in object mode, set a baudrate and return the latest CAN CC
 * messages which have been received for the given ID set. Finally all proper
 * cleanup operations are performed.
 */
int example_rx_obj(void)
{
 int net = 0; /* Logical net number (here: 0) */
 uint32_t mode = NTCAN_MODE_OBJECT; /* Mode bits for canOpen()*/
 /* → Object Mode) */
 int32_t txqueuesize = NTCAN_NO_QUEUE; /* No Tx queuesize required */
 int32_t rxqueuesize = 8; /* Maximum number of Rx messages */
 int32_t txtimeout = 0; /* No Tx timeout required */
 int32_t rxtimeout = 0; /* No Rx timeout required */
 /* as data is polled */
 NTCAN_HANDLE rxhandle; /* CAN handle returned by canOpen() */
 NTCAN_RESULT retvalue; /* Return values of NTCAN API calls */
 uint32_t baud = NTCAN_BAUD_500; /* Configured CAN baudrate */
 /* -> 500 kBit/s */
 CMSG cmsg[8]; /* Buffer for CAN messages */
 int i, j; /* Loop counter */
 int32_t count; /* # of messages for canTake() */
 const int polled_messages = 3; /* Number of polled messages */

 /* ### */

 retvalue = canOpen(net,
 mode,
 txqueuesize,
 rxqueuesize,
 txtimeout,
 rxtimeout,
 &rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canOpen() failed with error %d!\n", retvalue);
 return(-1);
 }

 printf("function canOpen() returned OK !\n");

 /* ############################### ################################ */

 retvalue = canSetBaudrate(rxhandle, baud);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canSetBaudrate() failed with error %d!\n", retvalue);
 canClose(rxhandle);
 return(-1);
 }

 printf("function canSetBaudrate() returned OK !\n");

 /* ### */

 /* Enable all CAN-IDs we want to poll in the acceptance filter */
 retvalue = canIdAdd(rxhandle, 100); /* Enable CAN-ID 100 */
 retvalue |= canIdAdd(rxhandle, 200); /* Enable CAN-ID 200 */
 retvalue |= canIdAdd(rxhandle, 300); /* Enable CAN-ID 300 */

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canIdAdd() failed!\n");
 canClose(rxhandle);
 return(-1);

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 239 of 289

Example C Source

 }
 /* ### */

 cmsg[0].id = 100; /* Prepare to receive CAN-ID 100 in object mode */
 cmsg[1].id = 200; /* Prepare to receive CAN-ID 200 in object mode */
 cmsg[2].id = 300; /* Prepare to receive CAN-ID 300 in object mode */

 do {
 /*
 * Set number of messages that should be returned with canTake()
 * The requires
 */
 count = polled_messages;

 retvalue = canTake(rxhandle, &cmsg[0], &count);

 if (retvalue != NTCAN_SUCCESS) {
 printf("Error: canTake() failed with error %d!\n", retvalue);
 } else if (count != polled_messages){
 printf("Error: canTake() returned %d messages instead of %d ?!?\n",
 count, polled_messages);
 } else {
 for (i = 0; i < polled_messages; i++)
 {
 printf("ID: %3d ", cmsg[i].id);
 if (cmsg[i].len & NTCAN_NO_DATA) {
 printf("-> No data received yet for this CAN-ID\n");
 }
 else
 {
 if (NTCAN_IS_RTR(cmsg[i].len))
 {
 printf("-> R (%d)\n", NTCAN_DLC(cmsg[i].len));
 }
 else
 {
 uint8_t len = NTCAN_LEN_TO_DATASIZE(cmsg[i].len);

 printf("-> D (%d) Data: ", NTCAN_DLC(cmsg[i].len));
 for (j = 0; j < len; j++)
 printf("%02x ", cmsg[i].data[j]);
 printf("\n");
 }
 }
 }
 }

 /*
 * Note: If you remove the break below to repeat execution replace it
 * with a delay operation to prevent a high CPU load.
 */
 break;

 } while (1);

 /* ### */

 retvalue = canIdDelete(rxhandle, 0);

 if (retvalue != NTCAN_SUCCESS)
 printf("canIdDelete() failed with error %d!\n", retvalue);

 printf("function canIdDelete() returned OK !\n");
 /* ### */

 retvalue = canClose(rxhandle);

 if (retvalue != NTCAN_SUCCESS)
 printf("canClose() failed with error %d!\n", retvalue);
 else
 printf("canClose() returned OK !\n");

 /* ### */

 return(0);
}

Page 240 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.4 Transmitting messages (CAN CC)

#include <stdio.h>
#include <ntcan.h>

/*
* This example demonstrates how the NTCAN-API can be used to open a handle,
* set a baudrate and transmitting a CAN frame.
* Finally all proper cleanup operations are performed
*/
int example_tx(void)
{
 int net=0; /* logical net number (here: 0) */
 uint32_t mode=0; /* mode used for canOpen() */
 int32_t txqueuesize=8; /* size of transmit queue */
 int32_t rxqueuesize=8; /* size of receive queue */
 int32_t txtimeout=100; /* timeout for transmit operations in ms */
 int32_t rxtimeout=1000; /* timeout for receive operations in ms */
 NTCAN_HANDLE txhandle; /* can handle returned by canOpen() */
 NTCAN_RESULT retvalue; /* return values of NTCAN API calls */
 uint32_t baud=2; /* configured CAN baudrate (here: 500 kBit/s.) */
 CMSG cmsg[8]; /* can message buffer */
 int rtr=0; /* rtr bit */
 int i; /* loop counter */
 int32_t len; /* # of CAN messages */

 /* ### */

 retvalue = canOpen(net,
 mode,
 txqueuesize,
 rxqueuesize,
 txtimeout,
 rxtimeout,
 &txhandle);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canOpen() failed with error %d!\n", retvalue);
 return(-1);
 }

 printf("function canOpen() returned OK !\n");

 /* ### */

 retvalue = canSetBaudrate(txhandle, baud);

 if (retvalue != 0)
 {
 printf("canSetBaudrate() failed with error %d!\n", retvalue);
 canClose(txhandle);
 return(-1);
 }

 printf("function canSetBaudrate() returned OK !\n");

 /* ### */

 /*
 * Initialize the first message in buffer to CAN id = 0, len = 3
 * and data0 - data2 = 0,1,2
 */
 cmsg[0].id=0x00;
 cmsg[0].len=0x03; cmsg[0].len |= cmsg[0].len + (rtr<<4);
 for (i=0;i<3;i++)
 cmsg[0].data[i] = i;

 len=1; /* Number of valid messages in cmsg buffer*/

 retvalue = canWrite(txhandle, &cmsg[0], &len, NULL);

 if (retvalue != NTCAN_SUCCESS)
 printf("canWrite failed() with error %d!\n", retvalue);
 else

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 241 of 289

Example C Source

 printf("function canWrite() returned OK !\n");

 /* ### */

 retvalue = canClose (txhandle);

 if (retvalue != NTCAN_SUCCESS)
 printf("canClose failed with error %d!\n", retvalue);
 else
 printf("canClose() returned OK !\n");

 /* ### */

 return(0);
}

Page 242 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.5 Transmitting messages (CAN FD)

In the text box below is an example to transmit a CAN FD message. The differences to the
example code to transmit a CAN CC messages are marked (especially the use of the new data
structures and functions which end on 'X').

#include <stdio.h>
#include <ntcan.h>

/*
 * This example demonstrates how the NTCAN-API can be used to open a handle,
 * configure a nominal and data phase bit rate and transmit a CAN FD frame
 * Finally all proper cleanup operations are performed
 */
int example_tx_fd(void)
{
 int net=42; /* logical net number (here: 42) */
 uint32_t mode=NTCAN_MODE_FD; /* Mode bits for canOpen */
 int32_t txqueuesize=8; /* maximum number of messages to transmit */
 int32_t rxqueuesize=8; /* maximum number of messages to receive */
 int32_t txtimeout=100; /* timeout for transmit in ms */
 int32_t rxtimeout=1000; /* timeout for receiving data in ms */
 NTCAN_HANDLE txhandle; /* can handle returned by canOpen() */
 NTCAN_RESULT retvalue; /* return values of NTCAN API calls */
 NTCAN_BAUDRATE_X baud; /* Bit rate configuration */
 CMSG_X cmsg[8]; /* can message buffer */
 int no_brs=0; /* No bit rate switch bit */
 int i; /* loop counter */
 int32_t len; /* # of CAN messages */

 /* ### */

 retvalue = canOpen(net,
 mode,
 txqueuesize,
 rxqueuesize,
 txtimeout,
 rxtimeout,
 &txhandle);

 if (retvalue != NTCAN_SUCCESS)
 {
 printf("canOpen() failed with error %d!\n", retvalue);
 return(-1);
 }

 printf("function canOpen() returned OK !\n");

 /* ### */
 baud.mode = NTCAN_BAUDRATE_MODE_INDEX;
 baud.flags = NTCAN_BAUDRATE_FLAG_FD;
 baud.arb.u.idx = NTCAN_BAUD_500; /* Nominal bit rate: 500KBit/s */
 baud.data.u.idx = NTCAN_BAUD_2000; /* Data phase bit rate: 2 MBit/s */
 retvalue = canSetBaudrateX(txhandle, &baud);

 if (retvalue != 0)
 {
 printf("canSetBaudrateX() failed with error %d!\n", retvalue);
 canClose(txhandle);
 return(-1);
 }

 printf("function canSetBaudrateX() returned OK !\n");

 /* ### */

 /*
 * Initialize the first message in buffer to CAN id = 0, len = 12
 * and data0-data12 = 0..11
 */
 cmsg[0].id = 0x00;
 cmsg[0].len = NTCAN_DATASIZE_TO_DLC(12);
 cmsg[0].len |= (NTCAN_FD | (no_brs << 4));

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 243 of 289

Example C Source

 for (i = 0; i < 12; i++)
 cmsg[0].data[i] = (uint8_t)i;

 len=1; /* Number of valid messages in cmsg buffer*/

 retvalue = canWriteX(txhandle, &cmsg[0], &len, NULL);

 if (retvalue != NTCAN_SUCCESS)
 printf("canWriteX failed() with error %d!\n", retvalue);
 else
 printf("function canWriteX() returned OK !\n");

 /* ### */

 retvalue = canClose (txhandle);

 if (retvalue != NTCAN_SUCCESS)
 printf("canClose() failed with error %d!\n", retvalue);
 else
 printf("canClose() returned OK !\n");

 /* ### */

 return(0);
}

Page 244 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.6 Timestamped TX messages (CAN CC)
In the text box below is an example to transmit timestamped TX CAN CC message. The
transmission is triggered with the non-blocking canSendT(). The main difference to the immediate
transmission of messages are marked bold.

#include <stdio.h>
#include <ntcan.h>

/*
 * This example demonstrates how the NTCAN-API can be used to open a handle,
 * set a CAN CC bitrate and transmit CAN CC messages at a certain
 * point of time in the future using the Timestamped TX feature with a
 * non-blocking request. The example code acquires the current timestamp and
 * starts transmission of 10 frames after 1000 ms with a time difference of 100
 * ms between each frame. Finally all proper cleanup operations are performed
*/
void timestamped_tx(uint16_t can_id)
{

 NTCAN_HANDLE m_hCan;
 uint64_t timestampFreq, timestamp;
 CMSG_T msgT[10];
 NTCAN_RESULT rc;
 int32_t len;
 int i;

 /* Open CAN handle for net 42 */
 rc = canOpen(42, NTCAN_MODE_TIMESTAMPED_TX, 100, 100, 1000, 1000, &m_hCan);
 if (rc != NTCAN_SUCCESS) {
 printf("Opening handle failed with %d\n", rc);
 return;
 }

 /* Request timestamp/tick frequency of interface */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_GET_TIMESTAMP_FREQ, ×tampFreq);
 if (rc != NTCAN_SUCCESS) {
 printf("Gathering timestamp frequency failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Set baudrate to 500KBit/s */
 rc = canSetBaudrate(m_hCan, NTCAN_BAUD_500);
 if (rc != NTCAN_SUCCESS) {
 printf("Configuration CAN bit rate failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Request timestamp/tick frequency of interface */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_GET_TIMESTAMP, ×tamp);
 if (rc != NTCAN_SUCCESS) {
 printf("Gathering timestamp failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 // Start transmission in one second from now
 timestamp += timestampFreq;

 /*
 * Setup the Tx object with the given CAN-ID and initialize the message.
 */
 memset(msgT, 0, sizeof(msgT));
 len = sizeof(msgT) / sizeof(*msgT);
 for (i = 0; i < len; i++) {
 msgT[i].id = (int32_t)(can_id + i);
 msgT[i].len = NTCAN_DATASIZE_TO_DLC(8);
 msgT[i].timestamp = timestamp;
 strcpy((char *)msgT[i].data, "Hello !!");
 timestamp += timestampFreq / 10; /* Next transmission in 100 ms */
 }

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 245 of 289

Example C Source

 /*
 * Non-blocking call to schedule message transmission.
 */
 rc = canSendT(m_hCan, msgT, &len);
 if (rc != NTCAN_SUCCESS) {
 printf("canSendT() failed with %d\n", rc);
 }

 /*
 * NOTE: All frames which are not transmitted before the handle is closed
 * will be aborted !!!
 */
 SLEEP(3000); /* OS specific delay for 3 seconds !!! */

 (void)canClose(m_hCan);
 return;
}

Page 246 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.7 Timestamped TX messages (CAN FD)

In the text box below is an example to transmit timestamped TX CAN FD message. The
differences to the example code to transmit timestamped TX CAN CC messages are marked
(especially the use of the new data structures and functions which end on 'X'). The transmission is
triggered with the blocking canWriteT(). The main difference to the immediate transmission of
messages are marked bold. Please note that the Tx timeout in this example is increased to 5000
ms to prevent that the scheduled transmission request is aborted because the blocking request
returns with timeout beforehand.

#include <stdio.h>
#include <ntcan.h>

/*
 * This example demonstrates how the NTCAN-API can be used to open a handle,
 * set a CAN FD bitrate and transmit CAN FD messages at a certain
 * point of time in the future using the Timestamped TX feature with a
 * blocking request. The example code acquires the current timestamp and
 * starts transmission of 10 frames after 1000 ms with a time difference of 100
 * ms between each frame. Finally all proper cleanup operations are performed
*/
void timestamped_tx_fd(uint16_t can_id)
{

 NTCAN_HANDLE m_hCan;
 NTCAN_BAUDRATE_X baudX;
 uint64_t timestampFreq, timestamp;
 CMSG_X msgX[10];
 NTCAN_RESULT rc;
 int32_t len;
 int i;

 /* Open CAN handle for net 42 */
 rc = canOpen(42, NTCAN_MODE_FD | NTCAN_MODE_TIMESTAMPED_TX, 100, 100,

5000, 5000, &m_hCan);
 if (rc != NTCAN_SUCCESS) {
 printf("Opening handle failed with %d\n", rc);
 return;
 }

 /* Request timestamp/tick frequency of interface */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_GET_TIMESTAMP_FREQ, ×tampFreq);
 if (rc != NTCAN_SUCCESS) {
 printf("Gathering timestamp frequency failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Set baudrate to 500KBit/s / 2MBit/s */
 baudX.mode = NTCAN_BAUDRATE_MODE_INDEX;
 baudX.flags = NTCAN_BAUDRATE_FLAG_FD;
 baudX.arb.u.idx = NTCAN_BAUD_500;
 baudX.data.u.idx = NTCAN_BAUD_2000;
 baudX.reserved = 0;
 rc = canSetBaudrateX(m_hCan, &baudX);
 if (rc != NTCAN_SUCCESS) {
 printf("Configuration CAN bit rate failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Request timestamp/tick frequency of interface */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_GET_TIMESTAMP, ×tamp);
 if (rc != NTCAN_SUCCESS) {
 printf("Gathering timestamp failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 // Start transmission in one second from now
 timestamp += timestampFreq;

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 247 of 289

Example C Source

 /*
 * Setup the Tx object with the given CAN-ID and initialize the message.
 */
 memset(msgX, 0, sizeof(msgX));
 len = sizeof(msgX) / sizeof(*msgX);
 for (i = 0; i < len; i++) {
 msgX[i].id = (int32_t)(can_id + i);
 msgX[i].len = NTCAN_DATASIZE_TO_DLC(64);
 msgX[i].len |= NTCAN_FD;
 msgX[i].timestamp = timestamp;
 strcpy((char *)msgX[i].data, "Hello world!");
 timestamp += timestampFreq / 10; /* Next transmission in 100 ms */
 }

 /*
 * Blocking call to schedule message transmission.
 * NOTE: All scheduled frames which transmission time exceed the configured
 * Tx timeout will be aborted before return !!!
 */
 rc = canWriteX(m_hCan, msgX, &len, NULL);
 if (rc != NTCAN_SUCCESS) {
 printf("canWriteX() failed with %d\n", rc);
 }

 (void)canClose(m_hCan);
 return;
}

Page 248 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Example C Source

8.8 Scheduling messages (CAN CC)

#include <stdio.h>
#include <ntcan.h>

/*
* This example demonstrates how the NTCAN-API can be used to open a handle,
* set a baudrate and define a CAN message which is transmitted autonomously
* in background with an incrementing, rotating counter.
* Finally all proper cleanup operations are performed
*/
/*
 * Schedule a CAN message
 */
void sched_test(uint16_t can_id, uint32_t time_interval_ms)
{
 NTCAN_HANDLE m_hCan;
 uint64_t timestampFreq;
 CMSG msg;
 CSCHED schedule;
 NTCAN_RESULT rc;

 /* Open CAN handle for net 42 */
 rc = canOpen(42, 0, 10, 10, 1000, 1000, &m_hCan);
 if (rc != NTCAN_SUCCESS) {
 return;
 }

 /* Request timestamp/tick frequency of interface */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_GET_TIMESTAMP_FREQ, ×tampFreq);
 if (rc != NTCAN_SUCCESS) {
 printf("Gathering timestamp frequency failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Set baudrate to 1 MBit/s */
 rc = canSetBaudrate(m_hCan, NTCAN_BAUD_1000);
 if (rc != NTCAN_SUCCESS) {
 printf("Configuration CAN bit rate failed with %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /*
 * Setup the Tx object with the given CAN-ID and initialize the message.
 */
 memset(&msg, 0, sizeof(CMSG));
 msg.id = (uint32_t)can_id;
 msg.len = 8;
 strcpy((char *)msg.data, "Hello");

 /*
 * Define a scheduling set for the given CAN-ID with a 16 bit
 * counter (little endian) at byte offset 6 which is incremented
 * with each transmission and counts from 0 up to 5 before it
 * start again with 0 with the given scheduling interval converted
 * from milliseconds into ticks.
 */
 memset(&schedule, 0, sizeof(CSCHED));
 schedule.id = (uint32_t)can_id;
 schedule.flags = NTCAN_SCHED_FLAG_EN | NTCAN_SCHED_FLAG_INC16 |
 NTCAN_SCHED_FLAG_OFS6;
 schedule.time_start = 0;
 schedule.time_interval = ((timestampFreq * time_interval_ms) / 1000ULL);
 schedule.count_start = 0x0;
 schedule.count_stop = 0x5;

 /* Create a Tx object */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_TX_OBJ_CREATE, &msg);
 if (rc != NTCAN_SUCCESS) {
 printf("Creation of Tx object failed with error %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 249 of 289

Example C Source

 /* Configure the scheduling for the Tx object */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_TX_OBJ_SCHEDULE, &schedule);
 if (rc != NTCAN_SUCCESS) {
 printf("Configuration of scheduling failed with error %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 /* Start the scheduling set */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_TX_OBJ_SCHEDULE_START, NULL);
 if (rc != NTCAN_SUCCESS) {
 printf("Start of scheduling failed with error %d\n", rc);
 (void)canClose(m_hCan);
 return;
 }

 SLEEP(5000); /* OS specific delay for 5 seconds !!! */

 /* Update the Tx message */
 strcpy((char *)msg.data, "World");
 rc = canIoctl(m_hCan, NTCAN_IOCTL_TX_OBJ_UPDATE, &msg);
 if (rc != NTCAN_SUCCESS) {
 printf("Update of scheduling failed with error %d\n", rc);
 }

 SLEEP(5000); /* OS specific delay for 5 seconds !!! */

 /* Stop the scheduling */
 rc = canIoctl(m_hCan, NTCAN_IOCTL_TX_OBJ_SCHEDULE_STOP, NULL);
 if (rc != NTCAN_SUCCESS) {
 printf("Stop of scheduling failed with error %d\n", rc);
 }

 (void)canClose(m_hCan);
}

Page 250 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CLI Application canTest

9. CLI Application canTest
An NTCAN implementation is shipped with the demo application canTest written in ANSI-C. This
console application is deployed as source code and as an executable for the target system and is
written as cross-platform application so it can be compiled and executed on all supported
platforms. The program is intended to

➢ Demonstrate the use of the various NTCAN API calls and data structures described in the
previous chapters

➢ Perform basic functional test on the CAN bus for CAN Classic as well as CAN FD.
➢ Gather information about the hardware and software environment in case you have to

report a problem to esd electronics.

The binary version of the test program is usually distributed as 'cantest' (all
lowercase letters). An exception of this rule is the VxWorks release where
the program has to be called with 'canTest' as an allusion to the prevalent
naming convention of this platform.

If canTest is called without parameters, the program lists the CAN ports of all configured esd
electronics CAN interfaces in the host system together with information about the CAN hardware
and software environment as listed in the table below followed by the command line syntax. For an
overview without the syntax use -2 as test number (1st parameter).

Information Description

ID CAN module identifier name.

Dll Revision number of the NTCAN library in the format major.minor.revision.

Driver Revision number of the CAN driver in the format major.minor.revision.

Firmware Revision number of local the firmwares (if applicable) in the format
major.minor.revision. For passive CAN boards 0.0.0 is returned. For active
CAN boards with one FW 0.0.0 is returned for the second one.

S/N Hardware serial number of the CAN board. Returns N/A if not supported by
the CAN board.

Hardware Hardware revision number in the format major.minor.revision.

Baudrate Configured bitrate as described for canSetBaudrate().or
canSetBaudrateX().

Status Hardware status of the CAN module (if supported by the module).

Features Supported properties of hardware and/or device driver.
Returns the (16 bit) value of the parameter feature of the data structure
CAN_IF_STATUS or the (32-bit) value features of the data structure
NTCAN_INFO if supported by the device driver. To get a textual description
of the features call canTest with -3 as test number (1st parameter)

Controller CAN controller type and clock. If the device supports returning the data
structure NTCAN_CTRL_STATE the actual CAN controller state and the
receive and transmit error counter are shown, too.

Transceiver The transceiver type.

Timestamp Current timestamp value captured at the moment canTest is called (if
supported by the CAN board).

TimestampFreq Frequency of the timestamp counter (if supported by the CAN board).

Table 31: CAN board information listed with canTest

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 251 of 289

CLI Application canTest

The following figure shows an example console output of canTest on Windows with one active
board (CAN-PCIe/402-2) and the virtual CAN driver.

CAN Test FD Rev 3.1.10 (r17609) -- (c) 1997 - 2023 esd electronics gmbh

Available CAN-Devices:
Net 0: ID=CAN_PCIE402 (2/0 CAN/LIN ports) S/N: GP001890
 Versions (hex): Lib=5.0.06 Drv=4.2.00 HW=1.0.16 FW=0.0.49 (0.0.00)
 Baudrate=00000000 (1000 KBit/s) Status=0000 Features=001c8ffa
 Ctrl=esd Advanced CAN Core @ 80 MHz Transceiver=TI SN65HVD265
 Bus state (Error Active / REC:0 / TEC:0)
 TimestampFreq=80.000000 / 10.000000 MHz Timestamp=00009721AADA5CD8
Net 1: ID=CAN_PCIE402 (2/0 CAN/LIN ports) S/N: GP001890
 Versions (hex): Lib=5.0.06 Drv=4.2.00 HW=1.0.16 FW=0.0.49 (0.0.00)
 Baudrate=7fffffff (Not set) Status=0000 Features=001c8ffa
 Ctrl=esd Advanced CAN Core @ 80 MHz Transceiver=TI SN65HVD265
 Bus state (Error Active / REC:0 / TEC:0)
 TimestampFreq=80.000000 / 10.000000 MHz Timestamp=00009721AADFBD5D
Net 42: ID=CAN_VIRTUAL (1/0 CAN/LIN ports) S/N: N/A
 Versions (hex): Lib=5.0.06 Drv=4.0.03 HW=1.0.00 FW=0.0.00 (0.0.00)
 Baudrate=7fffffff (Not set) Status=0000 Features=00028f7a
 Ctrl=esd Advanced CAN Core @ 80 MHz Transceiver=NXP PCA82C251
 Bus state (Error Active / REC:0 / TEC:0)
 TimestampFreq=10.000000 / 0.000000 MHz Timestamp=000012E4518E90DC

Syntax: cantest test-Nr [net id-1st id-last count
 txbuf rxbuf txtout rxtout baud[:dbaud:[tdc]] testcount data0
data1 ...]
Test 0: canSend()
Test 20: canSendT()
Test 50: canSend() with incrementing ids
Test 60: canSendX()
Test 90: canSend() after using NTCAN_IOCTL_GET_TX_MSG_COUNT
Test 1: canWrite()
Test 21: canWriteT()
Test 51: canWrite() with incrementing ids
Test 61: canWriteX()
Test 2: canTake()
Test 12: canTake() with time-measurement for 10000 can-frames
Test 22: canTakeT()
Test 32: canTake() in Object-Mode
Test 42: canTakeT() in Object-Mode
Test 62: canTakeX()
Test 72: canTakeX() with time-measurement for 10000 can-frames
Test 82: canTakeX() in Object-Mode
Test 92: canTake() after using NTCAN_IOCTL_GET_RX_MSG_COUNT
Test 3: canRead()
Test 13: canRead() with time-measurement for 10000 can-frames
Test 23: canReadT()
Test 63: canReadX()
Test 73: canReadX() with time-measurement for 10000 can-frames
Test 4: canReadEvent()
Test 64: Retrieve bus statistics (every tx timeout)
Test 74: Reset bus statistics
Test 84: Retrieve bitrate details (every tx timeout)
Test 5: canSendEvent()
Test 6: Overlapped-canRead()
Test 16: Overlapped-canReadT()
Test 66: Overlapped-canReadX()
Test 7: Overlapped-canWrite()
Test 8: Create auto RTR object
Test 9: Wait for RTR reply
Test 19: Wait for RTR reply without text-output
Test 100: Object Scheduling test
Test 110: Object Scheduling test with cmsg_x
Test -2: Overview without syntax help
Test -3: Overview without syntax help but with feature flags details
Test -4: Overview without syntax help but with bit rate index table

Page 252 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CLI Application canTest

If called without any parameter the list of CAN ports, the parameters of canTest and a list of
available test cases are shown. Each parameter has a default value, which depends on the test
case and is used if the parameter is not set. The parameters always have to be set in the order as
they are displayed. This means if the value of testcount should be changed all previous parameters
have to be set, too. If the parameters after testcount are not entered, they will be set to their default
values for the test.

If the number format is not described explicitly decimal values, hexadecimal values and octal
values are allowed in the common C/C++ notation.

➢ To write numbers in hexadecimal, precede the value with a 0x. Thus, 0x23 is the decimal
value 35.

➢ To write numbers in octal, precede the value with a 0. Thus, 023 is the decimal value 19.

The table below describes the arguments of canTest:

Parameter Description Default

Test-Nr Number of one of the supported tests as decimal value N/A (mandatory)

Net Logical net number to perform the test as decimal value 0

Id-first Start of NTCAN-ID range. The format follows the description in
chapter 3.4.

0

Id-Last End of NTCAN-ID range. The format follows the description in
chapter 3.4.

0

Count The number of CAN messages which are to be transmitted or
received with an CAN I/O. This parameter corresponds to the
input parameter len of canWrite(), canRead(),...

If count is set to a negative value the absolute value of count
is used for the test and a receive test is configured with
support to mark interaction frames. A transmit test for CAN CC
is configured to send CAN RTR frames instead of data frames
and a transmit CAN for CAN FD is configured to send the
frames without a bit rate switch.

If count is set to 0 a receive test is configured to discard
interaction frames and the internal value of count is set back
to the default value of 1. For transmit tests a value of 0 for
count is not supported.

1

Txbuf Size of NTCAN handle Tx queue as decimal value. This
parameter corresponds to the parameter txqueuesize of
canOpen().

10

Rxbuf Size of NTCAN handle Rx queue. This parameter corresponds
to the parameter rxqueuesize of canOpen().

100

Txtout Timeout for blocking transmit tests in ms as decimal value.
This parameter corresponds to the parameter txtimeout of
canOpen().
Timeout to wait after a non-blocking transmit tests in ms as
decimal value.

1000

Rxtout Timeout for blocking receive tests in ms as decimal value. This
parameter corresponds to the parameter rxtimeout of
canOpen().

5000

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 253 of 289

CLI Application canTest

Parameter Description Default

Baud 32-Bit CAN bitrate parameter according to the description of
canSetBaudrate(). Instead of a numerical value the strings
no to keep the configured bit rate, disable to leave the CAN
bus and auto to start the automatic bit rate detection are
supported, too. To get a list of the relation between index and
bit rate call canTest with -4 as test number. The standard bit
rates of this list can also be provided as strings with the
mnemonic 250K to define a bit rate of 250 Kbit/s.
The data bit rate of a CAN FD test has to be separated from
the nominal bit rate by a colon. To configure a nominal bit rate
of 500 KBit/s and a data bit rate of 2 Mbit/s you can provide
2:17 or 500K:2M as argument.
Appending a decimal point or comma to the arbitration bit rate
(or using a decimal point or comma as separator for a CAN
FD bit rate) configures the controller to enable the listen-only
respectively self-test mode.

CAN Classic
2 (= 500 Kbit/s)

CAN FD
2:17 (=500 Kbit/s
and 2 MBit/s)

Testcount Number of times the test should be repeated as decimal
value. A value of -1 repeats the test endlessly.

10 (Transmit)
-1 (Receive)

Data0..Data8
Data0..Data64

CAN CC:
Without configuration two 32-bit counter values (8 bytes) will
be transmitted. If one to eight bytes are specified, the
specified bytes will be transmitted. The parameter has no
effect for receive tests.

CAN FD:
Without configuration two 32-bit counter values (8 bytes) will
be transmitted. The remaining 56 bytes are filled up with six 32
bit values starting with the numerical value 2. If one to 64
bytes are specified, the specified bytes will be transmitted. The
parameter has no effect for receive tests.

N/A

Table 32: Command line parameter of canTest

Page 254 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CLI Application canTest

The table below describes the available tests. For every test the execution time is measured and in
case of an error the error code is converted into a text with canFormatError().

Test # Description

0

Use the non-blocking NTCAN-API canSend() to transmit CAN CC messages. The
messages are transmitted with CAN-ID id-first and id-last is ignored. If count is set to a
negative value the test will send RTR frames instead of data frames with the absolute
value of count. The parameter txtout is used as the delay between consecutive loops if
testcount is greater 1.

20

Use the non-blocking NTCAN-API canSendT() to transmit CAN CC messages. If the
Timestamped TX feature is not supported the test is identical to test 0. Otherwise the
test. Otherwise most test parameter are also identical to test 0 with the exception of the
timeouts. The parameter txtout is used as base offset for the transmission in ms and the
parameter rxtout as offset between consecutive frames.
Example: If you send 10 frames (count = 10) with txtout set to 2000 ms and rxtout set to
10 ms the test will start transmitting 10 frames in 2000 ms from now with a delay of 10
ms between each frame.

50

Use the non-blocking NTCAN-API canSend() to transmit CAN CC messages. The
messages are transmitted with increasing CAN-IDs from id-first to id-last with a
wraparound if id-last is reached. If count is set to a negative value the test will send
RTR frames instead of data frames with the absolute value of count. The parameter
txtout is used as the delay between consecutive loops if testcount is greater 1.

60

Use the non-blocking NTCAN-API canSendX() to transmit CAN FD messages. The
messages are transmitted with increasing CAN-IDs from id-first to id-last with a
wraparound if id-last is reached. If count is set to a negative value the test will send
frames without switching the bit rate during the data phase with the absolute value of
count. The parameter txtout is used as the delay between consecutive loops if testcount
is greater 1.

1

Use the blocking NTCAN-API canWrite() to transmit CAN messages. The messages
are transmitted with CAN-ID id-first and id-last is ignored. If count is set to a negative
value the test will send RTR frames instead of data frames with the absolute value of
count. If tx_timeout is set to a negative value the messages will be transmitted in DAR
mode if supported by the hardware.

51

Use the blocking NTCAN-API canWrite() to transmit CAN messages. The messages
are transmitted with increasing CAN-IDs from id-first to id-last with a wraparound if id-
last is reached. If count is set to a negative value the test will send RTR frames instead
of data frames with the absolute value of count. If tx_timeout is set to a negative value
the messages will be transmitted in DAR mode if supported by the hardware.

61

Use the blocking NTCAN-API canWriteX() to transmit CAN FD messages. The
messages are transmitted with increasing CAN-IDs from id-first to id-last with a
wraparound if id-last is reached. If count is set to a negative value the test will send
frames without switching the bit rate during the data phase with the absolute value of
count. If tx_timeout is set to a negative value the messages will be transmitted in DAR
mode if supported by the hardware.

2
Use the non-blocking NTCAN-API canTake() in FIFO mode to receive CAN messages.
The messages are received in the CAN-ID range from id-first to id-last and dumped on
return.

12
Use the non-blocking NTCAN-API canTake() in FIFO mode to receive 10000 CAN
messages. The messages are received in the CAN-ID range from id-first to id-last
without being dumped.

22 Same as test 2 using canTakeT().

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 255 of 289

CLI Application canTest

Test # Description

32
Use the non-blocking NTCAN-API canTake() in object mode to receive CAN messages.
The messages are received in the CAN-ID range from id-first to id-last and dumped on
return.

42 Same as test 32 using canTakeT().

62 Same as test 2 using canTakeX().

72 Same as test 12 using canTakeX().

82 Same as test 32 using canTakeX().

3
Use the blocking NTCAN-API canRead() in FIFO mode to receive CAN messages. The
messages are received in the CAN-ID range from id-first to id-last and dumped on
return.

13
Use the blocking NTCAN-API canRead() in FIFO mode to receive 10000 CAN
messages. The messages are received in the CAN-ID range from id-first to id-last
without being dumped.

23 Same as test 3 using canReadT().

63 Same as test 3 using canReadX().

73 Same as test 13 using canReadX().

4
Use the blocking NTCAN-API canRead() in FIFO mode to receive CAN messages. The
messages are received in the Event-ID range from id-first to id-last and dumped on
return using canFormatEvent().

64
Use canIoctl() to retrieve and dump the CAN bus statistic data. The parameter txtout is
used as the delay between consecutive loops if testcount is greater 1.

74
Use canIoctl() to reset the CAN bus statistic data. The parameter txtout is used as the
delay between consecutive loops if testcount is greater 1.

84
Use canIoctl() to retrieve and dump the configured bitrate details for the CAN port. The
parameter txtout is used as the delay between consecutive loops if testcount is greater
1.

6
Same as test 3 but with support for the Overlapped mechanism of Windows to
receive data asynchronously (see canRead() for details). For this reason this
test is not available for any other supported OS.

16
Same as test 23 but with support for the Overlapped mechanism of Windows
to receive data asynchronously (see canReadT() for details). For this reason
this test is not available for any other supported OS.

66
Same as test 63 but with support for the Overlapped mechanism of Windows
to receive data asynchronously (see canReadX() for details). For this reason
this test is not available for any other supported OS.

7
Same as test 1 but with support for the Overlapped mechanism of Windows to
transmit data asynchronously (see canWrite() for details). For this reason this
test is not available for any other supported OS.

8
Use canIoctl() to create an Auto-RTR object with CAN-ID id-first. This CAN message
can be requested for the time given in parameter rxtout.

9
Use the non-blocking NTCAN-API canSend() to transmit a RTR message followed by
canRead() to receive the reply.

-2 Show the CAN device overview without the parameter description.

-3
Show the CAN device overview without the parameter description but with a textual
description of the feature flags and with detailed build information of the library and/or
device driver if supported.

Page 256 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

CLI Application canTest

Test # Description

-4
Show the CAN device overview without the parameter description and a table which
gives an overview on the relation between the esd electronics bitrate table index and
the default CiA bitrates.

Table 33: Test Cases of 'canTest'

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 257 of 289

Application Development

10. Application Development
An implementation of the NTCAN architecture for any of the supported platforms usually comprises
a CAN hardware specific device driver, a library which exports the NTCAN-API to the (user mode)
application, the necessary files (header, …) for the C/C++ development and the console mode
application canTest described in chapter 9 as source code and binary version (if applicable on the
target). The installation and integration into the prevalent development environment for the target is
described in /1/.

10.1 CAN SDK for Windows
On the Microsoft® Windows platform the development of NTCAN based applications is
accompanied by the esd electronics CAN Software Development Kit (SDK).

10.1.1 GUI Tools

The CAN SDK comprises several tools which ease and support the development and debugging of
CAN applications for Windows but also for other platforms in several ways:

➢ CANreal: Sophisticated and flexible CAN bus monitoring software.

Page 258 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Figure 19: CANreal Bus Monitor

Application Development

➢ CANrepro: Replay pre-recorded CAN messages of CANreal.
➢ CANscript: Automate CAN based processes with a Python based scripting language.
➢ CANplot: Powerful visualization of CAN messages
➢ COBview: CANopen Object Viewer to manually configure and start CANopen devices.

All tools come with a separate documentation which is installed together with the CAN SDK.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 259 of 289

Application Development

10.1.2 Programming Language Support & Language Bindings

The NTCAN API library is implemented in C. The CAN SDK contains example out of the box
projects for the following C/C++ IDEs:

IDE Support

Microsoft® Visual Studio Example projects and import libraries for different versions of
Microsoft Visual Studio.

Borland C++ Builder Example project and import libraries for Borland C++ Builder 6.

Code::Blocks Example project and import libraries for Code::Blocks 20.03
ready to support MinGW (GCC) C/C++

Table 34: Supported C/C++ IDEs for Windows

As an alternative to using C/C++, the CAN SDK contains language bindings to NTCAN for the
following programming languages and runtime environments:

Language / Environment Support

Embarcadero Delphi Libraries and example project to support Embarcadero Delphi

Microsoft® Visual Basic 6 Libraries and example project to support Microsoft Visual Basic 6

Python PyNTCAN library as language binding to Python 3.x

National Instruments LabVIEW® LabVIEW VI library.

PureBasic Language Binding to support PureBasic development.

Microsoft .NET Runtime Class library for .NET 3.5 and .NET Standard 2.0 which
enables the development of NTCAN based applications with any
.NET capable programming language (C#, F#, Visusal
Basic.NET,)

Table 35: Supported Language Bindings for Windows

Page 260 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

https://docs.microsoft.com/en-us/dotnet/standard/net-standard?tabs=net-standard-2-0

Attachment

11. Attachment

11.1 esd electronics NTCAN Programming with LabVIEW
This chapter contains descriptions of the LabVIEW block diagrams to make use of the esd
electronics NTCAN API.
There are two different methods to use esd electronics CAN hardware from within LabVIEW.
One method is the use of NTCAN-VIs (native VIs) to the esd electronics NTCAN API C-functions.
Those VIs are named with the prefix "Ntcan". Their VI icons look like this:

The other method is a LabVIEW signal based approach, using a plain text project file holding
informations on the CAN bus configuration, CAN objects and their mappings to LabVIEW signals.
These CAN VIs (signal based VIs) are named with the prefix "Can". Their VI icons look like this:

Be careful with mixing up LabVIEW signal based CAN handles obtained by "Can
Project Open" and handles obtained by the native NTCAN VI "Ntcan Open".It is
possible to use a LabVIEW signal based handle as input for native NTCAN VIs, but
the other way will not work!

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 261 of 289

Attachment

11.1.1 Wrapper VIs for direct use of the esd electronics NTCAN API

11.1.1.1 Initialization and Cleanup

11.1.1.1.1 canOpen

NTCAN API function description see page 98.

11.1.1.1.2 canClose

NTCAN API function description see page 102.

Page 262 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.1.2 Configuration

11.1.1.2.1 canSetBaudrate

NTCAN API function description see page 103.

11.1.1.2.2 canGetBaudrate

NTCAN API function description see page 109.

11.1.1.2.3 canIdAdd

NTCAN API function description see page 113.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 263 of 289

Attachment

11.1.1.2.4 canIdDelete

NTCAN API function description see page 116.

11.1.1.2.5 canIoctl

NTCAN API function description see page 118.

NTCAN Ioctl 32 (32-bit value as input and output)

NTCAN loctl 64 (64-bit value as in- and output)

Page 264 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

NTCAN loctl Raw (Pointer as in- and output)

NTCAN loctl Get Ctrl Status (NTCAN_CTRL_STATE structure as output)

NTCAN API function description see page 209.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 265 of 289

Attachment

NTCAN loctl Get Bus Statistic (NTCAN_BUS_STATISTIC structure as output)

NTCAN API function description see page 207.

NTCAN loctl Get Bit Rate Details (NTCAN_BITRATE structure as output)

NTCAN API function description see page 205.

Page 266 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

NTCAN Ioctl EEI Create

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

NTCAN loctl EEI Destroy

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 267 of 289

Attachment

NTCAN Ioctl EEI Status

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

Page 268 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

NTCAN Ioctl EEI Configure

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 269 of 289

Attachment

NTCAN Ioctl EEI Start

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

NTCAN loctl EEI Stop

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

NTCAN Ioctl EEI Trigger Now

For general description of the Error Injection see page 74. The error injection related I/O
controls are listed on page 125.

Page 270 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.1.3 Receiving CAN messages

11.1.1.3.1 canTake

NTCAN API function description see page 129.

11.1.1.3.2 canTakeT

NTCAN API function description see page 131.

11.1.1.3.3 canRead

NTCAN API function description see page 135.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 271 of 289

Attachment

11.1.1.3.4 canReadT

NTCAN API function description see page 138.

11.1.1.4 Transmitting CAN messages

11.1.1.4.1 canSend

NTCAN API function description see page 142.

11.1.1.4.2 canSendT

NTCAN API function description see page 144.

Page 272 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.1.4.3 canWrite

NTCAN API function description see page 148.

11.1.1.4.4 canWriteT

NTCAN API function description see page 150.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 273 of 289

Attachment

11.1.1.5 Miscellaneous functions

11.1.1.5.1 canStatus

NTCAN API function description see page 156.

11.1.1.5.2 canFormatError

NTCAN API function description see page 163.

Page 274 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.1.5.3 canFormatFrame

NTCAN API function description see page 167.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 275 of 289

Attachment

11.1.2 LabVIEW signal based access to CAN

11.1.2.1.1 CanProjectOpen

CanProjectOpen opens the specified project file (which is holding informations about
the CAN bus configuration, CAN objects and their mappings to LabVIEW signals) to
obtain a project handle. Please see the accompanying commented example project files for more
information.

11.1.2.1.2 CanProjectClose

CanProjectClose closes a project handle. It is advised to always close any opened
project handle, before stopping a LabVIEW project.

Page 276 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.2.1.3 CanObjectPoll

CanObjectPoll gets the most recent CAN data received on the given CAN-ID.

11.1.2.1.4 CanObjectSend

CanObjectSend immediately transmits a CAN frame and in parallel updates the data on
the given CAN-ID.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 277 of 289

Attachment

11.1.2.1.5 CanTxObjectUpdate

CanTxObjectUpdate updates the data on the given CAN-ID (CAN frame won't be
transmitted in this process).

11.1.2.1.6 CanObjectTrigger

CanObjectTrigger transmits recent data (set by either canTxObjectUpdate or
canObjectSend) for given CAN-ID on the CAN-bus.

Page 278 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.2.1.7 CanSignalPoll

CanSignalPoll gets the most recent value received for the given signal name.

11.1.2.1.8 CanSignalTrigger

CanSignalTrigger transmits the CAN frame belonging to the given LabVIEW signal
name on the CAN-bus.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 279 of 289

Attachment

11.1.2.1.9 CanSignalUpdate

CanSignalUpdate updates the given LabVIEW signal (no CAN frame is transmitted in
the process).

11.1.2.1.10 CanConvertTime

CanConvertTime breaks down the given 64-bit time-stamp value into days, hours,
minutes, seconds and micro seconds.

Page 280 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Attachment

11.1.2.1.11 CanTimeGet

CanTimeGet gets current time stamp.

11.1.2.1.12 CanInfo

CanInfo returns the number of available CAN nets.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 281 of 289

Attachment

11.1.2.1.13 CanStatus

CanStatus returns several information for given project handle.

Page 282 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Bus Timing

Annex A: Bus Timing
A.1 Can Bit Timing

The ESDACC supports nominal bit rates between 10 kBit/s and 1000 kBit/s.

A CAN bit timing logic monitors the serial bus-line and performs sampling and adjustment of the
sample point by synchronizing on the start-bit edge and resynchronizing on the following edges.

According to the CAN specification /2/ the nominal bit time is split into four segments:

Each segment consists of a specific number of time quanta. The length of one time quantum (tq),
which is the basic time unit of the bit time, is determined by the clock rate (CAN_CLK) of the CAN
controller and a Baud Rate Prescaler. Apart from the fixed length of the synchronization segment,
the time quanta of each segment are programmable.

Parameter Description

Sync_Seg The edges of the bus level are expected to occur within the Synchronization
Segment. It has a fixed length of one time quantum (1 tq). If an edge occurs
outside of Sync_Seg, its distance is called the phase error of this edge. If the
edge occurs before Sync_Seg, the phase error is negative, else it is positive.

Prop_Seq The Propagation Segment is used to compensate physical delay times
within the CAN network. These delay times consist of the signal propagation
time on the bus and the internal delay time of the CAN nodes.

Phase_Seg1 The Phase Buffer Segment 1 is used to compensate for positive phase
errors and may be lengthened during resynchronization. The end of this
segment defines the Sample Point (SP).

Phase_Seq2 The Phase Buffer Segment 2 is used to compensate for negative phase
errors and may be shortened during resynchronization.

Synchronization
Jump Width

The Synchronization Jump Width (SJW) defines an upper bound to the
amount of lengthening or shortening of the bit segments in the respective
Phase Buffer Segments.

Table 36: CAN Bit Time Parameters

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 283 of 289

Figure 20: CAN Nominal Bit Time

Bus Timing

A.2 ESDACC Bus Timing Register for CAN CC

The ESDACC BTR Register is shown in the figure below and described in table 37.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved SJW Reserved TS2 Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TS1 DID Reserved BRP

Bit Field Description

31..27 Reserved

26..25 SJW Synchronization Jump Width. The actual SJW value used for the
synchronization will be the programmed SJW value + 1. According to /1/ the
programmed SJW value must not exceed the time quanta assigned to the
Phase Buffer Segment 1.

24..23 Reserved

22..20 TS2 Time segment after the sample point. The actual TS2 value used for the bit
timing will be the programmed TS2 value + 1. According to /1/ the
minimum value of TS2 is the configured SJW.

19..16 Reserved

15..12 TS1 Time segment before the sample point covering the Propagation Segment
and the Phase Buffer Segment 1. The actual TS1 value used for the bit
timing will be the programmed TS1 value + 1.

11 DID* Disable Implicit Divider.
0h = Enable implicit divider of CAN_CLK.
1h = Disable implicit divider of CAN_CLK.

10..8 Reserved

7..0 BRP Baud Rate Prescaler. Value which is divided by CAN controller clock rate
(CAN_CLK) in Hz for generating the bit time quantum (tq). The CAN
Nominal Bit Time (see picture Error: Reference source not found) is built up
from a multiple of this quantum.
Note: Without DID (CAN_CLK/2) is used for tq otherwise CAN_CLK.

Table 37: ESDACC Bus Timing Register

* Supported since ESDCACC version 00.53
Page 284 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Bus Timing

The CAN bit time may be programmed in the range of 4 to 25 time quanta. The CAN time quantum
may be programmed in the range from 1 to 256 CAN_CLK periods (2 to 128 CAN_CLK periods for
implementations without DID support).

The following formulas are used for calculating the CAN bit rate:

A.3 ESDACC Bus Timing Register for CAN FD

With the introduction of canSetBaudrateX() and the possibility to define the bit timing register in a
CAN controller independent, canonical way it is not necessary to describe the internal register
layout of the ESDACC bit rate register in the CAN FD operation mode.

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 285 of 289

tq = (2 * BRP) / CAN_CLK with DID = 0
- OR -

tq = BRP / CAN_CLK with DID = 1

tBS1 = tq * (TS1 + 1)
tBS2 = tq * (TS2 + 1)
NominalBitTime = tq + tBS1 + tBS2 = tq * (3 + TS1 + TS2)
CAN Baudrate = 1 / NominalBitTime

Bus Error Code

Annex B: Bus Error Code

B.1 SJA1000 and ESDACC

For detailed bus diagnostic the ESDACC implements a superset of the NXP SJA1000 (see /5/) Bus
Error Code which contains information about the error type (see chapter 3.2), the location in the
CAN message bit stream and the information if the error was detected by the CAN controller during
the transmission or reception of CAN data.

The table below contains an overview on the byte layout.

Bit Description Details

7

Error Code
(Class)

00 = Bit Error
01 = Form Error
10 = Stuff Error
11 = Other Error

6

5
Direction

1 = Error during reception
0 = Error during transmission

4

Bit Stream
Position

Position in the bit stream of the CAN frame as the error was
detected. Refer to table 39 for further details. 3

2

1

0

Table 38: Bus Error Code

The knowledge of the error class and the position within the CAN bit stream in combination with
the I/O direction makes a detailed error analysis possible. The following two tables contain an
overview of possible error indications, the effect on the respective error counter and a description
of the error reason separated for occurrence during frame reception and transmission.

Page 286 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Bus Error Code

Type Bit 0..4 Bit position Cnt Description

Stuff 0 0 0 1 0 ID.28 to ID.21 +1 More than 5 consecutive bits with same
level received0 0 1 1 0 ID.20 to ID.18

0 0 1 0 0 SRR Bit

0 0 1 0 1 IDE Bit

0 0 1 1 1 ID.17 to ID.13

0 1 1 1 1 ID.12 to ID.5

0 1 1 1 0 ID.4 to ID.0

0 1 1 0 0 RTR Bit

0 1 1 0 1 Reserved bit 1

0 1 0 0 1 Reserved bit 0

0 1 0 1 1 Data length code

0 1 0 1 0 Data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 CRC delimiter

1 1 1 0 1 Reserved bit 0 (FD)

1 1 1 1 0 BRS Bit

1 1 1 1 1 ESI Bit

Form 1 1 0 0 0 CRC delimiter +1 Rx dominant

1 1 0 1 1 Acknowledge delimiter Rx dominant
→ Indication of a CRC error

1 1 0 1 0 End of frame Rx dominant within first 6 bits

1 0 1 1 1 Error delimiter Rx dominant within first 7 bits

Bit 1 1 0 0 1 Acknowledge slot +1 Rx recessive but should be dominant
→ Transmitter can’t write dominant bit1 0 0 0 1 Active error flag +8

1 1 1 0 0 Overload flag +8

Other 1 1 0 1 0 End of frame +0 Rx dominant in last bit
→ Data retransmission is possible

1 0 0 1 0 Intermission +0 Rx dominant
→ Overload flag will be sent by receiver

1 0 0 1 1 Tolerate dominant bits +8 Rx dominant in first bit upon error flag or
for more than 7 bits upon error or
overload flag

1 0 1 1 1 Error delimiter +0 Rx dominant in last bit of delimiter
→ Overload flag will be sent by receiver

1 0 1 0 0 Stuff Count

Table 39: Error detection and indication during reception

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 287 of 289

Bus Error Code

Type Bit 0..4 Bit position Cnt Description

Bit 0 0 0 1 1 Start of Frame +8 Failed to write dominant bit
→ Rx is recessive.0 0 0 1 0 ID.28 to ID.21

0 0 1 1 0 ID.20 to ID.18

0 0 1 0 0 SRR Bit

0 0 1 0 1 IDE Bit

0 0 1 1 1 ID.17 to ID.13

0 1 1 1 1 ID.12 to ID.5

0 1 1 1 0 ID.4 to ID.0

0 1 1 0 0 RTR Bit

0 1 1 0 1 Reserved bit 1

0 1 0 0 1 Reserved bit 0

0 1 0 1 1 Data length code

0 1 0 1 0 Data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 Active error

1 1 1 0 0 Overload flag

Stuff 0 0 0 1 0 ID.28 to ID.21 +1 Rx dominant

0 0 1 1 0 ID.20 to ID.18 Rx dominant
→ Indication of a CRC error

0 0 1 0 0 SRR Bit Rx dominant within first 6 bits

1 0 1 1 1 Error delimiter Rx dominant within first 7 bits

0 0 1 0 1 IDE Bit

0 0 1 1 1 ID.17 to ID.13

0 1 1 1 1 ID.12 to ID.5

0 1 1 1 0 ID.4 to ID.0

0 1 1 0 0 RTR Bit

Bit 1 1 0 0 1 Acknowledge slot +1 Rx recessive but should be dominant
→ Transmitter can’t write dominant bit1 0 0 0 1 Active error flag +8

1 1 1 0 0 Overload flag +8

Other 1 1 0 1 0 End of frame +0 Rx dominant in last bit
→ Data retransmission is possible

1 0 0 1 0 Intermission +0 Rx dominant
→ Overload flag will be sent by receiver

1 0 0 1 1 Tolerate dominant bits +8 Rx dominant in first bit upon error flag or
for more than 7 bits upon error or
overload flag

1 0 1 1 1 Error delimiter +0 Rx dominant in last bit of delimiter
→ Overload flag will be sent by receiver

1 0 1 1 0 Passive error flag

Page 288 of 289 Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 NTCAN

Bus Error Code

Type Bit 0..4 Bit position Cnt Description

1 0 1 0 0 Stuff Count

1 1 1 0 1 Reserved Bit 0 (FD)

1 1 1 1 0 BRS Bit

1 1 1 1 1 ESI Bit

Table 40: Error detection and indication during transmission

NTCAN Application Developers Manual • Doc. No.: C.2001.21 / Rev. 5.8 Page 289 of 289

	1. Introduction
	1.1 Scope
	1.2 Overview
	1.3 Terminology
	1.4 CAN FD
	1.4.1 In a nutshell
	1.4.2 Integration and Migration

	1.5 LIN
	1.6 Features

	2. NTCAN-API and Device Driver
	2.1 Abstraction Layer
	2.2 Driver History
	2.3 Implementation Details Overview
	2.3.1 Operating System Integration
	2.3.2 Interaction
	2.3.3 CAN Bit Rate Configuration
	2.3.4 Extended Features

	3. CAN Communication with NTCAN-API
	3.1 Overview
	3.2 CAN Errors and Fault Confinement
	3.3 Bit Rate Configuration
	3.3.1 Overview
	3.3.2 Listen-Only Mode
	3.3.3 Self Test Mode
	3.3.4 Triple Sampling Mode
	3.3.5 Transmit Pause
	3.3.6 Disable Automatic Retransmission (DAR) Mode
	3.3.7 Automatic Bit Rate Detection
	3.3.8 Smart Disconnect

	3.4 NTCAN-ID and Structures of Data Exchange
	3.5 Interaction
	3.6 Bus Diagnostic
	3.6.1 Basic Support
	3.6.2 Extended Support

	3.7 NTCAN Events
	3.7.1 Event types
	3.7.2 Reception
	3.7.3 Trigger

	3.8 Acceptance Filtering
	3.8.1 Message Type Filter
	3.8.2 Basic ID Filter
	3.8.2.1 First Filter Stage
	3.8.2.2 Second Filter Stage
	3.8.2.3 Flow Chart

	3.8.3 Smart ID Filter
	3.8.3.1 First Filter Stage
	3.8.3.2 Second Filter Stage
	3.8.3.3 Flow Chart

	3.9 Timestamps
	3.9.1 Implementation
	3.9.2 Usage

	3.10 FIFO Mode
	3.10.1 Overview
	3.10.2 Reception and Transmission of CAN-Frames

	3.11 Rx Object Mode
	3.11.1 Overview
	3.11.2 Reception of CAN Frames

	3.12 Tx Object Mode
	3.12.1 Scheduling Mode
	3.12.2 Autoanswer Mode
	3.12.2.1 Use case
	3.12.2.2 Configuration

	3.13 Error Injection
	3.13.1 Overview
	3.13.2 Usage

	3.14 Timestamped TX
	3.14.1 Overview
	3.14.2 General rules and behaviour
	3.14.3 Timestamped TX via canSendT() and canWriteT()
	3.14.4 High priority TX FIFO
	3.14.5 TX Object mode scheduling
	3.14.6 Frame timeout

	3.15 Transmitter Delay Compensation (TDC)
	3.15.1 Overview
	3.15.2 SSP Configuration
	3.15.2.1 TDC Automatic Mode
	3.15.2.2 TDC Manual Mode
	3.15.2.3 TDC Mode Parameters

	3.16 Switchable Bus Termination
	3.16.1 Overview
	3.16.2 Usage

	3.17 GPIO Support
	3.17.1 Overview
	3.17.2 Polling mode
	3.17.3 Event based mode

	3.18 Operating System Support

	4. API Reference
	4.1 Initialization and Cleanup
	4.1.1 canOpen
	4.1.2 canClose

	4.2 Configuration
	4.2.1 canSetBaudrate
	4.2.2 canGetBaudrate
	4.2.3 canSetBaudrateX
	4.2.4 canGetBaudrateX
	4.2.5 canIdAdd
	4.2.6 canIdRegionAdd
	4.2.7 canIdDelete
	4.2.8 canIdRegionDelete
	4.2.9 canIoctl

	4.3 Receiving CAN messages
	4.3.1 canTake
	4.3.2 canTakeT
	4.3.3 canTakeX
	4.3.4 canRead
	4.3.5 canReadT
	4.3.6 canReadX

	4.4 Transmitting CAN messages
	4.4.1 canSend
	4.4.2 canSendT
	4.4.3 canSendX
	4.4.4 canWrite
	4.4.5 canWriteT
	4.4.6 canWriteX

	4.5 Miscellaneous functions
	4.5.1 canStatus
	4.5.2 canGetOverlappedResult
	4.5.3 canGetOverlappedResultT
	4.5.4 canGetOverlappedResultX
	4.5.5 canFormatError
	4.5.6 canFormatEvent
	4.5.7 canFormatFrame

	5. Macros
	5.1 NTCAN_DATASIZE_TO_DLC
	5.2 NTCAN_DLC
	5.3 NTCAN_DLC_AND_TYPE
	5.4 NTCAN_GET_BOARD_STATUS
	5.5 NTCAN_GET_CTRL_TYPE
	5.6 NTCAN_GET_TDC_FILTER
	5.7 NTCAN_GET_TDC_MODE
	5.8 NTCAN_GET_TDC_SSPO
	5.9 NTCAN_GET_TDC_SSPS
	5.10 NTCAN_GET_TDC_TD
	5.11 NTCAN_IS_FD
	5.12 NTCAN_IS_FD_WITHOUT_BRS
	5.13 NTCAN_IS_RTR
	5.14 NTCAN_IS_INTERACTION
	5.15 NTCAN_LEN_TO_DATASIZE
	5.16 NTCAN_SET_TDC

	6. Data Types
	6.1 Simple Data Types
	6.1.1 NTCAN_HANDLE
	6.1.2 NTCAN_RESULT

	6.2 Compound Data Types
	6.2.1 CAN_FRAME_STREAM
	6.2.2 CAN_IF_STATUS
	6.2.3 CMSG
	6.2.4 CMSG_T
	6.2.5 CMSG_X
	6.2.6 CMSG_FRAME
	6.2.7 CSCHED
	6.2.8 EV_BAUD_CHANGE
	6.2.9 EV_CAN_ERROR
	6.2.10 EV_CAN_ERROR_EXT
	6.2.11 EV_GPIO_DATA
	6.2.12 EVMSG
	6.2.13 EVMSG_T
	6.2.14 EVMSG_X
	6.2.15 NTCAN_BAUDRATE_CFG
	6.2.16 NTCAN_BAUDRATE_X
	6.2.17 NTCAN_BITRATE
	6.2.18 NTCAN_BUS_STATISTIC
	6.2.19 NTCAN_CTRL_STATE
	6.2.20 NTCAN_EEI_STATUS
	6.2.21 NTCAN_EEI_UNIT
	6.2.22 NTCAN_FORMATEVENT_PARAMS
	6.2.23 NTCAN_FILTER_MASK
	6.2.24 NTCAN_FRAME_COUNT
	6.2.25 NTCAN_GPIO_CFG
	6.2.26 NTCAN_INFO
	6.2.27 NTCAN_TDC_CFG

	7. Return Codes
	7.1 General Return Codes
	7.2 Specific Return Values of the EtherCAN Driver

	8. Example C Source
	8.1 Receiving messages (CAN CC /FIFO Mode)
	8.2 Receiving messages (CAN CC and CAN FD / FIFO Mode)
	8.3 Receiving Messages (CAN CC / Object Mode)
	8.4 Transmitting messages (CAN CC)
	8.5 Transmitting messages (CAN FD)
	8.6 Timestamped TX messages (CAN CC)
	8.7 Timestamped TX messages (CAN FD)
	8.8 Scheduling messages (CAN CC)

	9. CLI Application canTest
	10. Application Development
	10.1 CAN SDK for Windows
	10.1.1 GUI Tools
	10.1.2 Programming Language Support & Language Bindings

	11. Attachment
	11.1 esd electronics NTCAN Programming with LabVIEW
	11.1.1 Wrapper VIs for direct use of the esd electronics NTCAN API
	11.1.1.1 Initialization and Cleanup
	11.1.1.1.1 canOpen
	11.1.1.1.2 canClose

	11.1.1.2 Configuration
	11.1.1.2.1 canSetBaudrate
	11.1.1.2.2 canGetBaudrate
	11.1.1.2.3 canIdAdd
	11.1.1.2.4 canIdDelete
	11.1.1.2.5 canIoctl

	11.1.1.3 Receiving CAN messages
	11.1.1.3.1 canTake
	11.1.1.3.2 canTakeT
	11.1.1.3.3 canRead
	11.1.1.3.4 canReadT

	11.1.1.4 Transmitting CAN messages
	11.1.1.4.1 canSend
	11.1.1.4.2 canSendT
	11.1.1.4.3 canWrite
	11.1.1.4.4 canWriteT

	11.1.1.5 Miscellaneous functions
	11.1.1.5.1 canStatus
	11.1.1.5.2 canFormatError
	11.1.1.5.3 canFormatFrame

	11.1.2 LabVIEW signal based access to CAN
	11.1.2.1.1 CanProjectOpen
	11.1.2.1.2 CanProjectClose
	11.1.2.1.3 CanObjectPoll
	11.1.2.1.4 CanObjectSend
	11.1.2.1.5 CanTxObjectUpdate
	11.1.2.1.6 CanObjectTrigger
	11.1.2.1.7 CanSignalPoll
	11.1.2.1.8 CanSignalTrigger
	11.1.2.1.9 CanSignalUpdate
	11.1.2.1.10 CanConvertTime
	11.1.2.1.11 CanTimeGet
	11.1.2.1.12 CanInfo
	11.1.2.1.13 CanStatus

	Annex A: Bus Timing
	Annex B: Bus Error Code

