So

J1939

Stack and SDK for esd CAN Hardware

Software Manual

to Product C.1130.10,
C.1130.11, C.1130.15, C.1130.09

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 1 of 70

esd electronic system design gmbh

Vahrenwalder Str. 207 « 30165 Hannover « Germany
http://www.esd.eu « Fax: 0511/37 29 8-68
Phone: 0511/37 29 80 « International: +49-5 11-37 29 80

NOTE

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document, and assumes no
responsibility for any errors that may appear in this document. esd reserves the right to make
changes without notice to this, or any of its products, to improve reliability, performance or design.

esd assumes no responsibility for the use of any circuitry other than circuitry which is part of a
product of esd gmbh.

esd does not convey to the purchaser of the product described herein any license under the patent
rights of esd gmbh nor the rights of others.

esd electronic system design gmbh
Vahrenwalder Str. 207
30165 Hannover

Germany

Phone: +49-511-372 98-0
Fax: +49-511-372 98-68
E-mail: info@esd.eu
Internet: www.esd.eu

USA / Canada:

esd electronics Inc.
525 Bernardston Road

Suite 1

Greenfield, MA 01301

USA

Phone: +1-800-732-8006

Fax: +1-800-732-8093

E-mail: us-sales@esd-electronics.com
Internet: www.esd-electronics.us

Trademark Notices

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Page 2 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

mailto:info@esd.eu
http://www.esd-electronics.us/
mailto:us-sales@esd-electronics.com
http://www.esd.eu/

Document file: I\Texte\Doku\MANUALS\PROGRAM\CAN\J1939 SDK\CAN-J1939-Stack_Software_Manual_12.odt

Date of print: 2011-09-20

Software version (Obj): from Rev. 1.0.0
Software version (Src): | from Rev. 1.0.0

Document History
Technical changes are marked in the document history with an additional "!".

!| Revision | Chapter | Page Changes versus previous version Date
1.0 all all |First Version 2009-09-15
1, 3.1 |8, 23 | Added infos for Linux Version
1.0a 3.1 23 |Minor changes to Quick Start descriptions 2010-05-18
8 64 |Reworked Headers / Minor changes
1.1 - - |Released version. 2010-07-06
1.2 1 7-10 |Updated stack descriptions 2011-09-20

Technical details are subject to change without further notice.

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 3 of 70

This page is intentionally left blank.

Page 4 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Contents

1. €SA J1939 SDK CONIENLS.uiieniiitiie ettt e et et e e e s e e e e st s eaa e e saseanseneeneeassasansannen 7
1.1 Windows Object License for esd CAN hardWare............cooeuuiiiiiiieiie e 8
1.2 Linux Obiject License for esd CAN hardWare............coouoeeee oo 8
1.3 SOUICE LICENSE. ...ttt et e e et et e et e e e e e e e e e e e e e e e e eeeneeas 9
(I 7 AN N N oo £ 10

1.4.1 CANreal With J1939 PIUG IN....uuiiiieeiiiie e e e e e e e e e e e e e e e e e eeas 10
1.4.2 J1939 Device Simulator & IMONITOL.ccuiieieee e e 11

2. OVEIVIEW OF JT1O30. .. it e e et e e e e e et e e e e e e e ea e e e et e e eba e e eebaeenss 13
2.1 PhYSICAl LAYEE (J1939/ 10 ittt e et e e e e e e e e e e e e e e e aeeens 13
2.2 Network Management (J1939/8).cuun ettt e e e e e e e e e e e e e e e e enss 15

2.2 1 DEVICE NAMEo et e e e et e e et e e et e e e e e e e s e eaenanes 15
2.2.2 DeVIiCe AD D RE S S ... e 16
2.3 Message Format and Transport (J1939/21)......ccooiiiiiiiiicecee e e 18
2.3.1 Parameter Group NUMDBEr (PGIN)...... oo 18
2.3.2 Protocol Data Unit (PDU)......cooeeeeeeeeeee e e e e e e e e e e enaeenn 19
2.3.3 Message Types and Transport ProtOCOIS.covvvuiiiieiiieiee e 20
2.4 Application Layer (J1939/7X)....ccceeieeiiieeeeeeeee et e e e e e e e e e et e e e e e e e e e e e e e e e e e eaaa 21
I =YTo M A1) = o TP 22
I T I O TN 1o S = T 23
3.1.1 WINAOWS Al VEBISION. .. .cceeeeiiiieeeeeee e e e e e e e e et e e e e e e e e e e e e eeanas 23
R T I I [10 D =T o IV A=Y 110 o P 23
3.1.3 SOUICE COUE VEISION. ...uiiiteiieeieit ittt ettt et et e et e e e e e s ea e ea e ea e sa s b sanseneenes 23
B = 11110 [T USRI 24
3.2.1 Send PGN With CallDACK........ceeeeeeeeee e 24
3.2.2 Send PGN Without CAIIDACK...........coieeeiiiiee ettt e e e e e e e e e eanas 24
3.2.3 _setCallback PGNSENG.........cccoiiiiiiiiiiiiccee e e e e e e e e e e enans 25
3.2.4 |_setCallback PGNRECEIVEM.coouiiiieeee et e e eaaan 26
3.2.5 | _setCallback ClaiMEVENT.........ooou et e e 27
3.2.6 j_setCallback PGNANNOUNCE.uuutiiiiiiieeeaeeeeeeeeieeieeeeeeeeeeeeeeeaaeeaeeeeeeeannnaaeeaeeeeeees 28
3.2.7 j_setCallback ReqUESIRECEIVEM.........uuuuiiiiiiiiiiie et e 29
IR S N 070] 1010 (=1 (W AN o] o) 1= L1 o) o VA UT T 30

4. Data StrUCIUIE INAEX. oot 35
F o I = o= RS (003 U == 35

oI 1 (=0 [aTe [T 36
LT I 1TSS 1= R 36

6. Data Structure DOCUMENTALION. couniie et e e e e e e e e e e e e eaas 37
6.1 cb_ClaimEventInfo_t Struct REfEreNCe.......cccooeeiiiiiiiiecce e, 37
6.2 cb_DataReceivedInfo_t Struct REfErenCe.vvvveeiiiiiiiiiiiieee e 38
6.3 cb_DataSendInfo_t StruCt REFEIrENCE.ceuiiieiiiiiee e 40
6.4 cb_PGNANnouncelnfo_t Struct REIEIENCE.couniieeiiiii e 41
6.5 cb_RequestReceivedInfo_t Struct Reference............cccuuvviiiiiiiiiiiiii e 42
6.6 dataSendInNfo t StrUCt REFEIENCE.cen e e e e e aaan 43

7. File Documentation, Source Code VEISION.c.ueeuiie et e e e e e e 44
7.1 J1939CAN.N File REIEIENCE. ... e et e e e e aaeaas 44

7.1.1 Detailed DeSCrPLON.ii i e e e e e e e e 44
7.2 j1939defS.h File REFEIENCE........coeeeiiee e e e e e e e e e ees 45
VAV BB <) e=T 1Yo I BTl i o) ([0 o P T 45
7.2.2 Define DOCUMEBNTALION.ceeniiiei ittt e e e e e s e e e s s e e e st s s sansenen 45

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 5 of 70

7.3 1939Stack.n File REIEIENCE. ... e et e e eens 48

7.3.1 Detailed DESCIIDLION.ceeeee ettt e e e e e et e e et e e eeens 48

T.3.2 FUNCHIONS. . e e e e e 49

FAC RN 1Y, F=Te] (o TP 49

7.3.4 Typedef DOCUMENEAtION.eee e e enaann 50

7.3.5 FUNCEION DOCUMENEATION. ... eeiiieeeeee ettt e e et e e et e e e e e e e renaeenns 50

L TR I o =T VY=Y =1 o 1 1 PN 64
8.1 Defines N LIDrary VEISIONS.ttt e e e e e 64
8.2 Differences between library and Source Code VEISION.......ceuveueeeee e eaenen 64

S I (070 [TP 65
O, REIEIEINCE. ... oo e et 70

Page 6 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd J1939 SDK Contents

1. esd J1939 SDK Contents

The esd J1939 SDK is available in different forms:

Type

Properties

Order No.

J1939 Stack for Windows

J1939 Stack for Windows (object code, runtime
licence) for esd CAN hardware as Win32 library,
incl. CANreal, J1939 plug in, J1939 DSM, esd
CAN Windows driver licence, example source
code

C.1130.10

J1939 Stack for Linux

J1939 Stack for Linux (object code, runtime
licence) for esd CAN hardware as shared library
(32/64 bit), incl. J1939 DSM (32/64 bit), esd CAN
Linux driver licence, example source code

C.1130.11

J1939 Stack (Source Code)

J1939 Stack (source code, project licence) for
microcontrollers (SoC with CAN support)

C.1130.15

J1939 Starter Kit

J1939 Starter Kit CAN-USB/2 interface module,
complete wiring for two CAN nodes, incl. J1939
Stack for Windows (order no. C.1130.10)

C.1130.09

Manuals:

J1939-Stack ME

Software Manual in English
(this manual)

C.1130.21

Table 1: Order information

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2

Page 7 of 70

esd J1939 SDK Contents

1.1 Windows Object License for esd CAN hardware

Also called “Windows .dIl Version”, includes:
« Windows driver license
J1939 Stack DLL
CANreal with J1939 plug in
J1939 Device Simulator & Monitor (DSM)
Example source code

No CAN hardware specific code is required, the J1939 stack uses the esd NTCAN API to access
the hardware:

Application ~

by Customer

esd C.1130.10
(Linux: C.1130.11)

J <
esd C.1130.09

esd, e.g.:
CAN-USB/2,
CAN-PCI/400,

Fig. 1: Stack scheme, object license CAN‘PtCIe/ 200,
ClcC.

1.2 Linux Object License for esd CAN hardware

Also called “Linux .so Version”, includes:
Linux driver license
J1939 Stack shared library
J1939 Device Simulator & Monitor' (DSM)
Example source code

No CAN hardware specific code is required, the J1939 stack uses the esd NTCAN API to access
the hardware, see Fig. 1.

1 GTK+ application (Available on most desktop environments, such as GNOME, KDE, Xfce, etc.)
Page 8 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd J1939 SDK Contents

1.3 Source License

Also called “Source Code Version”, for embedded CPUs with CAN controller and timer
(SoC with CAN support), includes:

« J1939 Stack source code

+ Example source code

Features:
« Written in ANSI-C
+ Easy adaptation to other target systems due to well defined abstraction layer
« For big/little endian systems, CPU independent
+ Many settings can be adapted to the requirements of the application and the available
hardware resources by a simple configuration file at compile time, see section 7.2

Application -

by Customer

T esd C.1130.15

Customized CAN HAL

N by Cust
v y Customer or

as additional
Custom. hardware driver service by esd

CAN Hardware

Fig. 2: Stack scheme, source license
The stack's CAN HAL (a single .c file) has to be adapted according to your hardware.
This HAL basically consists of a few functions to receive and send CAN frames that have to be
implemented — as a help this file still contains the esd implementations that were used for the NXP

LPC2292 and Fujitsu MB90543 microcontrollers as well as the use of the esd NTCAN API.

As an additional service esd also offers the implementation for your specific hardware.

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 9 of 70

esd J1939 SDK Contents

1.4 CAN-Tools
1.4.1 CANreal with J1939 plug in

For Windows and esd CAN hardware only. CANreal is also included in esd's CAN SDK. See
documentation there. Features:

» Display and recording of CAN message frames with high resolution time stamps

« Protocol interpreter for J1939

- Supports message ID filtering

+ Multiple instances of the software on the same or different channels can run at the same
time

+ Supports transmission of user defined CAN message frames

The J1939 plug in adds several columns to the CANreal display that interpret the CAN Id, etc.:

i Net 0 | CAN PCI200 | 250.0 - CANreal ok

File CAM Send Help

Add/Delete ID Area

fram to 0000 <> Ou7FF ,—_| Pause Trigae
. _adds | {29 5Ds 5 Met New

<Del CE st | | Leg. | BN
= Baud rate: kBits
I IDs decimat v <29 Clear Exxit
id| an | L[a1 d2] da| 44| d5] d| d7| d8| Source | Raw PGM | Raw PGN Description | Dest | PGM_| PGN Deseription | Details Ext. Details
& D14EAFFE0 L 3 00 EE 00 128 59304 Request GLOBAL B0928 Address Claim Request For Addrez: Claimed
& O1SEEFFE0 L 8 90 EF E7 EE 00 &1 00 80 128 60928 Addiess Claim GLOBAL 50328 AddessClaim Device 0xB0003100EEE7EFAD: Addr. 128 Awvalable

send |2 [woasst CRIA Lenfs Dak[[[[[[[[cal

Fill: 200.0%) Bus:ok 5| [STARTED

Fig. 3: CANreal with J1939 plug in

For most PGNs even a data interpretation is available:

lj- Net 0 | CAN PCI200 | 250.0 - CANreal E]@

File CAM Send Help

i ArbitraryAddressCapable = 1
Add/Delete ID Area : IndustryGroup = 0 [Globall]
from to 0x000 <3 Ox7FF - , Pause VehicleSystemlnstance = 0
Add > : Het: — v :
’_ . ’_ = << 23-Bit-IDs »» = Function = 129
< Del] L FunctionInstance = 0
;I Baud rate: kBitfs | ECUInstance = 0
W <23 Clear ManufactursrCode = 1911
Ident_:ityNumber = £20093 .
id| an | L] a1 d2] da| 44| d5] d&| d7| da| Source | Raw PGM | Raw PGN Des VehicleSystem = 0 [Non-specific System]
& O14EAFFE0 L 3 00 EE 00 128 59904 Request GLOBALC BEO9Z8 Address Clam Hequest For Address Clamed
& OI9EEFFS0 L & 90 EF E7 EE 00 8 00 80 125 60928 Address Claim GLOBAL 60928 Address Claim Device 0xB0008100EEE7EFID: Addr. 128 Avaable

send |Z| ;[woasst TRIR Lenfs Dask[[[[[[[[ceal

Fill: 2(0.0%) Bus:ok Bl STARTED

Fig. 4: CANreal with J1939 plug in

Page 10 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd J1939 SDK Contents

1.4.2 J1939 Device Simulator & Monitor
This tool allows to monitor J1939 traffic and to create J1939 messages to act like a device.

« Simulates a J1939 ECU

« Multiple instances of the software on the same or different channels can run at the same
time

+ Monitors complete PGN traffic on the bus

+ Tx messages can be set up for cyclic transmission or for transmission on request only

« Transmission of PGN can be triggered manually

« Manually sending of requests

+ Log shows all user interaction and anomalies in the J1939 protocol parsing

+ Supported operating system: Windows, Linux (as GTK+ application)

™ 11939 Device Simulator, & Monitor
Prefensd Addiess [128 | [Suggest address | Name |0x80008100EEF039D1 Pioty |5 | '
Claimed Addiess | 128 ‘ [Claim] [Eannul clairn] [Suggest name j PG
[Request for Address Claimed | [Clear ECU list | Taiget @
Addr.. | Name SAC | Industry Group Wehicle Spstem | VWehicle Spstem Inst.. Function | Functionlnst.. | ECUlInst.. Manufactwrer.. = Identip Number &
230 0«10008300EG493469 N OnHighway Equ.. 0 1} 131 1] 0 ‘ectar Cantech 603241
23 0x00001300E843344D N Global a 0 19 0 0 Yector Cantech 603213
3 0:00000300E545344E N Global i} 0 3 1] 0 Wector Cantech B03214 3
a 0x00002600EB43344F N Global 1} 0 a8 1] 0 Wector Cantech 603215
n 0<00000900E849344B N Global o 0 9 o 0 ‘Wectar Cantech E03211 R
a AOnnnnOnnEaAnNAAAS nt PaTI a a o n o T AT = Y- T b
Filkered Address: | ‘ [Clear Monitor | [Sotby PGN | [St by source | [JAverage Intervals [Adda TXPG | [Delete TXPG | [LoadPGlist | | SavePGlist |
| Monitor | ™|
Addr... | Target | Prio PGN Twpe | Len Data Cnt Interval =
129 BROAD 4 256 [PF 1) Batd 16 01 0203 04 05 06 07 08 03 04 OB OC 0D A4 FF 55 2 24446ms
254 BROAD & 256 (PF 1) NaCK 0 1
i BROAD B 61441 (PF240PS1) PDO 8 00 00 00 00 00 01 0003 3380 93.9ms
3 BROAD 3 B1442(PF240P52) PDO 8 C00000FAFOO8 0400 33800 10.2ms
0 BROAD 3 B1443[PF240P53) PDO 8 0100000000 FC 00 FF 7960 48.Bms
1] BROAD 3 E1444 [PF 240PS 4) FDO g FO 0075 D007 00 FOOO 3380 98.2ms
3 BROAD B E1445 [PF 240 PS §) PDO g 80 000080 00 000000 3980 104ms
| BROAD B G1443(PF240PS9) PDO 8 00 00 00 00 00 0000 00 33800 10.2ms
il BROAD & 64364 [PF 263PS 196) PDO 8 03 00 00 FF FF FF FFFF 3380 99.5ms
3 BROAD 6 EG098(PF264PS 74) PDO 8 OF 00 00 00 FF FF FF FF 3380 104ms
1 BROAD 6 B5103(PF254PS79) PDO 8 C0 00 FF FF FF FF FF FF 3380 99.9mz
1] BROAD B B5188 [PF 254 PS 164) PDO g 00 00 00 00 00 00 00 00 398 1000ms
il BROAD B E5197 [PF254PS173) PDO 8 00 0000 00 00 DO 0000 3980 99.9ms
o BROAD & BE213[PF 254 PS 183) PDO g 00 FO 0000 FF FF FF FF 398 1000 e
1 BROAD 6 E5215(PF 254PS 191) PDO 8 00 00 00 00 00 000000 3380 99.5ms
1] BROAD B E5217 (PF254PS 193] PDO 8 00 00 00 00 00 0000 00 398 1000ms
i BROAD © B5226 [PF 254 PS 202) PDO g 00 FF 0000 00 00O FF FF 398 1000ms
3 BROAD & B5226 [PF 254 PS 202) PDO g 00 FF 00 00 00 00 FF FF 398 1004ms
1 BROAD B B5226 [FF 284 PS 202) PDO g 00 FF 0000 00 00 FF FF 398 996ms
a BROAD 6 65226 (PF 254PS 202) PDO 8 10 FF F1 00 00 01 FF FF 398 1004ms
0 BROAD B B5245(PF 254PS 221) PDO 8 00 00 00 3F FF FF FF FF 398 1000ms
0 BROAD B EG247 [FF 254 PS 223) PDO 8 00 00 00 00 00 0000 FO 1552 243ms o
Log
18:20:03 - Net 20: CAN_PCI200 Hw 041000 Py 020000 DRY 0x3800 DLL 024204 FEAT 0x07F2 A Net Net 20: CAN_PCI200 ~
18:20:03 - Net 21: CAN_PCI200 Hw 0x1000 Py 020000 DRY 0x3800 DLL 024204 FEAT 0x07F2) |
18:20:03 - Net 30: CAN_PCI331 Hw 0<1104 P/ 0<0C24 DRY 022503 DLL Ox4204 FEAT 020032
18:20:03 - Met 31: CAN_PCI33 Hw 0:1104 P! 040C24 DRY 022503 DLL 024204 FEAT 020032 Baudrate
18:20:29 - net 20 opened successhully 5 Stap
18:20:29 - Handle 0x00345F 18 Timestamp_frequency=0+7ED70220 250 kBt b I l
18:20:29 - Baudrate successfully set ta 0x00000004
18:20:29 - 2.0B ide added successfully Info
18:23:56 - Address Claim sent
18:24:22 - Owr address is requested, answering...
18:24:22 - Adchess Claim sent 2

Fig. 5: J1939 DSM

When it's running all claim messages are monitored and devices details are listed. All send PGN
data is listed, including those sent by transport protocol and to other devices. Also allows to send
own claim/cannot claim/PGN data messages. PGN data can be sent periodically and also by
different transport protocols.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 11 of 70

esd J1939 SDK Contents

Quick Start:

1.
2.

3,
4.

Select CAN net and baudrate and click start (lower right corner of the window)

Enter a “preferred address” and click “claim” (upper left) to send the “address claimed”

message. (On conflict another address is claimed automatically)

Now the software is known as a regular device in the J1939 network

Now you can, for example:

o Request list of all devices: click “Request for Address Claimed” (upper left). Device
list is updated for each device that answers with its address information

o Request a PGN: enter “PG” and “target” (upper right) and click “request”. All devices
offering that PGN should answer; seen in “Monitor” tab.

o Send own PGN: click “add a TX PG” (below device list) and enter desired data. Data is
sent periodically as entered. And also when requested by another device. And also by
appropriate transport protocol when requested (depending on request, to global or to
specific device)

Page 12 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Overview of J1939

2. Overview of J1939

SAE J1939 [SAE193900] is a Controller Area Network (CAN) [ISO11898] based protocol that has
been developed to provide a standard architecture by which multiple Electronic Control Units
(ECUs) on a (mostly light- or heavy-duty) vehicle can communicate. It is based on the extended
frame format (29-bit identifier) of the CAN 2.0B specification using a fixed baud rate of 250 Kbit/s.
This chapter is intended to introduce several J1939 terms which are necessary for an
understanding of the functional description of the J1939 Stack. For more details about the various
layers of the J1939 protocol you have to refer to the SAE J1939 documents:

e The physical layer (J1939/11 [SAE193911]) describes the electrical interface to the bus.

e The data link layer (J1939/21 [SAE193921]) describes the rules for constructing a
message, accessing the bus, and detecting transmission errors.

e The network layer (J1939/31 [SAE193931]) describes mechanisms and services to connect
several J1939 networks.

e The application layer (J1939/71 [SAE193971]and J1939/73) defines the specific data
contained within each message sent across the network.

e The network management layer (J1939/81 [SAE193981]) is concerned with the
management of source addresses and with the detection and reporting of network related
errors.

2.1 Physical Layer (J1939/11)

The physical layer of a J1939 network is based on [ISO11898]. For J1939 a shielded twisted pair
wire with a maximum length of 40 m is defined for the CAN communication. The CAN baud rate is
fixed to 250 Kbit/s and the maximum number of ECUs is limited to 30 for one segment. Several
segments can be connected using specialized interconnection ECUs which services are described
in [SAE193931].

The sophisticated fault confinement features of the CAN bus are fully supported. CAN nodes are
able to distinguish between permanent failure and temporary disturbances.

Within each CAN node an 8-bit transmit error counter and an 8-bit receive error counter are used.
If one of the five error types CRC error, stuff error, form error, bit error or Acknowledgement (ACK)
error is detected, the corresponding error counter is increased.

If a reception or transmission is completed successfully, the corresponding error counter is
decremented. Consequently permanent failures result in large counts, whereas temporary
disturbances result in small counts that recover back to zero in a running system.

If an error is detected during reception, the Rx error counter is increased by 1. The error counter is
increased by 8, if the first bit after transmission of the error flag is dominant, which suggests that
the error is not detected by other nodes.

The Tx error counter is always increased by 8, if an error is detected while the node is transmitting.
After a successful reception the Rx-error counter is decreased by 1 and after a successful
transmission the Tx error counter is decreased by 1. Thus only the error counters of a node will
increment rapidly, if a fault is local to this node.

Depending on the value of its error counters the node takes one of the three states error active,
error passive or bus off.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 13 of 70

Overview of J1939

Error Active:

Error Passive:

Bus-Off:

Regular operational state of the node, with both counts less than 128. In this
state the node can participate in usual communication. If it detects any error
during communication, an ERROR ACTIVE FLAG, consisting of 6 dominant bits,
is transmitted. This blocks the current transmission.

When either counter exceeds 127, the node is declared error passive. This
indicates that there is an abnormal level of errors. The node still participates in
transmission and reception, but it has an additional time delay after a message
transmission before it can initiate a new message transfer of its own. This extra
delay for the error passive node which is known as suspended transmission
results from transmission of 8 additional recessive bits at the end of the frame.
This means that an error passive node loses arbitration to any error active node
regardless of the priority of their Ids. When an error passive node detects an
error during communication, it transmits an ERROR PASSIVE FLAG consisting
of 6 recessive bits. These will not disturb the current transmission (assuming
another node is the transmitter) if the error turns out to be local to the error
passive node.

When the transmit error count exceeds 255 the node is declared bus off. This
indicates that the node has experienced consistent errors whilst transmitting.
This state restricts the node from sending any further transmission. The node will
eventually be re-enabled for transmission and become error active after it has
detected 128 occurrences of 11 consecutive recessive bits on the bus which
indicate periods of bus inactivity.

Page 14 of 70

Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 J1939

Overview of J1939

2.2 Network Management (J1939/81)

On a J1939 network each device has a unique device NAME and a unique device ADDRESS. This
section describes the relation between the device NAME and the device ADDRESS.

2.2.1 Device NAME

On a J1939 network every ECU has a unique 64-bit device NAME which contains information
about the vendor and the device function with the following format. For the fields with cursive
typeface values predefined by SAE in appendix B of [SAE193900] have to be used, the other fields
are manufacturer specific.

1 Bit 3 Bits 4 Bits 7 Bits 1 Bit 8 Bit 5 Bit 3 Bit 11 Bit 21 Bit
Arbitrary | Industry | Vehicle | Vehicle |Reserved| Function | Function ECU Manu- Identity
Address | Group | System | System Instance | Instance | facturer | Number
Capable Instance Code

Arbitrary Address Capable:

Industry Group:

Table 2: Format of J1939/81 device NAME

Vehicle System Instance:

Vehicle System:

Reserved:

Function:

Function Instance:

ECU Instance —

Manufacturer Code:

Identity Number —

Indicate the capability to solve address conflicts (see next
chapter). Set to 1 if the device is Arbitrary Address Capable,
set to O if it's Single Address Capable.

One of the predefined J1939 industry groups.

Instance number of a vehicle system to distinguish two or more
device with the same Vehicle System number in the same J1939
network.

The first instance is assigned to the instance number 0.

A subcomponent of a vehicle, that includes one or more J1939
segments and may be connected or disconnected from the
vehicle. A Vehicle System may be made of one or more functions.
The Vehicle System depends on the Industry Group definition.

This field is reserved for future use by SAE.

One of the predefined J1939 functions. The same function value
(upper 128 only) may mean different things for different Industry
Groups or Vehicle Systems.

Instance number of a function to distinguish two or more devices
with the same function number in the same J1939 network.
The first instance is assigned to the instance number 0.

Identify the ECU instance if multiple ECUs are involved in
performing a single function. Normally set to 0.

One of the predefined J1939 manufacturer codes.

A unique number which identifies the particular device in a
manufacturer specific way.

J1939

Software Manual ¢ Doc.-No.: C.1130.21 / Rev. 1.2

Page 15 of 70

Overview of J1939

2.2.2 Device ADDRESS

On a J1939 network every device uses an 8-bit unique ADDRESS which is embedded as source
and/or destination of a J1939 message.

The address numbers 0..253 are valid ECU addresses, address 254 is used as the Null Address
for ECUs which haven't claimed or failed to claim an address and 255 is used as the broadcast or
global address

Every device is assigned a Preferred Address at power-on from the range of the 254 possible
addresses in a J1939 network, according to the following recommended layout:

Address Preferred or Default Usage

0to 127 Reserved for ECU type specific predefinitions in appendix B of
[SAE193900].

128 to 247 |Reserved for industry specific ECU types.
248 to 253 Reserved for special ECU types.
254 Null Address

255 Broadcast Address
Table 3: Preferred Address Assignment

Before a device can use this address for communication it has to verify that this address isn't in
use by any other device by using one of the two possible Address Claiming strategies with the
services described in [SAE193981].

1. Forced Address Claim: Send the Address Claim message with the Preferred Address and
the device Name in it. Every active device on the network compares this ADDRESS with its
own already assigned ADDRESS and replies with an own Address Claim message if it has
a higher priority. The priority is derived from the unique device Name. The device with the
lower priority has to solve the address conflict.

2. Cooperative Address Claim: Send a Request for Address Claim message whereupon
every active device replies with its own Address Claim message which can be used by the
initiating device to select an ADDRESS which isn't already in use by another device.

Every time an ECU starts the address claim procedure, an address conflict may occur for the
initiating ECU or for an ECU which has already an assigned address because the initiating ECU
has a higher priority.

Page 16 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Overview of J1939

The capability to solve this address conflict divides J1939 device into two groups:

e Single Address Capable ECUs, which are not able to change their Address after the initial
successful assignment. This group can be divided into four sub-groups:

o Non-Configurable Address devices, which have a fixed address that can only be
changed by a firmware update.

o Service Configurable Address devices, whose address can only be changed in a
vendor specific way with proprietary tools.

o Command Configurable Address devices, which are able to change their address via
the Commanded Address message defined in [SAE193981] with the help of e.g.
another ECU.

o Self-Configurable Address devices, which choose their address based on an internal
algorithm during the initial address claim procedure but which are unable to reclaim an
address.

e Arbitrary Address Capable ECUs, which are able to claim an address during the initial

address claim procedure and later on if it's necessary to reclaim an address because of a
conflict.
To give Arbitrary Address Capable devices the possibility not to claim the already assigned
address of a Single Address Capable device, even if it has the higher priority, the capability
to solve address conflicts is also indicated in the device NAME (see previous chapter) and
an Arbitrary Address Capable device can claim an unused address if it supports the
cooperative address claim method described above.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 17 of 70

Overview of J1939

2.3 Message Format and Transport (J1939/21)

On a J1939 network the content of each message is described by its Parameter Group (PG),
independent of the message type (command, requests, service specific, etc.) and the message
length.

Parameter Groups for management and control of the network are defined in [SAE193921],
[SAE193931] and [SAE193981]. Besides vendor specific PGs most of communication in a vehicle
is based on application specific PGs which are defined in [SAE193971].

2.3.1 Parameter Group Number (PGN)

Each PG is assigned a unique Parameter Group Number (PGN). The PGN is represented by a 24-
bit value with the following format, where only 18 bits are in use:

6 Bit 1 Bit 1 Bit 8 Bit 8 Bit

0 Reserved Data Page (DP) |PDU Format (PF) |PDU Specific (PS)
Table 4: Format of the Parameter Group Number (PGN)

Reserved: This field is reserved for future use by SAE.

Data Page: Bit to select one of the two possible data pages for PGN.
At the moment only PGNs for page 0 are defined.

PDU Format: Defines the the format of the Process Data Unit (PDU),described below,
used for communication of this PG.

PDU Specific: Defines a PDU specific parameter that depends on the PDU format of the PG.

The J1939 distinguishes between two types of PGNs:

e Specific PGNs for Parameter Groups that are directed to a specific device in a peer-to-peer
manner. For these PGNs the PF field is smaller than 240 and the PS field is set to 0.

e Global PGNs for Parameter Groups which are directed to all devices in a broadcast
manner. For these PGNs the PF field is greater than 239 and the PS field is part of the
PGN.

This PGN structure allows a total number of 4336 PGNs (240 specific PGNs and 16 * 256 global
PGNSs) per Data Page or 8672 for both pages. That the majority of the PGNs is of the global type
shows that the J1939 network is based on (often unsolicited or periodic) broadcasts which gives
any device the possibility to use the PG data without an explicit request.

Page 18 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Overview of J1939

2.3.2 Protocol Data Unit (PDU)

J1939 messages are structured as Protocol Data Units (PDU) which consists of the seven fields
Priority, Reserved, Data Page, PDU Format, PDU specific, Source Address and data fields. These
fields encompass the complete PGN and all fields but the data are located in the 29-Bit of the CAN
identifier in Extended Frame Format, which means they are part of the arbitration process of the
CAN message on the bus:

3 Bit 1 Bit 1 Bit 8 Bit 8 Bit 8 Bit
Priorit Reserved Data Page PDU Format | PDU Specific Source
y (DP) (PF) (PS) Address (SA)
o Source
Priority Parameter Group Number (PGN) Address

Table 5: Structure of 29-Bit CAN Identifier

Priority: Priority of the message as 3-bit parameter. A value of 0 is the highest priority. The higher
priority is typically used for high-speed messages. PGNs defined in [SAE193971] is assigned a
default priority.

Reserved: This field is reserved for future use by SAE. It should always be set to 0.

Data Page: Bit used as data page selector.
At the moment all defined messages are defined in Data Page 0.

PDU Format: The PDU Format defines if this is a Specific PGN with a destination address (PDU1
Format with a PF value in the range from 0 to 239) which is transmitted peer-to-peer
or a Global PGN (PDU2 format with a PF value in the range from 240 to 255) which
is transmitted in a broadcast manner.

PDU Specific: Defines a PDU Specific parameter that depends on the PDU format of the PG.

e PDU1 Format:
The PF field contains the Destination Address (DA).
PDU1 Format messages can be requested or send as unsolicited messages.

e PDU2 Format:
The PF field contains the Group Extension (GE), which expands the number of
possible broadcast PGs that can be represented by the PF . PDU2 Format
messages can be requested or send as unsolicited messages.

Source Address:
Defines the address of the ECU transmitting this PDU. Because every ECU claims
an individual address, this field guarantees the CAN bus related requirement that
the identifier of a message is unique.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 19 of 70

Overview of J1939

2.3.3 Message Types and Transport Protocols

J1939 defines the following five message types:

1.

COMMAND: Send a PDU to a specific device or as broadcast to command to perform a
certain action based on the PGN of this PDU. The data fields of this PDU contain the
commanded data.

REQUEST: Send a PDU to request information globally or from a specific device. The PGN
of this PDU has a predefined fixed value [SAE193921]and the PGN being requested is
contained in the first three bytes of the data fields.

BROADCAST/RESPONSE: Unsolicited broadcast of information or the response to a
COMMAND or REQUEST. The PDU contains the PGN of the of the parameter and the
data fields the parameter data.

ACKNOWLEDGEMENT: Positive or negative acknowledgement to a COMMAND or
REUEST as handshake mechanism between transmitting and receiving devices. The PGN
of this PDU has a predefined fixed value [SAE193921] and data fields contain protocol
specific data. Possible types of acknowledgement are the Positive Acknowledgement
(ACK), the Negative Acknowledgement (NACK) and Access Denied.

GROUP FUNCTION: This type of message is intended for groups of special functions
(network management functions, multi-packet transport functions, etc.). The PGN of this
PDU has group specific predefined fixed values [SAE193921] and the data fields are used
in a group specific way.

The majority of PGs in a J1939 network require only one PDU as the data fits into the 8 data bytes
of a CAN frame. PGs with 9 up to 1785 bytes of data are sent as multi-packet messages for which
[SAE193921] defines two types of transport protocols:

Broadcast Announce Message (TP_BAM): The message data is directed to all devices
on the J1939 network (global destination address) split up into multiple packets which are
sent as PDUs with predefined PGNs. The delay time between consecutive PDUs of a
TP_BAM message is device specific and shall be between 50 and 200 ms according to
[SAE193921].

Connection Management (TP_CM): The transmitting and receiving device create a virtual
peer-to-peer channel where the message data is transferred with a protocol supporting a
hand-shake mechanism. The message data is split up into multiple packets which are sent
as PDUs with predefined PGNs. According to [SAE193921] the originator of the transfer
has to guarantee a maximum time of 200 ms between consecutive packets.

Page 20 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Overview of J1939

2.4 Application Layer (J1939/7x)

The Application Layer [SAE193971] defines (industry specific) application parameter in detail. For
every parameter the following properties are defined:

Parameter name and description

A 19-bit parameter specific number, the so called Suspected Parameter Number (SPN)
The parameter type (measured value, status, etc.)

The parameter resolution (unit, scaling, offset)

The parameter range

The parameter data size (in bits or bytes)

In order to optimize the PDU and CAN bandwidth usage several SPNs are grouped in a PG based
on their function, transmission rate or subsystem. For this purpose the Application Layer
documents contain Parameter Group Definitions with the following properties:

A parameter group name

The PDU Format (PF) field (PDU1 Format or PDU2 Format)

The PDU Specific (PS) field according to the PDU format (Destination Address (DA) or
Group Extension (GE).

The Data Page (0 or 1).

The default priority of the message

The message transmission type (cyclic with transmission repetition rate or requested)

The data length in bytes.

The start bit position and length of every embedded SPN in the data field of the CAN frame.
The transport protocol to use if the data size of a single SPN exceeds 8 bytes or is variable.

The combination of PDU Format, PDU Specific and Data Page is the PGN assigned to this PG.
New parameter definitions have to be registered at SAE. Once a parameter has assigned an SPN
and this SPN is assigned to a PG this assignment isn't changed in future revisions of the
Application Layer document.

J1939

Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 21 of 70

esd j1939 Stack

3. esd j1939 Stack

This stack allows quick development of applications supporting the SAE J1939 protocol.

It offers especially:

Sending of PGN data

No need to care about BAM or RTS/CTS: done automatically depending on data size and
destination. Optionally done by callback, to send even larger amount of data with a
minimum of resource usage.

Automatic broadcasts: stack can automatically broadcast PGNs in a given interval.

Receiving PGN data

Done in convenient callback function for easy differentiating between sources and types
(complete data, data chunk, interruption etc.) Filtering by PG Number and/or source
address possible. Splitting to extra callback for Diagnostic Messages possible.

Network Management

Automatic handling of address claiming procedures. All four address configuration types
possible. (Non Configurable, Service Configurable, Command Configurable and Self
Configurable)

Multiple Devices

Even multiple devices in a single software instance are possible. Activated simply by
changing a value in a #define .Interface remains unchanged except for an additional
deviceNumber parameter in every function.

Configuration

Resource specific features controllable by defines:

Max number of possible simultaneously transport protocol transfers (Separated by
incoming and outgoing).

Max number of queued BAMs. (BAM queue can even be set to consider message's priority
when full)

Max number of automatic broadcasts.

Filter functions are excluded from build when defined to be unused.

Portability

ANSI C.

Tested under little- and big endian systems.

Simply adaptable to new systems usually just by adding some #includes and #defines.
(Examples exist)

Page 22 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd j1939 Stack

3.1 Quick Start

All code examples and documentations are also available in HTML format.
This allows much easier navigation and is therefore recommended.

Installation also contains a “demo” folder with Makefile etc.

See installation folder / start menu.

3.1.1 Windows .dll Version

Depends on the following installed files: (besides esd CAN hardware and its driver installed)

. j1939.h
. j1939.dIl
- j1939.lib

See j1939.h and Complete Application example (j1939demo.c) for available functions and their
usage.

3.1.2 Linux .so Version

Depends on the following installed files: (besides esd CAN hardware and its driver installed)

. j1939.h
- 1ibj1939.s0

See j1939.h and Complete Application example (j1939demo.c) for available functions and their
usage.

3.1.3 Source Code Version

Following files are needed by your application:

j1939defs.h
j1939stack.h
j1939stack.c
j1939CAN.h
j1939CAN.c

Follow the steps below:

1. Adjust j1939defs.h (Chapter 7.2) to your needs/system.

2. Adapt j1939CAN.c (Chapter 7.1) to your system (if not yet included).

3. See j1939stack.h (Chapter 7.3) and Complete Application example for available functions
and their usage. Note: Examples use an additional first parameter for device number
(always 0 here), see also J_NUM_DEVICES

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 23 of 70

esd j1939 Stack

3.2 Examples

3.2.1 Send PGN with callback

Send PGN 0x2000 with 9 data bytes and priority 6 to address 128:

j sendPGNByCallback (0, 128, 0x2000, 6, 9);

Stack gets data by callback:

void sendCallback (cb DataSendInfo t* sendInfos)
{

if (sendInfos->nBytes == 0) {
// stack has finished collecting data (for that pgn)
return;

}
switch (sendInfos->pgn) {

case 0x2000:
sendInfos->data = &dataForPGN2000[sendInfos->offset];

break;

3.2.2 Send PGN without callback

Broadcast PGN 0x1100 with 10 data bytes:

sendInfos.pgn = 0x1100;
sendInfos.data = &datal[0];
sendInfos.datalen = 10;
sendInfos.destAddr = ADR GLOBAL;
sendInfos.priority = 7;

j sendPGN (0, &sendInfos);
Where data to send and sendInfos are defined as:

const uint8 t data[1l0] = {...};

dataSendInfo t sendInfos;

Page 24 of 70 Software Manual ¢ Doc.-No.: C.1130.21/Rev. 1.2

J1939

esd j1939 Stack

3.2.3 j_setCallback_PGNSend

Set callback function:

J_setCallback PGNSend (0, &sendCallback);

Called function:

void sendCallback(cb _DataSendInfo t* sendInfos)
{
if (sendInfos->nBytes == 0) {
/* stack has finished collecting data */
/* could now free/update that data etc. */
return;

}

switch (sendInfos->pgn) {
/* stack needs new data for PGN: */

case 0x1000:
sendInfos->data = &dataToBroadcast[sendInfos->offset];
break;

case 0x3000:
sendInfos->data = &testData[sendInfos->offset];
break;

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2

Page 25 of 70

esd j1939 Stack

3.2.4 j_setCallback_PGNReceived

Set callback function:

J_setCallback PGNReceived (0, &receiveCallback) ;
Called function:

int8 t receiveCallback(cb DataReceivedInfo t* rcvInfos)
{
if (rcvInfos->status < 0) { /* multipacket transfer aborted */
receiveBufferActive = 0;
return 0; /* result is unused */

}
switch (rcvInfos->status) {

/* Complete message at once: */
case J_RCV_STATUS SHORT MSG:

debugPrint tntntn (LT INFO, "received short PGN ", rcvInfos->pgn,
rcvInfos->fromAddr) ;

(", rcvInfos->datalen, " bytes) from ",

switch (rcvInfos->pgn) {
/* handle PGNs */
}

return 0; /* result is unused */

/* Multipacket Transfer, completed: */
case J_RCV_STATUS LONG_MSG_COMPLETE:
receiveBufferActive = 0;

debugPrint tntntn (LT INFO, "received long PGN ", rcvInfos->pgn,
rcvIinfos->offset, " bytes) from ", rcvInfos->fromAddr) ;

switch (rcvInfos->pgn) {
/* handle PGNs */
}

return 0; /* result is unused */

/* Multipacket transfer, data chunk: */

/* only called for accepted transfers, needs callback set in j setCallback PGNAnnounce (). */
case J RCV_STATUS LONG MSG_CHUNK:
if (!'receiveBufferActive)
return 1; /* abort if buffer not 'activated' (should not happen...)*/

/* add chunk to receiveBuffer: */

if ((rcvInfos->offset + rcvInfos->datalen) <= RECEIVE BUFFER SIZE)
rcvInfos->datalen) ;

memcpy (&receiveBuffer[rcvInfos->offset], rcvInfos->data,

return 0; /* ok, continue transfer */

return 1; /* abort unhandled incoming PGN transfers */

Page 26 of 70 Software Manual ¢ Doc.-No.: C.1130.21/Rev. 1.2

J1939

esd j1939 Stack

3.2.5 j_setCallback_ClaimEvent

Set callback function:
J_setCallback ClaimEvent (0, &claimEvent);

Called function:

void claimEvent (cb ClaimEventInfo t* infos)
{
switch (infos->evtType) {
case CLAIM EVT CLAIMED:
ownAddress = infos->addr;
debugPrint tn (LT INFO, "own address is now ", ownAddress);

/* this is the best time to add autobroadcasts: */
autoBroadcastId = j addAutoBroadcast (0, 1000 * J TIMER TICKS PER MS, 0x1000, 6, 5);
break;

case CLAIM EVT FAILED:
ownAddress = ADR NULL;
debugPrint (LT WARN, "address claim failed/lost!");

infos->addr = ADR NULL; /* tell stack to give up (and send cannot claim) */
break;
case CLAIM EVT OTHER CLAIM:

/* another device claimed/lost its address */
break;

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 27 of 70

esd j1939 Stack

3.2.6 j_setCallback_PGNAnnounce

Set callback function:

J_setCallback PGNAnnounce (0, &receivedTPAnnounce) ;
Called function:

int8 t receivedTPAnnounce (cb PGNAnnouncelInfo t* infos)
{
if ((receiveBufferActive) || (infos->msgSize > RECEIVE BUFFER SIZE)) {
debugPrint tnt (LT WARN, "Denied TP/BAM from ", infos->fromAddr,
" due to busy receive buffer");

/* only receive buffer is busy: */
return 1; /* deny transfer */
} else {
receiveBufferActive = 1;
return 0; /* accept transfer */

The example receivedTPAnnounce() function shows handling with a single receive buffer. If you
have multiple buffers, you could differentiate them later by using the customData member of the
cb_PGNAnnouncelnfo_t struct:

You would set customData in the announce callback, and use it the receive callbacks.

Page 28 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd j1939 Stack

3.2.7 j_setCallback_RequestReceived

Set callback function:
J_setCallback RequestReceived (0, &receivedRequest);
Called function:

void receivedRequest (cb RequestReceivedInfo t* infos)

{

switch (infos->pgn) {
case 0x2000:
{
/* send PGN 0x2000 without callback: */
dataSendInfo t sendInfos;
sendInfos.data = testData;
sendInfos.datalen = 8;

sendInfos.destAddr = infos->toGlobal? ADR GLOBAL

sendInfos.pgn = 0x2000;

sendInfos.priority = 6;

j_sendPGN (0, &sendInfos);
}

break;

case 0x3000:
/* send PGN 0x3000 with callback: */
j_sendPGNByCallback (0, infos->toGlobal? ADR GLOBAL
break;

default:
if (! (infos->toGlobal))
1 sendNACK (0, infos->pgn);

void claimEvent (cb ClaimEventInfo t* infos)

{

switch (infos->evtType) {
case CLAIM EVT CLAIMED:
ownAddress = infos->addr;
debugPrint tn (LT_INFO,

/* this is the best time to add autobroadcasts: */

infos->fromAddr;

infos->fromAddr, 0x3000, 6, 10);

"own address is now ", ownAddress) ;

autoBroadcastId = j addAutoBroadcast (0, 1000 * J TIMER TICKS PER MS, 0x1000, 6, 5);

break;

case CLAIM EVT FAILED:
ownAddress = ADR NULL;
debugPrint (LT WARN, "address claim failed/lost!");

infos->addr = ADR NULL; /* tell stack to give up (and send cannot claim) */

break;

case CLAIM EVT OTHER CLAIM:
/* another device claimed/lost its address */
break;

J1939

Software Manual ¢ Doc.-No.: C.1130.21 / Rev. 1.2

Page 29 of 70

esd j1939 Stack

3.2.8 Complete Application

A small example application: (For latest version please check installation's demo folder)

Features:

Requirements:

Claims Address 100 (does not claim another on conflict)
Broadcasts PGN 0x1000 with 5 data bytes every 1000 ms
Sends PGN 0x2000 with 8 data bytes on request

Sends PGN 0x3000 with 10 data bytes (multipacket) on request

Uses extra callback for Diagnostic Messages. Pauses autobroadcast on DM13

Windows: j1939.h, j1939.lib and j1939.dll file
Linux: j1939.h and libj1939.so0 file

/‘k***********************/

/% =/
/% Test/Demonstration program to use the ESD J1939 stack %
/* =/
7= Copyright 2008 esd - electronic system design gmbh &/
/* __ */
/% 7
/* Filename: j1939demo.c =/
/* Date: 2008-07-01 =/
/% Language: ANSI-C &7
Vs Targetsystem: N/A 7
/% =/
/* Description: Demonstration of J1939 API */
/* __ */
/* Revision history: =/
/* __ */
/* 100,01jul08, * Initial release &y

/‘k******/

#include "3§1939.h"

#define OWN_PREF ADDRESS 100

static const uint8 t ownName [8] = {0x83, 0x95, OxFF, OxEE, 0x00,
0x82, 0x00, 0x80};

static uint8 t ownAddress = ADR NULL;

#define RECEIVE BUFFER SIZE 1785

static uint8 t receiveBuffer [RECEIVE BUFFER SIZE];

static uint8 t receiveBufferActive;

static const uint8 t dataToBroadcast[5] = {0x01, 0x02, 0x03, 0x04, 0x05};

static int8 t autoBroadcastId = =1;

static const uint8 t testData[1l0] = {0x10, 0x20, 0x30, 0x40, 0x50,
0x60, 0x70, 0x80, 0x90, O0xAO0};

void sendCallback (cb_DataSendInfo t* sendInfos);

int8 t receiveCallback (cb_DataReceivedInfo t* rcvInfos);

int8 t receiveDMCallback (cb_DataReceivedInfo t* rcvInfos);

void claimEvent (cb_ClaimEventInfo t* infos);

Page 30 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd j1939 Stack

int8_t receivedTPAnnounce (cb_PGNAnnounceInfo t* infos);
void receivedRequest (cb RequestReceivedInfo t* infos);

int main (void)
{
itimer t timeStart, timeNow;

/* set the callbacks: */

j setCallback RequestReceived (0, &receivedRequest);
j_setCallback PGNAnnounce (0, &receivedTPAnnounce) ;
j_setCallback ClaimEvent (0, &claimEvent);
j_setCallback PGNSend (0, &sendCallback);
j_setCallback PGNReceived (0, &receiveCallback);
j_setCallback DMReceived (0, &receiveDMCallback);

/* init the stack/device (which inits CAN itself): */

if (j_init(0, 0, J CAN BAUD DEFAULT, OWN PREF ADDRESS, ownName)) {
debugPrint (LT _ERROR, "j init() failed!");
return 1;

}

/* start main loop: */
timeStart = GET SYSTEM TICK();
while (1) {

timeNow = GET SYSTEM TICK() ;

can_receiveMessages|() ; /* receive new message for every used CAN net (here only net 0)*/
j processData (0, (jtimer t) (timeNow - timeStart));

SLEEP MS (1) ;
timeStart = timeNow;

}

return 0;

void sendCallback(cb_DataSendInfo t* sendInfos)
{
if (sendInfos->nBytes == 0) {
/* stack has finished collecting data */
/* could now free/update that data etc. */
return;

}

switch (sendInfos->pgn) {
/* stack needs new data for PGN: */

case 0x1000:

sendInfos->data = &dataToBroadcast[sendInfos->offset];
break;

case 0x3000:
sendInfos->data = &testData[sendInfos->offset];
break;

int8 t receiveCallback(cb DataReceivedInfo t* rcvInfos)

{

if (rcvInfos->status < 0) { /* multipacket transfer aborted */
receiveBufferActive = 0;
return 0; /* result is unused */

}
switch (rcvInfos->status) {

/* Complete message at once: */
case J _RCV_STATUS SHORT MSG:
debugPrint tntntn (LT INFO, "received short PGN ", rcvInfos->pgn, " (",
rcvInfos->datalen, " bytes) from ", rcvInfos->fromAddr);

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 31 of 70

esd j1939 Stack

switch (rcvInfos->pgn) {
/* handle PGNs */
}

return 0; /* result is unused */

/* Multipacket Transfer, completed: */
case J_RCV_STATUS_LONG_MSG_COMPLETE:

receiveBufferActive = 0;
debugPrint tntntn (LT INFO, "received long PGN ", rcvInfos->pgn, " (",
rcvIinfos->offset, " bytes) from ", rcvInfos->fromAddr);

switch (rcvInfos->pgn) {
/* handle PGNs */
}

return 0; /* result is unused */

/* Multipacket transfer, data chunk: */
/* only called for accepted transfers, needs callback set in

j setCallback PGNAnnounce (). */
case J_RCV_STATUS LONG_MSG_CHUNK:
if (!'receiveBufferActive)
return 1; /* abort if buffer not 'activated' (should not happen...)*/

/* add chunk to receiveBuffer: */
if ((rcvInfos->offset + rcvInfos->datalen) <= RECEIVE BUFFER SIZE)
memcpy (&receiveBuffer[rcvInfos->offset], rcvInfos->data, rcvInfos->datalen);

return 0; /* ok, continue transfer */

return 1; /* abort unhandled incoming PGN transfers */
}

/*
This callback example reacts on DM13: 'Stop Start Broadcast'
It's no example for a proper reaction on that message!, but an example
for j pauseAutoBroadcasts () and j unPauseAutoBroadcasts () functions.
=/
int8 t receiveDMCallback (cb DataReceivedInfo t* rcvInfos)
{
if (rcvInfos->status < 0) {
receiveBufferActive = 0;
return 0;

}

switch (rcvInfos->status) {
case 0:
debugPrint tntntn (LT INFO, "received short DM ", rcvInfos->pgn, " (",

rcvInfos->datalen, " bytes) from ", rcvInfos->fromAddr) ;
switch (rcvInfos->pgn) {

case PGN DM13: /* 'Stop Start Broadcast' (SAE J1939-73) */
if (rcvInfos->datalen == 8) {
switch (rcvInfos->data[0] & 0xCO) { /* Extract bits for
'Current Data Link' */

case 0x00: /* stop broadcast */
debugPrint (LT INFO, "Autobroadcasts paused.");
j_pauseAutoBroadcasts (0, 6000 * J TIMER TICKS PER MS);
break;

case 0x40: /* start broadcast */
debugPrint (LT INFO, "continue with Autobroadcasts");
j_unPauseAutoBroadcasts (0) ;
break;
}
}
break;

case PGN DM7: /* 'Command Non-continuously Monitored Test' (SAE J1939-73) */

if (rcvInfos->destAddr != ADR GLOBAL)
1 sendNACK (0, PGN DM7) ;
break;
}
return 0;

Page 32 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

esd j1939 Stack

case 1:
receiveBufferActive = 0;
debugPrint tntntn (LT INFO, "received long DM ", rcvInfos->pgn, " (",

rcvInfos->offset, " bytes) from ", rcvInfos->fromAddr) ;
return 0;

case 2:
if (!'receiveBufferActive)
return 1;

if ((rcvInfos->offset + rcvInfos->datalen) <= RECEIVE BUFFER SIZE)
memcpy (&receiveBuffer[rcvInfos->offset], rcvInfos->data, rcvInfos->datalen);

return 0;

}

return 1;

}

void receivedRequest (cb_RequestReceivedInfo t* infos)

{

switch (infos->pgn) {
case 0x2000:

{
/* send PGN 0x2000 without callback: */
dataSendInfo t sendInfos;
sendInfos.data = testData;
sendInfos.datalen = 8;
sendInfos.destAddr = infos->toGlobal? ADR GLOBAL : infos->fromAddr;
sendInfos.pgn = 0x2000;
sendInfos.priority = 6;
j_sendPGN (0, &sendInfos);

}

break;

case 0x3000:
/* send PGN 0x3000 with callback: */
j_sendPGNByCallback (0, infos->toGlobal? ADR GLOBAL
infos->fromAddr, 0x3000, 6, 10);
break;

default:
if (! (infos->toGlobal))
1 sendNACK (0, infos->pgn);

void claimEvent (cb ClaimEventInfo t* infos)

{

switch (infos->evtType) {
case CLAIM EVT CLAIMED:
ownAddress = infos->addr;
debugPrint tn (LT INFO, "own address is now ", ownAddress);

/* this is the best time to add autobroadcasts: */
autoBroadcastId = j addAutoBroadcast (0, 1000 * J TIMER TICKS PER MS, 0x1000, 6, 5);
break;

case CLAIM EVT FAILED:
ownAddress = ADR_NULL;
debugPrint (LT _WARN, "address claim failed/lost!");

infos->addr = ADR NULL; /* tell stack to give up (and send cannot claim) */
break;
case CLAIM EVT OTHER CLAIM:

/* another device claimed/lost its address */
break;

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 33 of 70

esd j1939 Stack

int8_t receivedTPAnnounce (cb_PGNAnnouncelInfo t* infos)

{

if ((receiveBufferActive) || (infos->msgSize > RECEIVE BUFFER SIZE)) {
debugPrint_ tnt (LT WARN, "Denied TP/BAM from ", infos->fromAddr, " due to busy receive

buffer") ;
/* only receive buffer is busy: */
return 1; /* deny transfer */
} else {
receiveBufferActive = 1;
return 0; /* accept transfer */

Page 34 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Data Structure Index

4. Data Structure Index

4.1 Data Structures

Here are the data structures with brief descriptions:

cb_ClaimEventinfo_t (Used for callback set in j_setCallback_ClaimEvent()) 37
cb_DataReceivedinfo_t (Used for callback set in j_setCallback_PGNReceived(),

j_setCallback_SpecialPGNReceived() and j_setCallback_DMReceived())c.......... 38
cb_DataSendInfo_t (Used for callback set in j_setCallback_ PGNSend())c.cccccerurnnne. 40

cb_PGNAnnouncelnfo_t (Used for callback set in j_setCallback_ PGNAnnounce()) 41
cb_RequestReceivedinfo_t (Used for callback set in j_setCallback_RequestReceived()) 42
dataSendinfo_t (Used to send data in j_SendPGN())cooviiiiiiiiii e 43

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 35 of 70

File Index

5. File Index
5.1 File List

Here is a list of all documented files with brief descriptions:

j1939CAN.h (esd j1939 Stack CAN headerfile)ccccooviiiiiiiiiiiiiiiec, 44
j1939defs.h (esd j1939 Stack definitions file)c.ccooiiiiiiiii 45
j1939stack.h (esd j1939 Stack headerfile) ..., 48

Page 36 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Data Structure Documentation

6. Data Structure Documentation

6.1 cb_ClaimEventinfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint8_t evtType
uint8_t addr

uint8_t deviceNum
uint8_t * deviceName

Field Documentation

uint8_t cb_ClaimEventinfo_t::evtType

Type of claim event: CLAIM EVT CLAIMED (own claim successful), CLAIM EVT FAILED
(own claim failed/lost) or CLAIM EVT OTHER CLAIM (another devices claimed or lost its
source address).

uint8_t cb_ClaimEventinfo_t::addr
Claimed or lost address. CLAIM EVT FAILED: changing addr will tell the stack to try to
claim that new address.

uint8_t cb_ClaimEventinfo_t::deviceNum

Number of calling device. (Only needed if]| NUM_DEVICES > 1)

uint8_t* cb_ClaimEventinfo_t::deviceName

Only used with CLAIM EVT OTHER CLAIM: Name of device that claimed/lost its address
(8 bytes).

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 37 of 70

Data Structure Documentation

6.2 cb_DataReceivedinfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint32_t pagn
uint32_t customData
int16_t offset

uint8_t fromAddr
uint8_t destAddr
uint8_t datalLen
int8 _t status

uint8_t deviceNum
uint8_t * data

Field Documentation

uint32_t cb_DataReceivedinfo_t::pgn

PGN.

uint32_t cb_DataReceivedinfo_t::customData

May be used by application, see j_setCallback_PGNAnnounce().

int16_t cb_DataReceivedinfo_t::offset

Offset of new data. (Only defined with status = 1)

uint8_t cb_DataReceivedinfo_t::fromAddr

Source address.

uint8_t cb_DataReceivedinfo_t::destAddr

Destination address (own address or ADR_GLOBAL).

Page 38 of 70 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2

J1939

Data Structure Documentation

uint8_t cb_DataReceivedinfo_t::datalLen

Length of (new) data. (Undefined with status < 1)

int8_t cb_DataReceivedinfo_t::status

J RCV_STATUS _SHORT MSG : Complete message at once,
J_RCV_STATUS _LONG_MSG_COMPLETE : Multipacket Transfer complete,
J_RCV_STATUS_LONG_MSG_CHUNK : Multipacket Transfer data Chunk,
<0 : Transfer aborted.

uint8_t cb_DataReceivedInfo_t::deviceNum

Number of calling device. (Only needed if] NUM_DEVICES > 1)

uint8_t* cb_DataReceivedinfo_t::data

Pointer to newly received data. (Undefined with status < 0)

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 39 of 70

Data Structure Documentation

6.3 cb_DataSendinfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint32_t pan
uint16_t offset
uint16_t nBytes
uint8_t destAddr
uint8_t deviceNum
const uint8_t * data

Field Documentation

uint32_t cb_DataSendInfo_t::pgn

PGN.

uint16_t cb_DataSendinfo_t::offset

Offset of requested data, set by stack.

uint16_t cb_DataSendInfo_t::nBytes

Stack sets number of bytes wanted, app 'answers' here with number of bytes available at
data . See Example in j_setCallback_PGNSend().

uint8_t cb_DataSendInfo_t::destAddr

Destination. (Useful to differentiate data when sending different PGN data to the
destinations)

uint8_t cb_DataSendInfo_t::deviceNum

Number of calling device. (Only needed if 5 NUM DEVICES > 1)

const uint8_t* cb_DataSendInfo_t::data

Pointer to requested data, must be set by application. (Set to NULL to abort sending)

Page 40 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Data Structure Documentation

6.4 cb_PGNAnNnnouncelnfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint32_t pgn
uint32_t customData
uint16_t msgSize
uint8_t fromAddr
uint8_t destAddr
uint8_t deviceNum

Field Documentation

uint32_t cb_PGNAnnounceinfo_t::pgn

PGN.

uint32_t cb_PGNAnnounceinfo_t::customData

May be used by application, see j_setCallback_PGNAnnounce().

uint16_t cb_ PGNAnnouncelnfo_t::msgSize

Size of pending message.

uint8_t cb_PGNAnnouncelnfo_t::fromAddr

Sender.

uint8_t cb_PGNAnnouncelnfo_t::destAddr

Destination.

uint8_t cb_PGNAnnouncelnfo_t::deviceNum

Number of calling device. (Only needed if]| NUM_DEVICES > 1)

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2

Page 41 of 70

Data Structure Documentation

6.5 cb_RequestReceivedinfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint32_t pan
uint8_t fromAddr
uint8_t toGlobal
uint8_t deviceNum

Field Documentation
uint32_t cb_RequestReceivedinfo_t::pgn

PGN.

uint8_t cb_RequestReceivedinfo_t::fromAddr

Sender.

uint8_t cb_RequestReceivedinfo_t::toGlobal

1 if destination of request is ADR_GLOBAL .

uint8_t cb_RequestReceivedinfo_t::deviceNum

Number of calling device. (Only needed if] NUM_DEVICES > 1)

Page 42 of 70 Software Manual ¢ Doc.-No.: C.1130.21/Rev. 1.2

J1939

Data Structure Documentation

6.6 dataSendinfo_t Struct Reference

#include <j1939stack.h>

Data Fields

uint32_t pan
uint16_t datalLen
uint8_t destAddr
uint8_t priority
const uint8_t * data

Field Documentation

uint32_t dataSendinfo_t::pgn

PGN.

uint16_t dataSendinfo_t::dataLen

Length.

uint8_t dataSendinfo_t::destAddr

Destination address or ADR_GLOBAL .

uint8_t dataSendinfo_t::priority

Priority. (0 to 7, where 0 is highest)

const uint8_t* dataSendInfo_t::data

Pointer to data to send.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 43 of 70

File Documentation, Source Code Version

7. File Documentation, Source Code Version

7.1 j1939CAN.h File Reference

7.1.1 Detailed Description

This file is the stacks interface to the CAN bus. For an implementation for own hardware (with the
Source Code Version) the 1939CAN.c file has to be adapted to contain the function described
by this header.

Page 44 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.2 j1939defs.h File Reference

7.2.1 Detailed Description

This file is used to set up several j1939 stack options or needed system includes. This file
and j1939CAN.c should be the only stack files that have to be altered by application developer.

Defines

J_DEBUG_OUTPUT

J_NUM_DEVICES
J_RECEIVE_ONLY_LISTED_PGN
J_RECEIVE_PGN_SOURCE_SPECIFIC
J_SPECIAL_CALLBACK_FOR_DM
J_TP_MAX_RCV_SOCKETS
J_TP_MAX_SEND_SOCKETS
J_TP_BAM_QUEUE_SIZE
J_TP_MAX_AUTO_BROADCASTS
J_TP_USE_PRIORITY_FOR_BAM_QUEUE
J_TIMER_SIZE_32_BIT
J_TIMER_TICKS_PER_MS
J_TEST_FOR_MESSAGES_FROM_SELF
J_CAN_NET_COUNT

J_USE_NTCAN_H
J_MSG_TX_BUFFER_SIZE

7.2.2 Define Documentation

7.2.21 J_DEBUG_OUTPUT

Set to 1 to enable debug output. The debugPrint functions are defined in this file and might
need additional implementations for your specific system. See also log types defines in this file.

7.2.2.2 J_NUM_DEVICES

Defines number of devices. If defined as greater than 1, then all functions need the device

number as additional (first) parameter. First device will be 0, second 1, and so on.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2

Page 45 of 70

File Documentation, Source Code Version

7.2.2.3 J_RECEIVE_ONLY_LISTED_PGN

If set to 0, the callback given in j_setCallback_PGNReceived() is called for any PGN, else
every PGN has its own callback, given in j_setCallback_SpecialPGNReceived(). Memory
usage: about 8 bytes per item.

7.2.2.4 J_RECEIVE_PGN_SOURCE_SPECIFIC

If set to 0, the callback given in j_setCallback PGNReceived() is called for PGNs from any
sender, else only for PGNs from addresses set in |_setPGNSourceAddressFilter().

Remarks:
Only incoming PGNs are filtered, not requests, etc.

7.2.2.5 J_SPECIAL_CALLBACK_FOR_DM
If set to 1, an extra callback for Diagnostic Messages (DM) is available.
Set by j_setCallback_DMReceived().

7.2.2.6 J_TP_MAX_RCV_SOCKETS

Max. number of multipacket transfers at a time as receiver (includes both methods: RTS/CTS
and BAM). Memory usage: about 24 bytes per item.

7.2.2.7 J_TP_MAX_SEND_SOCKETS

Max. number of multipacket transfers at a time as sender (only RTS/CTS transfers). Memory
usage: about 24 bytes per item.

7.2.2.8 J_TP_BAM_QUEUE_SIZE

Max. number of queued (only one at a time possible) BAM transfers . Memory usage: about
16 bytes per item.

7.2.2.9 J_TP_MAX_AUTO _BROADCASTS

Max. number of items in autobroadcast list for _addAutoBroadcast(). Memory usage: about 16
bytes per item.

Page 46 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.2.2.10 J_TP_USE_PRIORITY_FOR_BAM_QUEUE

If defined as 1 and BAM-queue is full, then an item in queue is deleted when adding an item
with better priority. If not needed set to 0 to save some cpu time.

7.2.211 J_TIMER_SIZE_32_BIT

If defined as 1, type of timer variables will be uint32 t,elseuintl6 t.

7.2.212 J_TIMER_TICKS_PER_MS

Defines the number of timer ticks within one millisecond.

7.2.213 J_TEST_FOR_MESSAGES_FROM_SELF
If j1939CAN.c is implemented so that own messages will also be received, then this needs to
be defined as 1.

7.2.2.14 J_CAN_NET_COUNT

Define as max used can net +1

7.2.2.15 J_USE_NTCAN_H

Set to 1 if j1939CAN.c should include/use esd's ntcan.h header. If that is not available, an own
implementation for receiving/sending can messages, etc. has to be done in j1939CAN.c

7.2.2.16 J_MSG_TX_BUFFER_SIZE

If defined as greater than 0 then TX messages are buffered when can_sendJMsg() fails. (Next
j_processData() call will retry sending them)

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 47 of 70

File Documentation, Source Code Version

7.3 j1939stack.h File Reference

7.3.1 Detailed Description

#finclude "J1939defs.h"

Data Structures

e struct cb_DataReceivedinfo_t
Used for callback set in |_setCallback_PGNReceived(),
| _setCallback_SpecialPGNReceived() and j_setCallback_DMReceived().

e struct cb_DataSendInfo_t
Used for callback set in |_setCallback_ PGNSend().
e struct cb_PGNAnnouncelnfo_t
Used for callback set in |_setCallback_PGNAnnounce().
e struct cb_RequestReceivedinfo_t
Used for callback set in j_setCallback RequestReceived().
e struct cb_ClaimEventinfo_t
Used for callback set in |_setCallback_ClaimEvent().

e struct dataSendInfo_t
Used to send data in j_sendPGN().

Macros

e | sendAcknowledgment
e | sendACK(pgn)
e | sendNACK(pgn)

Typedefs

e typedef uint32_t jtimer_t

Page 48 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.2 Functions

e int8 tj_sendPDU (const uint8 t priority, const uint8_t dp, const uint8_t pduFormat, const uint8_t
pduSpecific, const uint8_t datalLen, const uint8_t data0, const uint8_t data1, const uint8_t
data2, const uint8_t data3, const uint8_t data4, const uint8_t data5, const uint8_t data6,
const uint8_t data7)

e int8_tj compareNameTo (const uint8_t *otherName)

e int8_tj sendPGN (const dataSendinfo_t *sendInfos)

e int8_tj sendPGNByCallback (const uint8_t destAddr, const uint32_t pgn, const uint8_t priority, const
uint16_t datalLen)

e int8_tj_sendRequest (const uint8_t destAddr, const uint32_t pgn)

e int8_tj_sendRequestForAddressClaimed (const uint8_t destAddr)

e int8 tj_addAutoBroadcast (const jtimer_t interval, const uint32_t pgn, const uint8_t priority, const
uint16_t datalLen)

e void j_removeAutoBroadcast (const uint8_t id)

e void j_pauseAutoBroadcasts (const jtimer_t duration)

e void j_unPauseAutoBroadcasts ()

e int8_tj_init (const uint8_t canNetNum, const jcanbaud_t canBaudRate, const uint8_t autoClaimAddr,
const uint8_t *ownName)

e void |_finish ()

e void j_processData (const jtimer_t ticksDelta)

e void |_startAddrClaim (const uint8_t addr)

e void j_setCallback ClaimEvent (cb_ClaimEvent_t *function)

e void j_setCallback RequestReceived (cb_RequestReceived_t *function)

e void j_setCallback_ PGNAnnounce (cb_PGNAnnounce_t *function)

e void j_setCallback PGNSend (cb_PGNSend_t *function)

e void j_setCallback_PGNReceived (cb_ PGNReceived_t *function)

e int8 tj_setCallback_SpecialPGNReceived (uint32_t pgn, cb_ PGNReceived_t *function)

e void j_setPGNSourceAddressFilter (const uint8_t addr, const uint8_t allow)

e void |_setCallback DMReceived (cb_PGNReceived_t *function)

7.3.3 Macros

7.3.3.1 j_sendAcknowledgment(contrByte, groupFunct, pgn) j_sendPDU(6, 0, 232, 255, 8,
contrByte, groupFunct, OxFF, 0xFF, OxFF, pgn & OxFF, (pgn >> 8) & OxFF, (pgn >> 16) &

0xFF)

Sends an acknowledgement with specified control byte.

7.3.3.2 j_sendACK(pgn) j_sendAcknowledgment(0, 0, pgn)

Sends a positive acknowledgement (control byte = 0).

7.3.3.3 j_sendNACK(pgn) j_sendAcknowledgment(1, 0, pgn)

Sends a negative acknowledgement (control byte = 1).

J1939

Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 49 of 70

File Documentation, Source Code Version

7.3.4 Typedef Documentation

typedef uint32_t jtimer_t

Type of all timestamps, etc. See] TIMER_SIZE 32 BIT.

7.3.5 Function Documentation

7.3.5.1 int8_t j_sendPDU (const uint8_t priority, const uint8_t dp,

pduFormat, const uint8_t pduSpecific, const uint8_t dataLen, const uint8_t data0,

const uint8_t

const uint8_t data1, const uint8_t data2, const uint8_t data3, const uint8_t data4, const
uint8_t data5, const uint8_t data6, const uint8_t data7)

Description:

Sends a PDU. Almost all other functions/macros use this to send, therefore this should not

be needed directly.

Return values:

0 When successfully copied to sendqueue.

else Error.

Macros:

e | sendAcknowledgment()

e j_sendACK()
e j_sendNACK()

Remarks:

Fails without valid source address.

Page 50 of 70

Software Manual ¢ Doc.-No.: C.1130.21 / Rev. 1.2

J1939

File Documentation, Source Code Version

7.3.5.2 int8_t j_compareNameTo (const uint8_t * otherName)

Description:

Compares current own name to given other. Needed by stack for address claiming. App
could also need this to test for own name on receipt of 'Commanded Address' message.

Parameters:

otherName Pointer to other name (8 bytes).
Return values:

0 Names equal.
1 Other name has higher priority.
-1 Other name has lower priority.

7.3.5.3 int8_t j_sendPGN (const dataSendInfo_t * sendinfos)

Description:

Similar to j_sendPGNByCallback(). But here the data to send is given via pointer in
dataSendInfo_t structure. All data must be available there.

Therefore no callback is needed to get data, but 'finish callback' (see
j_setCallback_PGNSend()) for multipacket messages (>8 bytes) is called anyway.

Warning:
Make sure data does not change while sending multipacket messages.

See also:

e j_sendPGNByCallback()
e Example: Send PGN without callback

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 51 of 70

File Documentation, Source Code Version

7.3.5.4 int8_t j_sendPGNByCallback (const uint8_t destAddr, const uint32_t pgn, const
uint8_t priority, const uint16_t datalLen)

Description:

Sends a PGN while automatically deciding whether to use transport protocol or not. Data to
send is taken from application via callback set in j_setCallback_PGNSend().

Parameters:

destAddr Destination address or ADR GLOBAL.
pgn PGN.

priority Priority from 0 to 7, where 0 is highest.
datalLen Length of PGN data. (0 to 1785)

Return values:

0 On success.
else Error.

Remarks:
If dataLen <= 8 and PGN implies PDU2 Format, it is automatically broadcast.

See also:

e j_sendPGN()
e Example: Send PGN with callback

Page 52 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.5 int8_t j_sendRequest (const uint8_t destAddr, const uint32_t pgn)

Description:

Sends a request for PGN message.

Parameters:

destAddr Destination address or ADR_GLOBAL .
pgn Requested PGN.

Return values:

0 When successfully copied to sendqueue.
else Error.

Remarks:

To answer own global requests as well, the callback given to
j_setCallback_RequestReceived() is automatically called when destAddr == ADR_GLOBAL

7.3.5.6 int8_t j_sendRequestForAddressClaimed (const uint8_t destAddr)

Description:

Sends 'Request for Address Claimed' message to the given Address. Receiver then
broadcasts its name and address, which fires the callback set with
j_setCallback_ClaimEvent().

Parameters:

destAddr Address to get claimed message from. (Or ADR_GLOBAL to get infos from all
devices)

Remarks:

This Request is the only one which is allowed without valid source address. It's
automatically set to ADR NULL when current source address is not valid.
destAddr == ADR GLOBAL then the own 'Address Claimed' (or 'Cannot Claim')
message is sent automatically.

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 53 of 70

File Documentation, Source Code Version

7.3.5.7 int8_t j_addAutoBroadcast (const jtimer_t interval, const uint32_t pgn, const
uint8_t priority, const uint16_t datalLen)

Description:

Adds an item to the autobroadcast list. Data to send is taken from application via callback
set in j_setCallback_PGNSend().

Parameters:

interval Interval between the broadcasts in timer ticks . Max with 16 bit jtimer_t is 32768
(2"5), max for 32 bit jtimer_t is 2147483648 (2731).

pgn PGN.

priority Priority from 0 to 7, where 0 is highest.

datalen Data length.

Return values:

<0 Error.

>=0 Id. Needed for |_removeAutoBroadcast().

See also:

e | removeAutoBroadcast
e J TP _USE PRIORITY _FOR_BAM_QUEUE

Warning:
All autobroadcast items are deleted when source address is lost. Therefore all items should
be added when successfully claimed an address, see j_setCallback_ClaimEvent().

Remarks:

Minimum interval for multipacket messages is not checked by the stack. (Bear in mind that
there have to be at least 50 ms between the packets in multipacket messages)

Page 54 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.8 void j_removeAutoBroadcast (const uint8_t id)
Description:

Removes an item from the autobroadcast list.

Parameters:

id 1d of item to remove.
See also:

e j_addAutoBroadcast()

7.3.5.9 void j_pauseAutoBroadcasts (const jtimer_t duration)
Description:

Pauses all items in the autobroadcast list.

Parameters:

duration Duration in timer ticks .

Remarks:

e An active broadcast is not aborted/paused.

e A re-calling of this function within a pause will not append the new duration to the
existing. It just sets a new end time for the pause.

e The next broadcast time for every item in the list will be the end of the pause + its
interval.

7.3.5.10 void j_unPauseAutoBroadcasts ()
Description:

Used to continue auto broadcasts prior timeout set with j_pauseAutoBroadcasts().

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 55 of 70

File Documentation, Source Code Version

7.3.5.11 int8_t j_init (const uint8_t canNetNum, const jcanbaud_t canBaudRate, const
uint8_t autoClaimAddr, const uint8_t * ownName)

Description:

Initializes the stack and calls can_init(). Only after this is done (and the callbacks are set) all
other functions can be used. Returns 0 on success.

Might be called multiple times to change device name, but this will also:
e Abort all active multipacket transfers.

e Clear the autobroadcast list.

e Reset PGN receive source filter (if defined).

Parameters:

canNetNum CAN net number. See also J_CAN_NET COUNT.

canBaudRate CAN baudrate, usually] CAN BAUD DEFAULT. The predefined enum
values (J. CAN BAUD 10toJ CAN BAUD 1000) are only used for the esd ntcan library.
Other values may be defined to your j1939CAN.c implementation.

autoClaimAddr See Remarks.

ownName Pointer to own name. Data is copied (8 bytes).

See also:

e Example: Complete Application

Remarks:

If an autoClaimAddr other than ADR_NULL is given then the stack automatically claims
that address. If that fails (due to low priority for example) or finished successfully the
callback given with j_setCallback_ClaimEvent() is called.

The AAC bit in the name is ignored by the stack: it's up to the application to act in
compliance with that bit. (i.e. don't use the auto-claiming-another-address feature when the
name indicates that the device is not capable of that, or vice versa)

Warning:

Set callbacks in advance. In particular the mandatory callbacks: j_setCallback PGNSend()
and j_setCallback_PGNReceived().

Page 56 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.12 void j_finish ()
Description:
Mainly for closing can handle (if can_finish() is implemented). Also active transfers are
stopped etc.
7.3.5.13 void j_processData (const jtimer_t ticksDelta)
Description:

Main stack function. New CAN messages are processed here, pending messages are sent,
and so on.

Parameters:

ticksDelta Timer ticks since last call.

Prerequisites:

o j_init().
e | setCallback PGNReceived() or j_setCallback_ SpecialPGNReceived().
e | setCallback PGNSend().

See also:

e Example: Complete Application

Remarks:

Accuracy of all timed events (such as 50 ms waiting to send next packet) depend on the
fast regularly calling of this function.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 57 of 70

File Documentation, Source Code Version

7.3.5.14 void j_startAddrClaim (const uint8_t addr)
Description:

Sends 'Address Claimed Message' for the given address. All address contention is done
automatically. Result will be available to the callback set in j_setCallback ClaimEvent().

Use with addr = ADR _NULL to give up own address. The '‘Cannot Claim Address'
message is sent automatically then. (With pseudo random delay as described in J1939-81)

Parameters:
addr Address to claim.

See also:

e | setCallback ClaimEvent()

Remarks:

Not necessary with autoClaimAddr address given in j_init().
'Request for Address Claimed' message is not used before claiming, that has to be done
manually with the j_sendRequestForAddressClaimed() function.

7.3.5.15 void j_setCallback_ClaimEvent (cb_ClaimEvent_t * function)

Description:

Sets the callback function for claim events.
Parameters:

function The function to call.

See also:

e Example: j_setCallback_ClaimEvent

Page 58 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.16 void j_setCallback_RequestReceived (cb_RequestReceived_t * function)
Description:
Sets the callback function for incoming requests.
Parameters:
function The function to call.
Remarks:

Not called for 'Address Claimed' requests, these are answered automatically. Also not
called when currently no address claimed.

See also:

e Example: j_setCallback_RequestReceived

7.3.5.17 void j_setCallback_PGNAnnounce (cb_PGNAnnounce_t * function)
Description:

Sets the callback function for incoming BAM and CTS/RTS messages. There is decided
whether to accept that multipacket message or not.

Parameters:
function The function to call.

See also:

e Example: j_setCallback_PGNAnnounce

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 59 of 70

File Documentation, Source Code Version

7.3.5.18 void j_setCallback_PGNSend (cb_PGNSend_t * function)

Description:

Sets the callback function when the stack needs new data. That is when sending with
j_sendPGNByCallback() or j_addAutoBroadcast().

Parameters:

function The function to call.

See also:

e |_setCallback_PGNSend

Remarks:
To notice when stack has finished collecting data (for example to change/free that data) the

callback is also called then, with the callback struct's nBytes ==
(Also called 'finish callback")

Warning:

The 'finish callback' is called for every single transfer. When a transfer is started while
another is still active then two finish callbacks will be fired anyway.
Therefore you have to count the finish callbacks if you want to change the data there.

7.3.5.19 void j_setCallback_PGNReceived (cb_PGNReceived_t * function)
Description:
Sets the callback function for received PGN data.

Parameters:

function The function to call.

See also:

e j_setCallback_ PGNAnnounce()
e Example: j_setCallback_PGNReceived

Page 60 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.20 int8_t j_setCallback_SpecialPGNReceived (uint32_t pgn, cb_PGNReceived_t *
function)

Description:

This function is similar to j_setCallback_ PGNReceived().

But here the given callback is only called for a particular PGN. The maximum number of
that callbacks is defined with .

To remove a PGN: call this function with the function parameter set to NULL .

Parameters:

function The function to call.
pgn The PGN upon which receipt the function should be called.

Return values:

0 On success.
else Error (List full).

See also:

e |_setCallback_PGNReceived()

Remarks:

e This function is only available when J_RECEIVE_ONLY_LISTED_PGN is defined
greater than 0.

e It's optimized for adding all needed PGNs at system start. When many add/remove
operations are necessary while active it might need some tuning.

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 61 of 70

File Documentation, Source Code Version

7.3.5.21 void j_setPGNSourceAddressFilter (const uint8_t addr, const uint8_t allow)

Description:

Sets whether to receive PGNs from a particular address or not. Only available when
J_RECEIVE_PGN_SOURCE_SPECIFIC is defined. Default: allow all addresses.

Parameters:

addr Address to filter or ADR_GLOBAL to set filter for all addresses.
allow 1 : receive PGNs from addr , 0 : don't receive PGNs from addr .

See also:

e J_RECEIVE_PGN_SOURCE_SPECIFIC
e J RECEIVE_ONLY_LISTED_PGN

Remarks:
Has to be called after j_init().

Page 62 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

File Documentation, Source Code Version

7.3.5.22 void j_setCallback_DMReceived (cb_PGNReceived_t * function)

Description:

Identical to j_setCallback_PGNReceived() but only called for the Diagnostic Message (DM)
PGNs.

Parameters:

function The function to call.

Remarks:

e Only available when J_SPECIAL_CALLBACK_FOR_DM defined as 1.
e Callback set in j_setCallback_PGNReceived() is not called for DM then.
e Ignored when J_RECEIVE_ONLY_LISTED_PGN > 0.

See also:

e | setCallback PGNReceived()

Warning:

If J_SPECIAL_CALLBACK_FOR_DM is defined as 1 this callback is mandatory.

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 63 of 70

Library Versions

8. Library Versions

The header file j1939.h is used to access the library functions. Basically this file offers the same
Functions/Macros/Defines as described under “7.3 j1939stack.h File Reference“ and “7.2
j1939defs.h File Reference”

8.1 Defines in Library Versions
The .dll / .so file was compiled with the following values:

J_NUM_DEVICES =8
J_RECEIVE_ONLY_LISTED PGN =32
J_RECEIVE_PGN_SOURCE_SPECIFIC =1
J_SPECIAL_CALLBACK_FOR_DM = 1
J_TP_MAX_RCV_SOCKETS = 16
J_TP_MAX_SEND_SOCKETS =16
J_TP_BAM_QUEUE_SIZE =8
J_TP_MAX_AUTO_BROADCASTS = 16
J_TP_USE_PRIORITY_FOR_BAM_QUEUE = 1
J_TIMER_SIZE_32 BIT =1
J_TIMER_TICKS_PER_MS =1
J_CAN_NET_COUNT =4

As J_ NUM_DEVICES is defined greater than 1 almost all functions have an additional “device
number” parameter:

The j sendPGN function for example is described as:
J_sendPGN (const dataSendInfo t* sendInfos)
But with the additional parameter it will be:
j sendPGN(const uint8 t devNum, const dataSendInfo t* sendInfos)

8.2 Differences between library and source code version

Although J_RECEIVE_ONLY_LISTED_PGN is defined, all PGNs are received. If you want
to receive only listed PGNSs, just use j_setCallback_SpecialPGNReceived() to set them.
After first usage of that function J RECEIVE_ONLY_LISTED_PGN becomes valid.
Although J_SPECIAL_CALLBACK _FOR_DM is defined, a callback set with
j_setCallback_DMReceived is not mandatory. With the library version this is optional and
the default callback (set with j_setCallback_PGNReceived()) is called then.

Library versions usually not run under realtime OS. So times are not guaranteed in any
way. An example is the address claiming procedure: if a device claims an address and
receives no answer for 250 ms it uses this address. If your windows device is using this
address and should react within 250 ms you can't even tell if your application will ever run
within these 250 ms. (But increasing process priority usually helps)

Additional functions:
char* j getDLLVersion (void) returns pointer to a short version string
char* Jj getErrorString(int8 t errorCode) returns pointer to a short error
description string

Page 64 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Index

9. Index
Index
= Lo [o | S PO
(o] o O3 F= 110 1 =Y 7=T 1 {1 T SRS 32
ApPlication Layer (J1939/7X).....ooe ettt e e e e e e e e e e e e e e e e e araans 16
Chb_ClaimEVENTINTOo e e e e e e et e e e et e e e aaas 32
= Lo [o | PP 32
(o 1A ToT=Y N E=T 0 1= YO 32
Lo [NV To1=Y 1N [0 o o PSSP 32
L=V I8 o= PP 32
Chb_DataRECEIVEAINTO t....ouiiiiiiiiii it e e e e e e e e e e e et e e e e abaaeens 33
Lo1U 1S3 o] o] I = - T 33
(o 1= | c= TR OSSP PR 34
(o 1= 1= | =Y o TS PSSRSO 34
L0 /=] 12 [| P 33
Lo L=V o= N 1o o USSR 34
L o]0 472Xo Lo | SR PRSPPSO UPPPRPRt 33
(o] 1 £S1=] SR 33
0 33
LS = 1 (0 1< TSRS 34
o] o J = 1 = 1S T= e | o T SRR 35
Lo = = SRR 35
(o115 7N [o | P 35
Lo 1AV [o1=Y N U o o PP RRRPPPR 35
L] (ST 35
01 7= S SUP 35
[0 | R PP PP PPTPPTRTT 35
(od o =l €1\ AN o1 ToTUT g o= ' o T F0 USSP 36
LoTUL=3 o] o]I = = T 36
Lo =] 1 [| S SPPP 36
Lo 1oAY To7=Y N\ U o o P PRSP 36
L 0] 0 47X Lo | SR OSSP 36
L1510 5] 2= P PPPPRRRUSPPPPPRN 36
0 | TP PP 36
cb_RequestReceivedINfO f.........coooiiiiiiee e 37
Lo L=V o= 1o o USSR 37
L o]0 472Xo Lo | SRRSO PPN 37
[0 | R PP TPPTRTTR 37
1001 €11] o - | U 37
LT 1S3 o 0 1 I 7= = T
Ccb_DataReceivedINfO L.o e e e e aaeaes 33
(o] o €1\ VN o g o 10 oY= o | o TN S 36
Lo = = TSP
Cb_DataReCeIVEAINTO L. .. 34
(o] o T =1 7= 15 T=T o To |] o TN S 35
(o F= 2= IS T=T o To] 1) (o T SR O P PSPPSR PPUPPRRUPINt 38
Lo F= L e= | =Y o T
Cb_DataRecCeiVEAINTO ... o e a e e e e e e aaeae 34
(o F= 1 2= IST=T a o] 1) (o T SO UTPROSPPPPPRRUPINt 38
(o F= 1 e= I5T=1 a o] 1o) (o T ST UO OSSP 38
(o 1= | v- TR RSO STPP PR 38

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 65 of 70

Index

Lo F= = | =Y o O SRRR 38
L0 =] 1 Lo | PP 38
0 | TR PP UPPT R 38
S [0 142 PPRPRRPPPPPPPN 38
L0 1=} 1 [|
b _DataReCeiVEAINTOot a e e e 33
(oo B =1 7= 1S T=1 Lo |] o TN S0P 35
(o o €1\ VN o g o T8 o Te7= [| o TN S 36
Lo F= 1= IST=T a o |) (o TN SO PSPPSRt 38
DeviCe ADDRESS.o ettt e e e e e e e e e ettt et e e e e e et e eeaan s 11
[TV ot N 1 R 10
Lo LoV o=\ = o T
Cb_ClaimEVENINFO_ ... o i 32
Lo L=V o= N U o o R
Cb_ClIaiMEVENTINTO f...eeeeiii et e e e e e e e e e e e et e eeees 32
Cb_DataReCeiVEAINTO oot a e e e e e e e e eeea 34
(oo B =1 7= 15 T=1 Vo |) o TN S5 35
(oo = €1\ VN o g o T8 g V7= o o TN S SPPTS 36
cb_RequeStRECEIVEAINTO 37
=T 1/ = T
(o] o O3 F= 110 1 ==Y 1 {1 T OSSP 32
100 0 72X o | PR
Ccb_DataReCeiVEAINTO ... e a e e 33
Cb_PGNANNOUNCEINTO ... e e e 36
cb_RequestReceivedInfo_t.... ... 37
JE= Lo (o PN (o] =] o =T o= 1=
JTOBOSIACK. Nt e e e e e e e e e e e e e e r e e e e aaaaaeeaaaaaaaaana 49
J CAN NET _COUNT ..ttt e e e e e e e et e e e e ettt e et e e aeaaaaeeeaeaaaaa s sssssssssssaneessnn e eeeeennnes
IS 1 Lo 1= £ TSRS 42
J o] o T= 1= V=T 0 4 1= I P
J RS L LS =Tt o PP PRPPPRRRRRR 46
J DEBUG _OUT PUT ..ottt et e e e e e e et e e e e ettt et e e e e aeaaaaeeeaaaaaaasnnsnssssseessnnneaeeeeennes
S 1T 1= £ TSP 40
L1 o PP
JR RS 1 L= =Tt o O PESPRRRRRR 52
L OSSP
S 1= =T o S PERPRRRRRRR 51
J NUM _DEVICES.....cooeeeeeiiiiieeee ettt e e e e e e e e e e e e e e e e s e e e e e eeeeeaeeeeeeesaaaaaansssssssssenneees
IS 1 Lo 1= £ TSRS 40
[0 2= 1O T2 VUL (o] =0 =T [or= - £ P
JTOBOSIACK. Nttt e e e e e e e e e e e e e — i ——raaaaaaaaaaaeaaaaaanaanas 50
L (e TeT=TS1=T I - | - TP
IS 1 1= =T o S EREERRRRR 52
J_RECEIVE_ONLY _LISTED _PGN... .ttt ettt e e e e e e e e e e e e e e e s e e e e e eeeees
JI RS L Lo 1= £ T PSP SURPPPPUPRN 41
J RECEIVE_PGN_SOURCE_SPECIFIC.......cccii ittt e e e e e e e e aeeeenes
IS 1T 1= £ OSSP 41
J_remOVEAULOBIrOAACAST.ttt e e s
J IS 1 1= =T o S PESPRRRRRR 50
1= 12 PP
JTOBOSIACK. Nt e e e e e e e e e e e e e e r e e e e aaaaaeeaaaaaaaaana 44
J_SENAACKNOWIEAGMENT......oiiiiiiiiie ettt et e e et et b e e e e e e e e aaa e e
IS 1 1= =T o S SEEERRRRRR 44
JUSENANACK . .. ettt e e oo e ettt e e et e e eeeeeee et e e et e e — et — e aaaaaaaaeeeeeeaa—an

Page 66 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

Index

J IS 1 1= =Tt o S PESPRRRRRR 44
ST L | L
JTOBOSIACK. Nt e aaaaaaann 45
JE =T L0 | = €1\ PP PSP PP
IS 1 1= =T o S EEEEERRRRR 46
JIE=T = e | = o U 1=
J RS L LS =Tt o P OO PRPPPRRRRRR 48
j_sendRequestFOrAddresSCIaiMEd...........uuuiiiiiiiiii e e e e e e e e e e e e et eeern e aees
S 1 1= =T o S EEEERRRRR 48
J_setCallback _ClaimMEVENT..........ooii e e e e e e e e e e e e e e e e
JI S 1 L= =Tt o O PEEPRRRRRR 53
j_setCallback_DMRECEIVEA..........cooo et e e e e e e e e e e e e ee et e e as
S 1= =T o O PPEEPRRRRRRR 58
j_SetCallback_PGNANNOUNCE. ...ttt eeaaan e e eeas
J IS 1 1= =T o S PREPRRRRRR 54
J_SetCallback PGNRECEIVEU.uuuuiiiiiii i e e e et e e e e e e e e et eeeeraaaans
JTOBOSTACK. N ..ttt e ettt e et e et e e e e e e e e e e e e 55
JIES11 (072 1] o = Tod [= €] N £ST=T o To 1S
IS 1 1= =T o S EREERRRRR 55
j_setCallback ReqUESIRECEIVEA............uuuuiiiiiiii et e e e e e e
J RS 1 L= =Tt o S PEPPRRRRRRR 54
j_setCallback_SpecCialPGNRECEIVEQ...........oooiiiii e e e
IS 11 =T o O PPEEPPRRRRRR 56
J_SEtPGNSOUICEAAAIrESSFIIIEN ... e e e e e e e e e e e e
J IS 1 1= =T o S PESPRRRRRR 57
J_SPECIAL_CALLBACK FOR _DIM.....eiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e s aae s nssaeaeaeeeeeeeeeaeeeennnns
JRES L Lo 1] £ o OO P OO PR URPPPPUPPIN 41
JE €= 14 VYo [o | @ =T FO PP PP PP
IS 1 1= =T o O EEEERRRRRR 53
J_TEST_FOR_MESSAGES_FROM_SELFottt e e e e e e e e e e
JI RS L Lo 1= £ o SO U SRR UURPPPPRPPN 42
J TIMER _SIZE 32 Bl .eeeeiiiiiiiiiiii oottt ettt e e e e e e e e e e e e s et e e e e e e eeaaaaeaeaeaaeaaaanaaaeeaeenenes
S 1T 1= £ TSP 42
J_TIMER _TICKS _PER_IMS ...ttt e e e e e e e e e e e ettt e e e e e e e e e eetaan e e eeeeeeees
JI S 1 Lo 1= £ o T USRS 42
J TP_BAM_QUEUE_SIZE.........coi ittt e e e e e e ettt e e e e eeaaaaeeeeeeaaaaannnnnnnnnnnnes
J RS Lo 1] £ o OO O OT PO UUPPPPRPPON 41
J TP_MAX_AUTO _BROADCASTS. ...ttt e e e e e e e e e e e e eeaaaaaaaeaaaaaaaaaenes
IS 1 Lo 1= £ TSRS 41
J_TP_MAX _RCV _SOCKETS. ...ttt ettt e e e e e e e e e e e e e e et ee e e eeeeeeaeaaaeeeeasaaaaaannnssssssneneeeenes
JI RS L Lo 1] £ o RSP PSURPPPPRPRN 41
J TP_MAX _SEND _SOCKETS. .. .ottt e e e e e e e e e e e e e e s e e e eeaaaaaeeeeeessssnaaaeeeeeensnes
IS 1 T 1= £ TSP 41
J_TP_USE_PRIORITY_FOR_BAM_QUEUE........ooiiiiiiiiiieei ettt e e
JI RS L Lo 1= £ T PSP SURPPPPUPRN 42
J_UNPaUSEAUIOBIrOAACASTS.ceiiiiiiiieiii ittt e e e e e e e e e e e e e e e e
IS 11 =T o O PPEEPPRRRRRR 50
J USE _INTCAN H. ottt e aaaeeeeeeeeeeeeeesaaaeeeaeeas
JI S 1 Lo 1= £ TSRS 42
IS 1 Lo 1= £ TSRS
J CAN _NET _COUNT ...ttt e e e e e e e e e e e e e e e e e e s s s e asaassssnaneeeeeeaeeens 42
J DEBUG _OUTPUT ...ttt e e et e e e e e s et e e e e e aaaaeaaeeeeeeaa s nnnnssssnnnnneeeeees 40
J NUM_DEVICES ...ttt e e e e e e e e e e e e ettt e e e e e e e e aaeeeaeeeeeennnnnaaeeens 40
J_RECEIVE_ONLY _LISTED _PGN... .ttt e e e e e e e 41

J1939 Software Manual * Doc.-No.: C.1130.21 / Rev. 1.2 Page 67 of 70

Index

J_RECEIVE_PGN_SOURCE_SPECIFIC.......coi ittt 41
J_SPECIAL_CALLBACK FOR _DIM....coiiiiiiiiiieieei ettt 41
J TEST_FOR_MESSAGES _FROM _SELF........c.eeeeeeeeeeee e 42
J TIMER _SIZE 32 Bl .oeeieiiiiiiiiiie oottt e sasaneeeeeas 42
J_TIMER _TICKS _PER_IMS....eeeiiiiiiiiii ettt e e e e e e e e e e e e e ettt eeaeeaeeeeeeeeees 42
J TP_BAM_QUEUE_SIZE........oot ittt e e e e e e e e e e e e e ennn e eeeeas 41
J_TP_MAX_AUTO _BROADCASTS. ..ottt e e e e e e e e e e e e e 41
J_TP_MAX _RCV_SOCKETS. ... oot e et e e e e e e e e e eaeeaeeeeeessanaeaeeees 41
J_TP_MAX_SEND_SOCKETS. ... oottt e e e e e e e e e e e e e e e e s s s e e ees 41
J_TP_USE_PRIORITY_FOR_BAM_QUEUE........ooiiiiiiiiii e 42
S ST = I 7 PR 42
JRES 1 L - T o PSSP 43
JI: Lo [o FaNU (o] =] o T=To [or= 1= FU P 49
JI ool a] o =T =1\ =T T I o PSPPI 46
.15 PRSPPI 52
L PPN 51
[= 1LY U o] = oY= To [or= < £SO 50
[(e Te= Yo=Y I - - TSR 52
J_remMOVEAULOBIOAdCAST........coeeeiic e 50
JSEBNAA CK ..ttt e e e e e e e e e e e aaaaaaaaaaeeea i ———————_ 44
J_SENAACKNOWIEAGMENT. ...t eeenaanes 44
JUSENANACK ..ttt et e e e e e e e e e e e e e e aeaaa et e eeeeteaaaaaeeaeaeaaaaaannnnaarreeeeennnn e e eaeeenennns 44
== .o = 5L 45
1= o =1 PRSPPI 46
J_SENAPGNBYCAIIDACK.eeeieeeeeeiiiieie ettt e e e e e e e e e e e e e e eas 47
JES 1] L | =T e U 1= 48
j_sendRequestFOrAddresSSClaimed............cuuiiiiiiiiiiiiii e 48
j_setCallback _ClaimEVENT...........ooe e e e e e e e e e e e e e e 53
j_setCallback DMRECEIVEM............ccoiiiiiiiiiee et e e e e e e e e e et e eeeaaa s 58
j_setCallback PGNANNOUNCE............ooiiiiiiiitt et esaaaaaaa e 54
j_setCallback _PGNRECEIVEA.u e e e e et a e e e e eenaeeas 55
JIES1 (07= 1] o = Tod [= €] NN 1ST= o To O 55
j_setCallback ReqUESIRECEIVEA............ouuuiiiiiiiii i e e e e e 54
j_setCallback _SpecCialPGNRECEIVEA............ccooiiiiieecce e 56
J_SEtPGNSOUIrCEAAArESSFIIIErttt 57
JIE] = 10 7o [o | O3 =11 o o F PP PPPPPPPPT 53
J_UNPauSeAUtOBIroadCasts.ooiiiiiiiiii e 50
L= PP PPPPRPPRRRPPUPPN 45
L1
IS 1 1= =T o O EESPRRRRRR 45
A EST0] = ST PPPPP
(oo I = €1\ VN o g o T8 g V7= | o TN S SPPRSP 36
L] (T
Ch_DataSendINfO . ..o i a e e e 35
L0127 P
cb_DataReceivedInfO_t.o e a e e e 33
(o] o I L=1 7= 15T=T a Lo | o) o TN SO PSPPI 35
Parameter Group NUMDEr (PGIN).......uuu ittt e e 13
0 o PP
Cb_DataReCeIVEAINTOt e e e e e e e e eeeeas 33
Ch_DataSendINfO_t......cooo i 35
(o] o I = €1\ VN oY g o 10T g Vo= o o TN SR 36
cb_ReqUESIRECEIVEAINTO f.....eeiiii i 37
Lo F= 2= IST=T a o] [} (o T SRS PPPPTRRPPNt 38

Page 68 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

PhySiCal LAyer (JT1939/T1). . ettt ettt e e e e e e e e e ntan e nne e 8
01T 1 P
(o =Y e= I =T oo |] o TN SO PTTR 38
Protocol Data Unit (PDU).........uuiieeeeeee ettt e 14
=] €= (U 1 PP
b _DataReCeiVEAINTOot a e e e 34
170 11 oo -1 1 SUURPPPN
cb_RequestReceivedINfO L. e 37

J1939 Software Manual » Doc.-No.: C.1130.21 / Rev. 1.2 Page 69 of 70

Reference

10. Reference

: SAE International, J1939 - Recommended Practices, 2000

: ISO 11898, Road Vehicles - Controller Area Network (CAN), 1999
: SAE International, J1939/11 - Physical Layer, 1999

: SAE International, J1939/21 - Data Link Layer, 1998

: SAE International, J1939/31 - Network Layer, 1997

: SAE International, J1939/71 - Vehicle Application Layer, 2002

: SAE International, J1939/81 - Network Management, 1997

NO PR WN =

Page 70 of 70 Software Manual * Doc.-No.: C.1130.21/ Rev. 1.2 J1939

