ARINC 825 Library

Software Manual

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21/Rev 1.5 Page 1 of 109

esd electronics gmbh

Vahrenwalder Str. 207 « 30165 Hannover « Germany
http://mww.esd.eu
Phone: +49 (0) 511 3 72 98-0 « Fax: +49 (0) 511 3 72 98-68

Notes

The information in this document has been carefully checked and is believed to be entirely reliable.
esd electronics makes no warranty of any kind with regard to the material in this document and
assumes no responsibility for any errors that may appear in this document. In particular descriptions
and technical data specified in this document may not be constituted to be guaranteed product
features in any legal sense.

esd electronics reserves the right to make changes without notice to this, or any of its products, to
improve reliability, performance or design.

All rights to this documentation are reserved by esd electronics. Distribution to third parties, and
reproduction of this document in any form, whole or in part, are subject to esd electronics' written
approval.

© 2022 esd electronics gmbh, Hannover

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover

Germany

Tel.: +49-511-37298-0
Fax: +49-511-37298-68
E-Mail: info@esd.eu
Internet: www.esd.eu

This manual contains important information and instructions on safe and efficient
handling of the ARINC 825 Library. Carefully read this manual before commencing
any work and follow the instructions.

The manual is a product component, please retain it for future use.

Trademark Notices

CANopen® and CiA® are registered EU trademarks of CAN in Automation e.V.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and/or other countries.

QNX® is a registered trademark of QNX Software Systems Limited, and is registered trademark and/or used in certain
jurisdictions.

All other trademarks, product names, company names or company logos used in this manual are reserved by their
respective owners.

Page 2 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Document Information

Document file: I\Texte\Doku\MANUALS\PROGRAM\CAN\C.1140.21_ARINC825\ARINC825_Library_Manual_en_15.docx
Date of print: 2022-05-03

Document-type |DOCO0800

number:

Documentation valid for software versions:

ARINC 825 Library Order no. * Documented
for operating system... ' Software Rev.
Windows® 8, Windows 7,
Windows XP, Windows 2000 C.1140.06 (Windows/Linux CD)
Linux®)
ARINC Library: 1.2.0
RTX/RTX64% C.1140.16
onx® C.1140.17
VxWorks® C.1140.18 ARINC Library: 1.1.24

* See order information, page 109.

Document History

The changes in the document listed below affect changes in the hardware as well as changes in the
description of the facts, only.

Revision | Chapter Changes versus previous version Date
- RTX/RTX64 support
New chapters describe arincRxStart, arincRxStop,
13 712- |arincTxStart and arincTxStop functions as alternative for| .., o o
) 7.15 |arincScheduleStart
arincScheduleStop
9. Order Information revised

8.5.11 | New chapter: ArincRxStart

8.5.12 | New chapter: ArincRxStop
1.4 2015-11-23
8.5.20 |New chapter: ArincTxStart

8.5.21 | New chapter: ArincTxStop

15 all Added CAN FD support for ARINC825-4 2022-05-03

Technical details are subject to change without further notice.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 3 of 109

Table of Contents

[EnY

a b~ W N

L@ 1YL V715 AT 6
I IO 2 A T 7
F N N (O T LT 8
(O N V=T o o = 9
LSy {1 L=F YT 12
LT A O N | 5 =T 13
5.2 CAN-LENGIN .o 14
LIRS 07 Y (N S 7= 10 o [= 1 15
D S AtUS- BUSSIALES ... ittt e e e e et e et 16
SIS OF - N B 0] o1 o] | [T 17
LI S = (o] (o700 (ST 18
LT A = (o] 40 1 4T T 19
5.8 TRread-PriOrityccooiiiiiiiiiii e 20
D F= 1= 1V 011 T PSPPI 21
B.1 ARINC CIMSG T oottt oottt e e e e e e e e ettt e e e e e e e e e eas bbb eeeeeeesessbaannnes 22
6.2 ARINC CIMSG X .iiiiiiiiiiiiiieeitiee et e e e e ettt e e e e e e e e s e ettt e e e e e e e e eeaa bbb eeeeaeesessraannnes 24
6.3 ARINC BAUDRATE X .. iiiiiiiiiiii ettt ettt e s e e e e e ettt e e e e e e e e e e aa bbb eeeeeeesssaraannees 26
B.4 ARINC ST ATUS e e e e e et a e e e e e e e e e ettt a e e e e eeesareeaanans 27
6.5 ARINC ERROR ..ot e et e e e e e e e e e ettt e e e e e e e e aaaraa s 29
6.6 ARINC RESULT ..oiiiiiiiii it e e e e e et e e e e e e e e e e st e e e e e eeserrraanans 31
6.7 ARINC HANDLE ..ot e e e e e e e e e e e ettt e e e e e e e s ereraaans 32
6.8 ARINC GROUP ..ottt e e e e e e e e e et e e e e e e e seaabaaas 33
6.9 ARINC ERROR_HANDLER ... e e s 34
[T 103 10 o TR 35
7.1 arinCHANAIEOPENcoiiiiiii 36
A - 1 To] O [0 11 < T 37
7.3 ANNCBAUAIALESEL ... cceeiiiei et e e et e e e e et e e e e et e e et e e et e e eaaaas 38
R 11 Tod 2 =10 (o [=1 (SIS 1<) . T 39
WS I 11 1e] 2 =10 (o [ir= 1 (= C 1= AT 40
W I L[Te] 2 =10 (o [= (=] C 1= o, G 41
A - 114 1035 = Y 11 1= 42
AR T (02 x= U 1Y ST < 43
AR I (g od Lo T4 0 4T 1 =t (o) T 44
R O =Y g o] g (o) F= T o | L= T 45
8 N = Y [Lo 1T . == 46
R - Y[o [(=T V7= 1 ST S 47
R IV [od [(=T V7= 1 (= 48
A - Y g o] 2 3T - o AT 49
7.15 @NNCRXSIOP. ..o iiiiiiiie e 50
R ST (ol DTS = | 51
A A 1 4[] (o] « B PP PP PP PPPPPPPPPPPPPPPP 53
7.18 ArNCSCNEAUIESTAIcee e e et e e b st sea s s b e e b s ebseaseanaees 54
e = g [oaS Tl = To (1] =] (] o PP 56
A -V [Tod =0 1 GO 57
7.21 ariNCTXOBJUPAALEXcoiiiiiiiiiiieeeee e 58
7.22 arinCTXODIDISADIEX..... oo e e e e et e e e e e e 59
7.23 ArNCWAITFOITIMESIOL ... e e e e e e e e e et e e e e et e e eaaaas 61

Page 4 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

A - 1 Lol @ o] Yo [), OSSP 62

7.25 ANNCODIDEIEIEX ..ottt e e e et e e e e e e e e e a e e e e arr 64
8 ARINCS25 LADVIEW LIDIAIYuuuiiiiiiiiiiiiiiiiiiiiiiieieeieeiiiinassenennesssssssssssesssssssssssssssssssssssssssssnnssnnns 66
8.1 AICRIVE CONMENIS.....ciiiiiiiiiii e 66
8.2 INSTAlIALION ..o 66
8.3 Basic Usage INfOrMAatioNccoiiiiiiiiiiiiei e e e e e e e e e e e eearaaas 67
8.4 AB825 VIS (Signal Based VIS)ccuuiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 68
8.4.1 AB2SETITOI 2SN . tttttttttttttttteeeteeeeee ettt nnnes 69
ST N 124 | 0o 70
S B AN 1241 @]][£ o | 71
8.4.4 AB250DJECISENMcoeeiiiiiii it e e aaaaaan 72

S T AN 124 1@ | o =T ox i I e o = USRS 73
8.4.6 AB2BPIOJECICIOSE......ceeiiiiie e et a e e aaaaaaana 74
8.4.7 AB25PTOJECIOPEIN ...ttt n e 75
8.4.7.1 Example Of 8 ProjeCt Fil@..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieiieieeeeeeeeeeeeeeeeeeeeeeenenees 76

8.4.8 AB25SCREAUIESIAI........uieiei e e e e e e e e e e e aaane 78
8.4.9 AB25SCNEUUIESTOP .. .ttt nnee 79
S O AN 1A 3o (o 1 F= U o)| 80
8.4.11 AB25SIgNAITIIGOENieeiiiiiie e e et e e e e e e e e e e e e et e e e e e e e e e eestta e e eeaaeeeennes 81
8.4.12 AB25SIgNAlUPALEoovuuiiiiiieiiiieiee e e e e e e aaane 82
S B AN 1243 = LU 83
8.4.14 AB25STAtUSRESEL ...t 84
S ST AN 1A T4 1T - 85

S G AN YA (@ o] [=Tox 1 D1 o] = 86
S AN YA (@ o] [=Tox (U o o - 87

8.5 ARINC VIS (NALIVE VIS) .ottt 88
ST A AN g (o1 = 7= TH o [= L (T 89
ST AN] o1 = 7= TH o = L (S 90
ST A ¢ o O [0 L 91
8.5.4 ATINCEITOI2SHIING ..ttt 92
8.5.5 AINNCHANAIEOPEN ...ttt ennennees 93
8.5.6 ANNCINIEIVAIGEL.o e e e et e e e e e e e e ea et e e e eaaeeeanne 94
8.5.7 ANNCINIEIVAISELcciieeeeiiie e s e e e e e e e eaaataa e e e e aaeeeanne 95

S TSI S B A 1 oT@] o AY [96
8.5.9 ANNCODIDEIBLE e aaaaaaaaa 97
ST T 0T A 1 o = | 98
ST 5 Y] o] 3] = o 98
ST AN] g (o] 3 €S (o] « TSP 99
8.5.13 ArNCSCREAUIESTAI........ee e aaans 100
8.5.14 ArNCSCNEAUIESIOP ... ttiiiiiiiiiiiiiiiititeii ettt benennnnnnnnee 100
B.5.15 ANNCSIALUS ... eeee ettt ettt e e e e e e et ettt e e e e e e e enenan e aaeeeenanes 101
8.5.16 ArNCSIAIUSRESELoeeeiiiiiii ettt e e e e e eeente e e e e eeeeenenes 102
8.5.17 ANNCTIMEGEL ...t e e ettt a e e e e e e e e eeeaaan e e e e eeaeeennnes 103
8.5.18 ArNCTXODIDISADIE......ccuu e e e et e aaan 104
8.5.19 AINCTXODJUPUALEutiiiiiiiiiiiiiiiiiiietitiiiiieiebeeeeeeebeeeeeebebeseeseasssbbesbseseesebsebesennnnnnne 105
B.5.20 ANNCT XS AN et e et e e et e e e e et e e et e e e aeaaaans 106
ST R N] (ol I (o] PPN 107
8.5.22 AriNCWaAItFOITIMESIOLe it e e e et eeeaaans 108

LS IO o =Tl) (o] 4= 110 [109

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 5 of 109

Overview

1 Overview

[Top] [Generics]

NAME

ARINC825 Library

FILE NAME
arinc825.h

BRIEF MODULE DESCRIPTION
Header for ARINC825 support library

AUTHOR

Andreas Block (BL)

CREATION DATE
25-May-2009
PORTABILITY

ANSI-C
VxWorks, Linux, Windows, RTX/RTX64, QNX Neutrino
Depends on NTCAN- and PSYS-library

COPYRIGHT

Copyright (c) 2009-2022 by esd electronics gmbh

This software is copyrighted by and is the sole property of

esd gmbh. All rights, title, ownership, or other interests

in the software remain the property of esd gmbh. This

software may only be used in accordance with the corresponding
license agreement. Any unauthorized use, duplication, transmission,
distribution, or disclosure of this software is expressly forbidden.

This Copyright notice may not be removed or modified without prior
written consent of esd gmbh.

esd gmbh, reserves the right to modify this software without notice.

esd electronics gmbh Tel. +49-511-37298-0
Vahrenwalder Str 207 Fax. +49-511-37298-68
30165 Hannover https://www.esd.eu
Germany saleslesd.eu

Page 6 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

mailto:sales@esd.eu

NTCAN

2 NTCAN

[Top] [Generics]

DESCRIPTION

esd provides a general API to program CAN interfaces, called NTCAN.

ARINC825 library makes heavy use of NTCAN and could be seen as an extension
on top of NTCAN. Thus you'll see lots of references to NTCAN in this
documentation, as for example standard NTCAN error codes might be returned
by ARINC-825 functions. Where feasible (and noted within this documentation)
you can also use the respective NTCAN defines as parameters.

NTCAN documentation can be found on esd's website (www.esd.eu) or can be
requested directly from esd's support team (support@esd.eu).

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 7 of 109

mailto:support@esd.eu

ARINC-Time

3 ARINC-Time

[Top] [Generics]

DESCRIPTION

In general time is handled as "time ticks". Depending on your CAN hardware
the frequency of these ticks differs. Once you open an ARINC825 handle via
arincHandleOpen () you can retrieve the tick frequency in use for this CAN bus.
In this way it is very well possible to have different CAN boards with
differing time tick frequencies in your system.

The timestamp is monotonically increasing (please see notes below).
Times can be added or subtracted without problems.

NOTES

esd also delivers special CAN hardware, which provides connection to

e.g. IRIG-B. Whenever such hardware is used, you need to take care, that
your timebase is stable, before ARINC825 scheduler is started. Please see
documentation accompanied with such hardware on how to accomplish this.

SEE ALSO

arincHandleOpen ()
arincTimeGet ()

Page 8 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

CAN-errors

4 CAN-errors

[Top][Generics]

DESCRIPTION

Basics:

On CAN bus there are sophisticated error handling techniques, which

not only allow to detect errors, but also help to remove defective hardware
from a CAN bus in order to keep the remaining system working. This is called
CAN error confinement.

It is accomplished via two error counters (RX + TX, called RX Error Counter
(REC) and TX Error Counter (TEC)) and a ruleset related to these, defining
when these counters need to be in- or decremented. This won't be discussed
in all details here, as there's lots of literature written and web resources
published on this topic.

Depending on these error counters every CAN node is in one of four states:

BUS OK (REC < 96 and TEC < 96)

Normal state of a CAN node, when everything is ok. This does NOT necessarily
mean the absence of errors on CAN bus, though. The node is also said to be
"error active", as it will actively propagate (or globalize) any detected
error.

BUS WARN (96 >= REC < 128 or 96 >= TEC < 128)

At least one error counter has reached "error warning limit", there's a
significant number of errors on CAN bus, yet overall function doesn't seem
to be affected. The node remains "error active" in this state.

Note: This state is not described in IS011898, yet most CAN controllers
support it.

ERROR PASSIVE (128 >= REC <= 255 or 128 >= TEC <= 255)

Contary to the first two states a CAN node goes "error passive" (opposed

to "error active") by exceeding the next threshold with any of its error
counters. The node is still able to transmit and receive CAN frames, but it
will not any longer propagate detected errors over the CAN bus.

BUS OFF (TEC > 255)
Lastly a node enters bus off state, where it will no longer take part in
CAN communication.

In general, the error counters will be incremented, whenever an error is
detected on CAN bus. Most CAN controllers provide special means to further
investigate the circumstances of such errors. Amongst other information the
type of error and position of the error condition within a CAN frame are
stored in an error code capture register (ECC).

Means of error detection:
ARINC825 library provides several different means to detect CAN errors or
to be notified about them.

(A) Polling:

At any given time, the CAN status can be polled using arincStatus() or with
NTCAN-API call canIoctl(NTCANiIOCTLiGET7CTRL7$TATUS). The ARINC STATUS
structure returned from arincStatus () also contains ECC information of the
last CAN bus error (see below).

(B) Asynchronous notification with error handler:
By means of arincErrorHandler () an asynchronous error handler function can

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 9 of 109

CAN-errors

be registered. On occurrence of certain errors (amongst others CAN bus errors)
the registered handler will be called and is also passed
an ARINC STATUS structure with ECC information.

(C) Asynchronous notification by virtual CAN events:
There're two CAN events related to errors on CAN bus (see NTCAN

documentation) .
These events are received as virtual CAN frames via canRead()/canTake (),
if the respective CAN IDs have been enabled with canIdAdd (). The first

one 1s the CAN error event, which is generated on every state change in

a node's CAN state machine. The second one, called extended error event,

is generated on every CAN error frame on CAN bus. There's no guarantee

to receive one event per error frame, as the driver analyzes the ECC
information and tries to prevent IRQ floods by disabling the interrupt for
certain time periods if heavy load is detected. Nevertheless, in real world
scenarios chances are quite good, you'll receive an event for every CAN error
frame.

There are data structures defined in NTCAN to ease evaluation of these events
(EV_CAN ERROR and EV_CAN ERROR EXT), these can be simply mapped to the data
section of the respective CAN event frames.

Additionally canFormatEvent () (again from NTCAN) can be used to convert the
contained information into human readable strings.

ECC Byte

In order to further analyze a CAN bus error, the ECC (error code capture) is
of special importance. This information is heavily hardware dependent, and you
may need the documentation of the involved CAN controller to make full use of
this feature.

The two most common CAN controllers in esd products are esd's esdACC and

NXP's SJA1000. Both controllers share the same bit encoding, so decoding of
the ECC byte works exactly the same way and shall be described in more detail

here:

Bit | Symbol | Name | Value | Function

ECC Bit 7 (MSB) | ERRC1 | Error Code 1 \ - | -

ECC Bit 6 | ERRCO | Error Code 2 \ - | -

ECC Bit 5 | DIR | Direction | 1 | RX; error occurred during
reception

\ \ | 0 | TX; error occurred during

transmission

ECC Bit 4 | SEG4 | Segment 4 \ - | -

ECC Bit 3 | SEG3 | Segment 3 \ - | -

ECC Bit 2 | SEG2 | Segment 2 \ - | -

ECC Bit 1 | SEG1 | Segment 1 \ - | -

ECC Bit 0 (LSB) | SEGO | Segment O | - | -

Error type

ERRC1 | ERRCO | Function

| bit error

| form error

| stuff error

| other type of error

Error position

Page 10 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

CAN-errors

SEG4 | SEG3 | SEG2

PP P RPRPRPRPPRPRRRPRPPRPPRPOO0O00000000000O0
PP PP O0OO0O000O0ORRERPERPERPEPREPPLOOOOOO
PP P RPPRPORPPRPOO0O000000O0O0ORRRERRPRERERLOO

New flags!!

SEE ALSO

ARINC STATUS
arincStatus ()
arincErrorHandler ()

SEGl | SEGO | Function

| start of frame
| ID.28 to ID.21
| ID.20 to ID.18
| bit SRTR

| bit IDE

| ID.17 to ID.13
| ID.12 to ID.5
| ID.4 to ID.O

| bit RTR

| reserved bit 1
| reserved bit 0
| data length code
| data field

| CRC sequence

| CRC delimiter

| acknowledge slot

| acknowledge delimiter
| end of frame

| intermission

| active error flag

| stuff bit counter

| passive error flag

| tolerate dominant bits
| error delimiter

| overload flag

\

|

\

PP OORRPPRPOOREFEPFRPROOORHOOORRPEOORREE
PO ORPFRPOOHOORHOOORRPRHOORRERL,OOOH®R

bit FDF (flexible data rate format)
bit BRS (bit rate switch)
bit ESI (error state indicator)

ARINC 825 Library

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

Page 11 of 109

Defines

5 Defines

[Top] [Generics]

DESCRIPTION

Documentation of symbol definitions:

CAN-IDs
CAN-Length
CAN-Baudrate
Status—-Busstates
CAN-Controller
Errorcodes
Errorformats
Thread-Priority

O O OO0 OO0 0 O

Page 12 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Defines

5.1 CAN-IDs

[Top] [Defines] [Definitions]

DESCRIPTION

Whenever CAN-IDs are involved and are used as input parameters and/or
return values, all CAN-ID defines from NTCAN can be used.

NOTES

Although ARINC825 is specified only for 29-Bit CAN-IDs, it is possible to
set up ARINC825 schedules with objects with 11-Bit CAN-ID. This is an option
for your convenience, but shouldn't be used on strict ARINC825 busses

(it wouldn't make much sense there anyway...).

SEE ALSO

ARINC CMSG T
ARINC CMSG X

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 13 of 109

Defines

5.2 CAN-Length

[Top][Defines] [Definitions]

DESCRIPTION

The CAN Data Length Code (DLC) does not only contain the number of data bytes
contained in a CAN frame, but there might be additional information encoded
into this field (e.g. RTR frames).

All defines from NTCAN-API apply here and may be used as input parameters

as well as to evaluate return values.

ARINC825 library extends these defines by one more: ARINC OLD DATA

ARINC_OLD_ DATA -- Marks old data
When using arincPollX () this flag can be used to quickly
identify data objects, which haven't changed since last
call of arincPollX().

SEE ALSO

ARINC CMSG T
ARINC CMSG X

Page 14 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Defines

5.3 CAN-Baudrate

[Top] [Defines] [Definitions]

DESCRIPTION

In order to communicate on CAN bus a CAN node needs to have a baud rate set.
This can be accomplished via arincBaudrateSet () and arincBaudrateGet (). For
CAN FD baudrates use arincBaudrateSetX () and arincBaudrateGetX ()

NTCAN API contains a whole bunch of defines to set predefined baudrates
recommended by CiA, as well as defines to set baud rate numerically

(in bits per second) or program the bit timing registers of the CAN
controller directly.

NOTES

Please beware, configuring a wrong baud rate will severely affect the
CAN communication. It is advised to check, if another application or another
handle in the same application has already set a baud rate (via

arincBaudrateGet () or arincBaudrateGetX()). If absolutely unsure you can make
use of auto-baud feature of esd CAN drivers. See NTCAN documentation for
further

information on baudrates and auto-baud.

SEE ALSO

arincBaudrateSet ()
arincBaudrateGet ()
arincBaudrateSetX ()
arincBaudrateGetX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 15 of 109

Defines

5.4 Status-Busstates

[Top][Defines] [Definitions]

DESCRIPTION

Defines to decode CAN bus status as delivered by arincStatus(),
arincErrorHandler () or NTCAN EV CAN ERROR and
canIoctl (NTCAN IOCTL GET CTRL_ STATUS) can be found in NTCAN header.

SEE ALSO

CAN-errors
arincErrorHandler ()
arincStatus ()

Page 16 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Defines

5.5 CAN-Controller

[Top] [Defines] [Definitions]

DESCRIPTION

The type of CAN controller is returned from arincStatus (). NTCAN provides
more means to determine the controller type

(canIoctl (NTCAN IOCTL GET CTRL_STATUS)
and canIoctl (NTCAN IOCTL GET BITRATE DETAILS) as well as defines to decode
the controller type.

SEE ALSO

arincStatus ()
ARINC STATUS

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 17 of 109

Defines

5.6 Errorcodes

[Top][Defines] [Definitions]

NAME

Error codes generated by ARINC825 library functions

ERRORS

ARINC ERRNO BASE -- Whenever possible, ARINC825 library uses
system error codes (e.g. under Linux the
error values will be used) or NTCAN error
codes. For errors, which can't be mapped
to these system codes, ARINC ERRNO BASE 1is
used as offset to avoid ambiguities.

ARINC SUCCESS -—- No error

ARINC ERROR TXSLICE TIMEOUT -- The next TX slice was not triggered.

ARINC ERROR TXSLICE INCOMPLETE -- A TX slice wasn't transmitted completely.

ARINC ERROR_ SCHED DISABLED -- The scheduling hasn't been enabled, yet.
Use arincScheduleStart () or arincTxStart ()
first.

ARINC_ERROR SCHED ENABLED -- The scheduling is currently enabled.
Use arincScheduleStop () or arincTxStop ()
first.

ARINC ERROR ID BUSY -- There's already an object added with the
same CAN ID.

ARINC ERROR _COL BUSY -- There's already an object with the same
group-m-n combination.

ARINC ERROR ID NOT FOUND -- A referenced ARINC object was not found
(e.g. with arincTxObjUpdateX()) .

ARINC ERROR TIME NOT SET -- Failure while configuring start time and/or
time slice duration for scheduling.

ARINC ERROR _NO INTERVAL -- Attempt to start scheduling without a valid
time slice duration.

ARINC ERROR NOT TX -- Attempt to update data of an RX object.

ARINC CAN STATE CHANGE -- CAN bus state transition has occurred
(which is not necessarily an error
condition) .

ARINC CAN ERROR -— A CAN error frame has occurred on bus.

ARINC ERROR INTERVAL LOW -- Attempt to configure a time slice duration
equal or below 1 ms.

NOTES

These error codes are unique to ARINC825 functions, nevertheless as documented
with each function all NTCAN error codes may occur as well.

Whenever ARINC library makes use of functions provided by the underlying
operating system, the respective system error codes are passed to the user.
Since it is not always well documented, which error codes might be thrown in
these cases, these codes might not always be documented below.

You can use arincFormatError () to get a string representation for the
described errors.

SEE ALSO

arincFormatError ()

Page 18 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Defines

5.7 Errorformats

[Top] [Defines] [Definitions]
DESCRIPTION

NTCAN defines special values to select the output type of arincFormatError ().

SEE ALSO

arincFormatError ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 19 of 109

Defines

5.8 Thread-Priority

[Top][Defines] [Definitions]

NAME

Special values to be used with the priority parameters of arincScheduleStart ()

DESCRIPTION
ARINC_ PRIO HIGH -- Use a high priority for maximum accuracy of
scheduling
ARINC PRIO_INHERIT —-— Inherit the priority of the calling application
ARINC PRIO_SET -- Set system dependent thread priorities
SEE ALSO
arincScheduleStart ()
arincRxStart ()
arincTxStart ()

Page 20 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

6 Datatypes

[Top] [Generics]

DESCRIPTION

Definitions of data types:

ARINC

CMSG T

ARINC

CMSG X

ARINC

BAUDRATE X

ARINC

STATUS

ARINC
ARINC

ERROR
RESULT

ARINC

HANDLE

ARINC
ARINC

O O O 0O OO O 0 O

GROUP
ERROR HANDLER

ARINC 825 Library

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

Page 21 of 109

Datatypes

6.1 ARINC_ CMSG T

[Top] [Datatypes] [Structures]

NAME

ARINC_CMSG_T -- CAN object structure for use with ARINC825 functions

DESCRIPTION

Stores ARINC825 and CAN frame data

SYNOPSIS
struct ARINC CMSG_ T f{
INT32 id;
UINTS len;
UINTS8 msg_lost;
UINTS8 reserved[2];
UINTS8 datal[8];
UINT64 timestamp;
ARINC GROUP group;
INT32 m;
INT32 n;
INT32 countTx;
INT32 countRx;
}
ATTRIBUTES
id -- CAN ID, defines priority on CAN bus, can be combined
with CAN ID defines (see CAN-IDs and NTCAN docs)
len -—- Number of data bytes contained within CAN frame (0..8)

(see CAN-Length and NTCAN docs for additional defines to be
used with this field)

msg lost =-- On reception the number of lost RX frames is returned here.
With modern CAN hardware this should be zero. Nevertheless it's
recommended to evaluate this field if you rely on streams of
data for example.

data -- Up to eight data bytes

timestamp -- 64-Bit timestamp (frequency is returned from arincHandleOpen ())

Additional ARINC information:

group -- ARINC825 group, see ARINC GROUP

m -— ARINC825 column, it's the m'th object within its group
(this needs to be unique for a given "group-n" combination)

n -— ARINC825 slice index, for groups > 0 the object is located
in the n'th time slice

countTx -— Number of times this object was transmitted
Positive values: The last n times the object was transmitted

successfully

Negative values: n failures to send this object

countRx -— Number of times this object was received

NOTES

see ARINC CMSG X

Page 22 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

SEE ALSO

arincPollX ()
arincTxObjUpdateX ()
arincTxObjDisableX ()
arincObjAddX ()
arincObjDeleteX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 23 of 109

Datatypes

6.2 ARINC_CMSG_X

[Top] [Datatypes] [Structures]

NAME

ARINC_CMSG_X

DESCRIPTION

Stores ARINCS

SYNOPSIS

-— CAN object structure for use with ARINC825 functions

25 and CAN frame data

struct ARINC CMSG X {

INT32
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINT64

ARINC GROUP

INT32
INT32
INT32
INT32
INT32

ATTRIBUTES
id --

len -=

esi --

msg lost --

data -
timestamp --

id;

len;
msg_lost;
reserved[1l];
esi;
datal[64];
timestamp;
group;

my

n;
countTx;
countRx;
reserved?2;

CAN ID, defines priority on CAN bus, can be combined

with CAN ID defines (see CAN-IDs and NTCAN docs)

Number of data bytes contained within CAN frame (0..63)

(see CAN-Length and NTCAN docs for additional defines to be
used with this field)

error state indicator, on reception this provides information
about the error status of the sender:

0 indicates an error active state, 1 indicates error passive
state

On reception the number of lost RX frames is returned here.
With modern CAN hardware this should be zero. Nevertheless it's
recommended to evaluate this field if you rely on streams of
data for example.

Up to 64 data bytes

64-Bit timestamp (frequency is returned from arincHandleOpen ())

Additional ARINC information:

group -=

countRx -=

ARINC825 group, see ARINC GROUP

ARINC825 column, it's the m'th object within its group

(this needs to be unique for a given "group-n" combination)

ARINC825 slice index, for groups > 0 the object is located

in the n'th time slice

Number of times this object was transmitted

Positive values: The last n times the object was transmitted
successfully

Negative values: n failures to send this object

Number of times this object was received

Page 24 of 109

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

NOTES

It is advised to evaluate countTx on ARINC825 TX objects and countRx on RX
objects. Although both counters are kept up to date for both types of
objects and a comparison might be used to reveal certain error conditions,
one needs to take a possible deviance of one frame into account. This is
caused by the fact, that transmission and reception of the transmitted frame
do not happen simultaneously, reception always follows transmission.
Although it would be technically possible to synchronize both events and
atomically increment both counters at the same time, the performance impact
of a rather long locked path would be drastic. Another workaround would be
incrementing the RX counter on the event of successful transmission. Since
this would forego the chance of an extra step of verification, the deviation
of both counters is deliberately accepted. Nevertheless, if everything works
correctly both counters shouldn't differ by any more than one frame.

SEE ALSO

arincPollX ()
arincTxObjUpdateX ()
arincTxObjDisableX ()
arincObjAddX ()
arincObjDeleteX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 25 of 109

Datatypes

6.3 ARINC_BAUDRATE_X

[Top] [Datatypes] [Types]

NAME

ARINC BAUDRATE X -- Type of CAN baud rate

DESCRIPTION

Configuration of arbitration and data phase baud rate.
See NTCAN docs for all details

SEE ALSO

arincBaudrateSetX ()
arincBaudrateGetX ()

Page 26 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

6.4 ARINC_STATUS

[Top] [Datatypes] [Structures]

NAME

ARINC_STATUS -- Status structure for use with arincStatus()
DESCRIPTION

Stores version-, status- and error information.
SYNOPSIS

struct _ARINC_STATUS ({
UINT16 hardware;
UINT16 firmware;
UINT16 driver;
UINT16 dll;
UINT32 boardstatus;
UINTS boardid[14];
UINT16 features;
UINT16 dllarinc;
UINT16 reserved;
UINTo64 time;
UINT32 rxCount;
UINT64 rxLastTime;
UINT32 txCount;
UINTo64 txLastTime;
UINT32 errorCount;
INT32 errorLast;
UINT64 errorLastTime;
UINT32 errorCode;
UINTo64 errorCodeTime;
UINT32 reserved?2;

UINTS8 canStatus;
UINTS8 canErrorCountRx;
UINTS8 canErrorCountTx;
UINTS8 reserved3;
UINT32 errorLostFrames;
}
ATTRIBUTES
hardware -- Hardware version of CAN hardware
firmware -- Firmware version of CAN hardware (if applicable,
zero otherwise)
driver -— CAN driver version
dll -— NTCAN API library version
boardstatus -- Overall status of CAN hardware

Most significant byte contains type of CAN controller
(see CAN-Controller)

boardid -- 14-Byte long string, containing the name of the CAN
hardware

features -- 16-Bit wide flag field, specifying features supported by
CAN hardware (see defines in NTCAN to decode these)

dllarinc -— Version of this ARINC825 library

reserved -- Reserved for future use, aligns structure

time -- Current time

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 27 of 109

Datatypes

rxCount -— (*) Number of ARINC825 objects received on a certain
handle/CAN bus (including those sent by the node
itself)

rxLastTime -— (*) Time of last reception

txCount -— (*) Number of ARINC825 objects transmitted on a certain
handle/CAN bus

txLastTime -— (*) Time of last transmission

errorCount -— (*) Overall number of errors on a certain handle/CAN bus

errorlLast -— (*) The last error, which occurred (see Errorcodes)
(Note: These are not necessarily CAN bus errors)

errorLastTime -— (*) Approximated time of last error

errorCode -— (*) Detailed info on the last CAN bus error

errorCodeTime -— (*) Time of last CAN bus error

canStatus -— Status of CAN bus (see Status-Busstates)

canErrorCountRx —-- CAN RX error counter (see "Rules of error confinement"

in chapter 13.1.4 of ISO 11898-1)
canErrorCountTx —-- CAN TX error counter (see "Rules of error confinement"
in chapter 13.1.4 of ISO 11898-1)
errorLostFrames -- (*) Frames lost by either CAN controller or CAN driver
NOTES
(*) - Special ARINC825 status-/error information. These fields can be reset to

zero using arincStatusReset ()

Version information (hardware, firmware, driver, dll, dllarinc) is returned
in the following format:

0xXYZZ with 0xX = major version, 0xY = minor version and 0xZZ = change level
A format string to print version info for example could look like this:
("%d.%d.sd", (v >> 12), ((v & O0xO0F00) >> 8), (v & 0xOO0FF))

SEE ALSO

CAN-errors
arincStatus ()
arincStatusReset ()

Page 28 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

6.5 ARINC_ERROR

[Top] [Datatypes] [Structures]

NAME

ARINC _ERROR -- Error structure passed as an argument to an error handler

DESCRIPTION

If the user connects an error handler function, this will be called
asynchronously on occurrence of an error. The argument of this handler
points to an ARINC_ERROR structure, which contains more details on the
type and the circumstances of the error.

SYNOPSIS

struct ARINC _ERROR {
void *userParam;
UINT32 rxCount;
UINT64 rxLastTime;
UINT32 txCount;
UINT64 txLastTime;
UINT32 errorCount;
INT32 errorlLast;
UINT64 errorLastTime;
UINT32 errorCode;
UINT64 errorCodeTime;
UINT32 reserved;
UINTS8 canStatus;
UINTS8 canErrorCountRx;
UINTS8 canErrorCountTx;
UINTS8 reserved?2;
UINT32 errorLostFrames;

ATTRIBUTES

userParam -- When registering an error handler, the user may specify
a pointer, which is passed to the error handler without
modification. This provides the user with the means
to pass any kind of data to the error handler
(e.g. some way to synchronize the error handler with the
rest of an application).

rxCount -— Number of ARINC825 objects received on a certain
handle/CAN bus (including the ones send by this node
itself)

rxLastTime -- Time of last reception

txCount -— Number of ARINC825 objects transmitted on a certain
handle/CAN bus

txLastTime -- Time of last transmission

errorCount -- Overall number of errors on a certain handle/CAN bus

errorlLast -— The last error, which occurred (see Errorcodes)
(Note: These are not necessarily CAN bus errors)

errorLastTime -- Approximated time of last error

errorCode -- Detailed info on the last CAN bus error

errorCodeTime -- Time of last CAN bus error

canStatus -—- Status of CAN bus (see Status-Busstates)

canErrorCountRx -- CAN RX error counter (see "Rules of error confinement”

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 29 of 109

Datatypes

in chapter 13.1.4 of ISO 11898-1)

canErrorCountTx —-- CAN TX error counter (see "Rules of error confinement"
in chapter 13.1.4 of ISO 11898-1)
reserved -- Reserved for future use, aligns structure
errorLostFrames -- Frames lost by either CAN controller or CAN driver
SEE ALSO

ARINC ERROR HANDLER
arincErrorHandler ()

Page 30 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

6.6 ARINC_RESULT

[Top] [Datatypes] [Types]
NAME

ARINC_RESULT -- Return type of all functions within this library

DESCRIPTION

On success functions within this library return ARINC_SUCCESS, otherwise
one of the error codes above (Errorcodes and NTCAN error codes).

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 31 of 109

Datatypes

6.7 ARINC_HANDLE

[Top] [Datatypes] [Types]

NAME
ARINC_HANDLE -- Handle to address a certain CAN bus
DESCRIPTION
A handle needs to be created using arincHandleOpen (). Every function within

this library needs to be passed a valid handle. By this means the functions
are connected to a certain physical CAN bus.

NOTES

ARINC HANDLES can be imagined as virtual CAN nodes. It is possible to open
multiple handles and each handle might have its own parameter set. A handle
can be shared by multiple threads, in such a case some restrictions need to
be observed. Foremost only one thread should configure and start an ARINC825
scheduling. Further restrictions will be noted together with the function
descriptions below.

If multiple handles are used on the same CAN node, care must be taken, that
only one handle configures the ARINC825 scheduling with arincIntervalSet ()

and starts it with arincScheduleStart ().

It is NOT possible to have multiple differently configured ARINC825 schedulers
on a single CAN node. The results will be undefined.

When a handle is no longer needed, it should be disposed using

arincClose (), in order to free system resources allocated by the handle.
SEE ALSO

arincHandleOpen ()

arincClose ()

Page 32 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Datatypes

6.8 ARINC_GROUP

[Top | [Datatypes | [Types]

NAME

ARINC GROUP -- Type of ARINC groups

DESCRIPTION

Use for member "group" of ARINC CMSG T/ARINC CMSG X struct.
Generally speaking, an ARINC group specifies the rate by which ARINC objects
get repeated in (group+l) multiples of time slice intervals.

For example:

Setting group to zero leads to objects within this group being transmitted
every time slice.

Setting group to four leads to objects within this group being transmitted
every fifth time slice.

There's one special group value: ARINC GROUP_RX

Using this as group value, defines the object as "receive only".

SEE ALSO

ARINC CMSG T

ARINC CMSG X
arincTxObjUpdateX ()
arincPollX ()
arincObjAddX ()
arincObjDeleteX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 33 of 109

Datatypes

6.9 ARINC_ERROR_HANDLER

[Top] [Datatypes] [Types]

NAME

ARINC_ERROR HANDLER -- Function pointer type for asynchronous error handler

DESCRIPTION

A function of this type can be registered using arincErrorHandler (), in
order to be asynchronously notified of any errors.

SEE ALSO

ARINC ERROR
arincErrorHandler ()

Page 34 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7 Functions

[Top][Generics]

DESCRIPTION

Library function descriptions

arincHandleOpen ()
arincClose ()
arincBaudrateSet ()
arincBaudrateSetX ()
arincBaudrateGet ()
arincBaudrateGetX ()
arincStatus ()
arincStatusReset ()
arincFormatError ()
arincErrorHandler ()
arincTimeGet ()
arincIntervalSet ()
arincIntervalGet ()
arincRxStart ()
arincRxStop ()
arincTxStart ()
arincTxStop ()
arincScheduleStart ()
arincScheduleStop ()
arincPollX ()
arincTxObjUpdateX ()
arincTxObjDisableX ()
arincWaitForTimeslot ()
arincObjAddX ()
arincObjDeleteX ()

O OO O0OO0OO0OO0OO0OO0OO0OO0ODO0OO0OO0ODO0OO0OO0OO0OO0OO0OO0OO0OO0OO0oOO0

NOTES

CAN FD has been introduced with ARINC825-4. The new functions with an appended
X are fully downward compatible and should be used for all future projects,
even 1f only CAN classic or previous ARINC825 versions are used.

Internally, the previous functions are based on the X functions.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 35 of 109

Functions

7.1 arincHandleOpen

[Top][Functions] [Functions]

NAME
arincHandleOpen
SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincHandleOpen (INT32 net,
ARINC HANDLE *pHnd,
UINT64 *pFreq)
FUNCTION

Opens a handle to access a certain CAN bus.

PARAMETERS

net -- IN:
The net number assigned to the desired CAN bus.

pHnd -- OUT:
Points to an ARINC HANDLE variable, which will be used to store the newly
created handle.

pFreq -- OUT:
Points to an UINT64 variable, which will be used to store the time tick
frequency. This can be set to NULL, if the frequency is not needed.

RESULT

Success: ARINC_ SUCCESS
Error: NTCAN INVALID PARAMETER - pHnd is NULL or one of the other
parameters out of range
NTCAN INSUFFICIENT RESOURCES - Not enough memory to allocate all
resources needed for the new handle
NTCAN NET NOT FOUND - The specified net wasn't found

SEE ALSO

arincClose ()
For some more notes on handles, have a look at ARINC HANDLE.

Page 36 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.2 arincClose

[Top] [Functions] [Functions]

NAME

arincClose

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincClose (ARINC HANDLE hnd)

FUNCTION

Closes a handle, which was previously opened by arincHandleOpen() .
All resources allocated by this handle will be freed, ARINC objects
will be deleted.

NOTES

A baud rate configured with this handle using arincBaudrateSet (),
won't be reset on arincClose (). This has to be done explicitly using
arincBaudrateSet () .

PARAMETERS

hnd -- IN:
The handle, that needs to be closed.

RESULT

Success: ARINC_ SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle was used
SEE ALSO

arincHandleOpen ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 37 of 109

Functions

7.3 arincBaudrateSet

[Top][Functions] [Functions]

NAME
arincBaudrateSet

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincBaudrateSet (ARINC HANDLE hnd,
UINT32 baud)

FUNCTION

Configures the baud rate for the CAN bus belonging to the given handle.
Several defines can be used (see CAN-Baudrate) in order to ease
configuration of a certain baud rate.

NOTES

Baud rate obviously is an attribute of the underlying CAN node and not of the
handle itself. In order to have other handles asynchronously notified about
the change in baud rate, one can make use of the "baud rate change event" in
NTCAN (please have a look at NTCAN docs).

PARAMETERS

hnd -- IN:
A valid handle, which is associated with the CAN bus to be reconfigured.
baud -- IN:
The desired baud rate. It can be set in many ways (e.g. using indices for
predefined baud rates, specifying baud rates numerically or programming the
BTRs of the CAN controller directly), please see NTCAN docs.

RESULT

Success: ARINC SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle or baud rate was used
SEE ALSO

CAN-Baudrate
arincBaudrateGet ()

Page 38 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.4 arincBaudrateSetX

[Top][Functions] [Functions]

NAME

arincBaudrateSetX

SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincBaudrateSet (ARINC HANDLE hnd,
ARINC BAUDRATE X *pBaud)
FUNCTION

Configures the arbitration and data phase baud rate for the CAN bus belonging

to the given handle. Several defines can be used (see CAN-Baudrate) in order
to

ease configuration of a certain baud rate.

NOTES

Baud rate obviously is an attribute of the underlying CAN node and not of the
handle itself. In order to have other handles asynchronously notified about
the change in baud rate, one can make use of the "baud rate change event" in
NTCAN (please have a look at NTCAN docs).

PARAMETERS

hnd -- IN:
A valid handle, which is associated with the CAN bus to be reconfigured.
pBaud -- IN:
The desired baud rate. It can be set in many ways (e.g. using indices for
predefined baud rates, specifying baud rates numerically or programming the
BTRs of the CAN controller directly), please see NTCAN docs.

RESULT

Success: ARINC SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle or baud rate was used
SEE ALSO

CAN-Baudrate
arincBaudrateGetX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 39 of 109

Functions

7.5 arincBaudrateGet

[Top][Functions] [Functions]

NAME

arincBaudrateGet

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincBaudrateGet (ARINC HANDLE hnd,
UINT32 *pBaud)

FUNCTION

Returns the baud rate configured for the CAN bus, which is associated with
the given handle.

NOTES

The baud rate is returned in the same format as it was formerly set by
arincBaudrateSetX () .

Since baud rate is an attribute of the underlying CAN node and not of the
handle itself, this function can be used to detect changes of the baud rate
of the CAN bus or to prevent re- and/or misconfiguration.

PARAMETERS

hnd -- IN:

A valid handle, which is associated with the CAN bus in question.
pBaud -- OUT:

The baud rate is returned within the variable pointed to by pBaud.

RESULT

Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle
NTCAN INVALID PARAMETER - An invalid baud rate was used

SEE ALSO

CAN-Baudrate
arincBaudrateSet ()

Page 40 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.6 arincBaudrateGetX

[Top] [Functions] [Functions]

NAME

arincBaudrateGetX

SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincBaudrateGetX (ARINC HANDLE hnd,
ARINC BAUDRATE X *pBaud)
FUNCTION

Returns the arbitration and data phase baud rate configured for the CAN bus,
which is associated with the given handle.

NOTES

The baud rate is returned in the same format as it was formerly set by
arincBaudrateSet ().

Since baud rate is an attribute of the underlying CAN node and not of the
handle itself, this function can be used to detect changes of the baud rate
of the CAN bus or to prevent re- and/or misconfiguration.

PARAMETERS

hnd -- IN:

A valid handle, which is associated with the CAN bus in question.
pBaud -- OUT:

The baud rate is returned within the variable pointed to by pBaud.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle
NTCAN INVALID PARAMETER - An invalid baud rate was used

SEE ALSO

CAN-Baudrate
arincBaudrateSetX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 41 of 109

Functions

7.7 arincStatus

[Top][Functions] [Functions]

NAME

arincStatus

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincStatus (ARINC HANDLE hnd,
ARINC STATUS *pStatus)

FUNCTION

Returns information about the current state of the CAN bus, software versions
and special ARINC825 information (e.g. last error and time of occurrence).

PARAMETERS

hnd -- IN:
A valid handle, which is associated with the CAN bus in question.

pStatus -- OUT:
A pointer to an ARINC STATUS structure, which will be filled with status
information.

RESULT

Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle
NTCAN_INVALID_PARAMETER - pStatus is NULL

SEE ALSO

CAN-errors
ARINC STATUS
arincStatusReset ()

Page 42 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.8 arincStatusReset

[Top] [Functions] [Functions]

NAME

arincStatusReset

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincStatusReset (ARINC HANDLE hnd)

FUNCTION

All dynamic status information stored within ARINC STATUS structure is
reset (s. ARINC STATUS description, fields are marked with (*)).

PARAMETERS

hnd -- IN:
A valid handle, which is associated with the CAN bus in question.

RESULT

Success: ARINC SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle
SEE ALSO

ARINC STATUS
arincStatus ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 43 of 109

Functions

7.9 arincFormatError

[Top][Functions] [Functions]

NAME
arincFormatError
SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincFormatError (ARINC RESULT error,
UINT32 type,
char *pBuf,
UINT32 bufsize)

FUNCTION

Returns a string representation of the given error code.

PARAMETERS

error —-- IN:
An error code returned by any of the functions contained in this library,
type -- IN:
Select between two string representations, a rather short one and a
verbose one (see Errorformats, types are defined in NTCAN) .

pBuf -- IN/OUT:

A pointer to a buffer, where the string is copied to.

Note:

If the buffer is too small, the string might get truncated.
bufsize -- IN:

Size of the target buffer.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID PARAMETER - pBuf is NULL, bufsize is zero or
type is no known output type

SEE ALSO

Errorformats

Page 44 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.10 arincErrorHandler

[Top] [Functions] [Functions |

NAME

arincErrorHandler

SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincErrorHandler (ARINC HANDLE hnd,
ARINC ERROR HANDLER Callback,
void *pParam,
ARINC RESULT errorCode)
FUNCTION

This function can be used to register an error handler function, which will
be called asynchronously on occurrence of certain error conditions in
combination with ARINC825 scheduling.

NOTES

You can specify only one single error handler per ARINC HANDLE.
The handler will only be triggered for the error codes listed below:
- ARINC CAN STATE CHANGE
- ARINC CAN ERROR
For the error handler to work, scheduling needs to be started on the same
handle.

PARAMETERS
hnd -- IN:
A valid handle.
pCallback —-- IN:

Function pointer of type ARINC ERROR HANDLER. Set to NULL to disable
error handler.
pParam —-- IN:
A pointer size argument, which will be passed as user parameter together
with other error information in ARINC ERROR structure to the error handler.

errorCode -- IN:
Specify an error code, you want the handler to be called for (to be chosen
from the list of supported codes above). Set to zero, in order to have it

called for all supported calls.

RESULT

Success: ARINC SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle
SEE ALSO

CAN-errors
ARINC ERROR HANDLER
ARINC ERROR

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 45 of 109

Functions

7.11 arincTimeGet

[Top][Functions] [Functions]

NAME
arincTimeGet
SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincTimeGet (ARINC HANDLE hnd,
UINT64 *pTime,
UINT32 *pStatus)

FUNCTION

Returns the current time and optionally its status.

NOTES

If you have a special CAN hardware (for example with an IRIG-B receiver),
the status of your time source will be returned via pStatus. In order to
decode the status correctly please refer to the respective documentation of
your IRIG-B hardware or of the accompanied library.

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.
pTime -- OUT:
Pointer to a UINT64, wherein the current time will be stored (s. ARINC-
Time) .
pStatus —-- OUT:
Pointer to a UINT32, wherein the status of time will be returned.
This may be set to NULL, if the status is of no interest or is not
available.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
NTCAN INVALID PARAMETER - pTime is NULL

SEE ALSO

ARINC-Time

Page 46 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.12 arinclntervalSet

[Top] [Functions] [Functions |

NAME
arincIntervalSet
SYNOPSIS
EXPORT ARINC RESULT PSYS_CALLTYPE arincIntervalSet (ARINC HANDLE hnd,
UINT64 time,
UINTo64 timeStart)

FUNCTION

Configures the ARINC825 scheduling interval and an optional start time.

NOTES

This function can not be called, when scheduling has already been started,
in such case call arincScheduleStop () or arincTxStop () first.

Scheduling won't be activated by this function, regardless of whether

the optional start time is used. Scheduling always needs to be activated by
arincScheduleStart () or arincTxStart ().

Beware:

Technically it is possible to call arincIntervalSet() with one

ARINC HANDLE, while scheduling has already been started by another.
This will lead to undeterministic scheduling behaviour and is generally
not advised.

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.
time -- IN:
Duration of an ARINC825 time slice (see ARINC-Time) .

timeStart -- IN:
Time, when the first time slice begins.
If set to zero, the scheduling will begin immediately after
arincScheduleStart () or arincTxStart () has been called.

RESULT

Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
ARINC ERROR SCHED ENABLED - Scheduling needs to be stopped
ARINC ERROR TIME NOT SET Failed to configure interval or start
time
time too small (below 1ms)

ARINC ERROR INTERVAL LOW

SEE ALSO

ARINC-Time
arincIntervalGet ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 47 of 109

Functions

7.13 arincintervalGet

[Top][Functions] [Functions]

NAME
arincIntervalGet
SYNOPSIS
EXPORT ARINC RESULT PSYS_CALLTYPE arincIntervalGet (ARINC HANDLE hnd,
UINT64 *pTime,
UINT64 *pTimeStart)

FUNCTION

Reads the currently configured ARINC825 scheduling interval.

NOTES

In *pTimeStart the start of the next time slice is returned. This is equal
to timeStart configured with arincIntervalSet () as long as scheduling has
not started, yet. When the start time has passed, the start of the next
time slice is returned.

PARAMETERS
hnd -- IN:
A valid handle of type ARINC HANDLE.
pTime -- OUT:
Pointer to UINT64, wherein the currently configured interval is returned.
pTimeStart -- OUT:

Pointer to UINT64, wherein the configured/current start time of the next
time slice is returned.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
NTCAN INVALID PARAMETER - pTime or pTimeStart is NULL

SEE ALSO

ARINC-Time
arincIntervalSet ()

Page 48 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.14 arincRxStart

[Top] [Functions] [Functions |

NAME
arincRxStart
SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincRxStart (ARINC HANDLE hnd,
INT32 prioMode,
INT32 prioRx)

FUNCTION

Starts the RX daemon thread independent of the TX daemon thread.

NOTES

Alternatively, use arincRxStart() and arincTxStart instead of
arincScheduleStart ().

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

prioMode -- IN:
Use one of the Thread-Priority defines to choose between high priority or
priority inheritance (both modes system independent) or manual
configuration of system dependent priorities.

prioRx -- IN:
Specify the priority of the RX daemon thread.
This parameter is used only, 1if prioMode is set to ARINC PRIO SET.
The priority value is system specific. Special care needs to be taken to
write a system independent application.

RESULT
Success: ARINC SUCCESS
Error: ARINC INVALID HANDLE - An invalid handle was used
ARINC INVALID PARAMETER - Invalid value for prioMode or prioRx,
prioTx are out of range for current host
system
SEE ALSO
arincRxStop ()
arincTxStart ()
arincTxStop ()

arincScheduleStart ()
arincScheduleStop ()
Thread-Priority

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 49 of 109

Functions

7.15 arincRxStop

[Top][Functions] [Functions]

NAME

arincRxStop

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincRxStop (ARINC HANDLE hnd)

FUNCTION

Deactivates the RX daemon thread.

NOTES

Alternatively, use arincRxStop() and arincTxStop instead of
arincScheduleStop () .

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

RESULT

Success: ARINC SUCCESS

Error: ARINC INVALID HANDLE - An invalid handle was used
SEE ALSO

arincRxStart ()

arincTxStart ()

arincTxStop ()

arincScheduleStart ()
arincScheduleStop ()

Page 50 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.16 arincTxStart

[Top] [Functions] [Functions |

NAME

arincTxStart

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincTxStart (ARINC HANDLE hnd,
INT32 prioMode,
INT32 prioTx)

FUNCTION
After a scheduling table has been defined (using arincObjAddX()) and time
slice duration has been configured (using arincIntervalSet()), the actual

TX scheduling is activated with this function.

NOTES

Even if a start time has been configured with arincIntervalSet() it is still
needed to call arincTxStart ().

If you want to develop an application, which non intrusively works within a
schedule configured by another application; you can use arincIntervalGet ()

to gather the needed timing information on this handle and avoid the otherwise
needed arincIntervalSet () call.

Alternatively, use arincRxStart () and arincTxStart instead of
arincScheduleStart () .

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

prioMode -- IN:
Use one of the Thread-Priority defines to choose between high priority or
priority inheritance (both modes system independent) or manual
configuration of system dependent priorities.

prioTx —-- IN:
Specify the priority of the TX daemon thread.
This parameter is used only, 1if prioMode is set to ARINC PRIO SET.
The priority value is system specific. Special care needs to be taken to
write a system independent application.

RESULT
Success: ARINC SUCCESS
Error: ARINC INVALID HANDLE - An invalid handle was used
ARINC INVALID PARAMETER - Invalid value for prioMode or prioRx,
prioTx are out of range for current host
system
ARINC ERROR NO INTERVAL - Scheduling can not be started,

because there's no valid time slice
interval configured, call

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 51 of 109

Functions

arincIntervalSet () before
arincTxStart ()

SEE ALSO

arincRxStart ()
arincRxStop ()
arincTxStop ()
arincScheduleStart ()
arincScheduleStop ()
arincIntervalSet ()
arincIntervalGet ()
Thread-Priority

Page 52 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.17 arincTxStop

[Top] [Functions] [Functions]

NAME

arincTxStop

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincTxStop (ARINC HANDLE hnd)

FUNCTION

Deactivates TX scheduling.

NOTES

If reconfiguration of scheduling table is needed, this function needs to be
called first.

Alternatively, use arincRxStop() and arincTxStop() instead of
arincScheduleStop () .

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

RESULT

Success: ARINC_ SUCCESS

Error: ARINC INVALID HANDLE - An invalid handle was used
SEE ALSO

arincRxStart ()

arincRxStop ()

arincTxStart ()

arincScheduleStart ()
arincScheduleStop ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 53 of 109

Functions

7.18 arincScheduleStart

[Top][Functions] [Functions]

NAME

arincScheduleStart

SYNOPSIS
EXPORT ARINC RESULT PSYS CALLTYPE arincScheduleStart (ARINC HANDLE hnd,
INT32 prioMode,
INT32 prioRx,
INT32 prioTx)
FUNCTION
After a scheduling table has been defined (using arincObjAddX()) and time
slice duration has been configured (using arincIntervalSet()), the actual
scheduling is activated with this function.
NOTES
Even if a start time has been configured with arincIntervalSet() it is still

needed to call arincScheduleStart().

If you want to develop an application, which non intrusively works within a
schedule configured by another application, you can use arincIntervalGet ()

to gather the needed timing information on this handle and avoid the otherwise
needed arincIntervalSet () call.

Alternatively, use arincRxStart() and arincTxStart() instead of
arincScheduleStart() .

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

prioMode -- IN:
Use one of the Thread-Priority defines to choose between high priority or
priority inheritance (both modes system independent) or manual
configuration of system dependent priorities.

prioRx -- IN:
Specify the priority of the RX daemon thread.
This parameter is used only, if prioMode is set to ARINC PRIO_ SET.
The priority value is system specific. Special care needs to be taken to
write a system independent application.

prioTx —-- IN:
Specify the priority of the TX daemon thread.
This parameter is used only, if prioMode is set to ARINC PRIO_SET.
The priority value is system specific. Special care needs to be taken to
write a system independent application.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used

Page 54 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

NTCAN INVALID PARAMETER - Invalid value for prioMode or prioRx,
prioTx are out of range for current host
system

ARINC ERROR _NO INTERVAL - Scheduling can not be started,

because there's no valid time slice
interval configured, call
arincIntervalSet () before
arincScheduleStart ()

SEE ALSO

arincScheduleStop ()
arincRxStart ()
arincRxStop ()
arincTxStart ()
arincTxStop ()
arincIntervalSet ()
arincIntervalGet ()
Thread-Priority

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 55 of 109

Functions

7.19 arincScheduleStop

[Top][Functions] [Functions]

NAME

arincScheduleStop

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincScheduleStop (ARINC HANDLE hnd)

FUNCTION

Deactivates scheduling.

NOTES

If reconfiguration of scheduling table is needed, this function needs to be
called first.

Alternatively, use arincRxStop () and arincTxStop () instead of
arincScheduleStop () .

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

RESULT

Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used

SEE ALSO

arincScheduleStart ()
arincRxStart ()
arincRxStop ()
arincTxStart ()
arincTxStop ()

Page 56 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.20 arincPollX

[Top] [Functions] [Functions |

NAME

arincPoll/arincPollX

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincPoll (ARINC HANDLE hnd,
ARINC CMSG T *pCmsg,
INT32 *pNum)
EXPORT ARINC RESULT PSYS CALLTYPE arincPollX (ARINC HANDLE hnd,
ARINC CMSG X *pCmsg,
INT32 *pNum)

FUNCTION

By means of arincPollX () the current state of any ARINC825 object (regardless,
if TX or RX object) can be polled. The state consists of the number of valid
data bytes as well as currently contained data bytes, timestamp of last
reception/transmission and transmission and reception counters. The length
field also contains information if the object has received any data yet
(ARINC_NO DATA) or if the data has been updated since last call of

arincPollX () (ARINC OLD DATA) .
PARAMETERS
hnd -- IN:
A valid handle of type ARINC HANDLE.
pCmsg -- IN/OUT:

Pointer to one or more ARINC CMSG T/ARINC CMSG X structures. These have to

be initialized

with the CAN IDs of the ARINC objects in question prior to calling
arincPollX () .

pNum -- IN/OUT:

Pointer to an INT32, which determines the number of objects pCmsg is

pointing to (and thus the number of objects to poll).

The value of polled objects (this might be lower, than the number

requested, if an error occurred) is returned via pNum.

RESULT

Success: ARINC_ SUCCESS

Error: NTCAN INVALID HANDLE - An invalid handle was used

NTCAN INVALID PARAMETER - Either pCmsg and/or pNum is NULL

SEE ALSO

arincObjAddX ()

arincObjDeleteX ()

arincTxObjUpdateX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 57 of 109

Functions

7.21 arincTxObjUpdateX

[Top][Functions] [Functions]

NAME

arincTxObjUpdate/arincTxObjUpdateX

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincTxObjUpdate (ARINC HANDLE hnd,
ARINC CMSG T *pCmsg,
INT32 *pNum)
EXPORT ARINC RESULT PSYS CALLTYPE arincTxObjUpdateX (ARINC HANDLE hnd,
ARINC CMSG X *pCmsg,
INT32 *pNum)

FUNCTION

Updates the data of one or more objects formerly added by arincObjectAdd() .

NOTES

This function works only for ARINC825 "transmit" objects (group >= 0)
and not on ARINC objects of ARINC GROUP RX.

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.
pCmsg —-- IN:
Pointer to one or more ARINC CMSG T/ARINC CMSG X structures. These have to
contain the
number of data bytes as well as the bytes themselves and the CAN ID as
reference of the objects (other parts of ARINC CMSG T/ARINC CMSG X structure
are ignored) .
pNum -- IN/OUT:
Pointer to an INT32, which determines the number of objects pCmsg is
pointing to (and thus the number of objects to update).
The value of updated objects (this might be lower, than the number
requested, if an error occurred) is returned via pNum.

RESULT
Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
NTCAN INVALID PARAMETER - Either pCmsg and/or pNum is NULL
ARINC ERROR ID NOT FOUND - The CAN ID of a given object was not
found. Call arincObjAddX () first.
ARINC ERROR_NOT TX - A given object was not configured as a

TX object (group >= 0)

SEE ALSO

arincObjAddX ()
arincObjDeleteX ()
arincPollX ()

Page 58 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.22 arincTxObjDisableX

[Top] [Functions] [Functions |

NAME

arincTxObjDisable/arincTxObjDisableX

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincTxObjDisable (ARINC HANDLE hnd,
ARINC CMSG T *pCmsg,
INT32 *pNum,
INT32 flag)
EXPORT ARINC RESULT PSYS CALLTYPE arincTxObjDisableX (ARINC HANDLE hnd,
ARINC CMSG X *pCmsg,
INT32 *pNum,
INT32 flag)

FUNCTION

Disables or enables an ARINC825 "transmit" object. If disabled, this object
won't be transmitted any longer.

NOTES

This function works only for ARINC825 "transmit" objects (group >= 0).
On ARINC825 objects of ARINC GROUP_RX the call has no effect.

By default, a newly created ARINC object is enabled.

(De-)activation of ARINC825 objects (even if done within one call for more
than one object) is NOT atomic. Also, there's no guarantee, the given objects
are dis-/enabled within one timeslot. This is done to prevent any disturbance
of the scheduling, even if large amounts of objects are dis-/enabled.

PARAMETERS

hnd -- IN:
A valid handle of type ARINC HANDLE.

pCmsg —-- IN:
Pointer to one or more ARINC CMSG T/ARINC CMSG X structures. These have to
contain the CAN ID as reference of the objects (other parts of
ARINC CMSG T/ARINC CMSG X structure are ignored).

pNum -- IN/OUT:
Pointer to an INT32, which determines the number of objects pCmsg is
pointing to (and thus the number of objects to dis-/enable).
The value of dis-/enabled objects (this might be lower, than the number
requested, if an error occurred) is returned via pNum.

flag -- IN:
Setting flag true (unequal zero) disables the referenced ARINC825 objects.
Setting this flag zero, reenables the objects.

RESULT

Success: ARINC_SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 59 of 109

Functions

NTCAN INVALID PARAMETER - Either pCmsg and/or pNum is NULL
ARINC ERROR_ID NOT FOUND - The CAN ID of a given object was not
found. Call arincObjAddX () first.

SEE ALSO

arincObjAddX ()
arincObjDeleteX()
arincTxObjUpdateX ()

Page 60 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

7.23 arincWaitForTimeslot

[Top] [Functions] [Functions]

NAME

arincWaitForTimeslot

SYNOPSIS

EXPORT ARINC RESULT PSYS_CALLTYPE arincWaitForTimeslot (ARINC HANDLE hnd,
INT32 timeout)

FUNCTION

Function returns, when a new time slice begins, or when timeout expired.

NOTES

Scheduling needs to be started, before this function is called.

PARAMETERS

hnd -- IN:

A valid handle of type ARINC HANDLE.
timeout -- IN:

Timeout in milliseconds.

RESULT
Success: ARINC SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
ARINC ERROR SCHED DISABLED - Function called without scheduling
enabled
NTCAN RX TIMEOUT - Timeout expired without receiving a

new time slice event from hardware.
Either this happens on purpose (e.g.
due to small timeouts) or there's a
severe problem in scheduling.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 61 of 109

Functions

7.24 arincObjAddX

[Top][Functions] [Functions]

NAME

arincObjAdd/arincObjAddx

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincObjAdd (ARINC HANDLE hnd,
ARINC CMSG T *pCmsg,
INT32 *pNum)
EXPORT ARINC RESULT PSYS CALLTYPE arincObjAddX (ARINC HANDLE hnd,
ARINC CMSG X *pCmsg,
INT32 *pNum)

FUNCTION

Add one or more objects to an ARINC825 scheduling table. The number of
objects pointed to by pCmsg has to be specified in pNum.

Every object has ARINC825 attributes, such as group, column (m) and
slice index (n). By setting group to ARINC GROUP RX a receive object
is added (in this case m and n are ignored).

NOTES

Scheduling needs to be stopped, before this function is called.

Objects are referenced by their CAN-IDs. Each CAN-ID can be added once, only.
pNum returns the number of successfully added objects. Normally this wvalue
shouldn't change, but in case of an error it might be used to determine,
which object was cause of the error. Once an object was added, it

won't be removed if an error occurs with one of the subsequent objects.

PARAMETERS

hnd -- IN:
A handle of type ARINC HANDLE.

pCmsg —-- IN:
Pointer to one or more ARINC CMSG T/ARINC CMSG X, which will be added to the
schedule.

pNum -- IN/OUT:
Pointer to a INT32, which determines the
number of objects pCmsg is pointing to. When returning, it contains the
number of successfully added objects.

RESULT
Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
NTCAN INVALID PARAMETER - Either pCmsg or pNum was NULL, or one

of the objects contained invalid
attributes (e.g. an invalid ARINC
group was specified

or "n" didn't fit group)

Use pNum to find the object

Page 62 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

ARINC ERROR SCHED ENABLED

NTCAN_ INSUFFICIENT RESOURCES

ARINC ERROR ID BUSY
ARINC_ERROR COL_BUSY

SEE ALSO

arincObjDeleteX ()

arincScheduleStart () or arincTxStart()
has been called before. Scheduling
needs to be stopped, before adding
new objects

Not enough memory to add another
object

The CAN ID has already been added

The column with the specified group
and slice index is already occupied

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 63 of 109

Functions

7.25 arincObjDeleteX

[Top][Functions] [Functions]

NAME

arincObjDelete/arincObjDeleteX

SYNOPSIS

EXPORT ARINC RESULT PSYS CALLTYPE arincObjDelete (ARINC HANDLE hnd,
ARINC CMSG T *pCmsg,
INT32 *pNum)
EXPORT ARINC RESULT PSYS CALLTYPE arincObjDeleteX (ARINC HANDLE hnd,
ARINC CMSG X *pCmsg,
INT32 *pNum)

FUNCTION

Delete one or more objects from an ARINC825 scheduling table. The number of
objects pointed to by pCmsg has to be specified in pNum.

The ARINC825 attributes, such as group, column (m) and

slice index (n) are ignored by this call.

NOTES

Scheduling needs to be stopped, before this function is called.

Objects are referenced by their CAN ID.

pNum returns the number of successfully deleted objects. Normally this value
shouldn't change, but in case of an error it might be used to determine,
which object was cause of the error. Once an object was deleted, it

won't be readded if an error occurs with one of the subsequent objects.

PARAMETERS

hnd -- IN:
A handle of type ARINC HANDLE.

pCmsg —-- IN:
Pointer to one or more ARINC CMSG T/ARINC CMSG X, which will be deleted from
schedule.

pNum -- IN/OUT:
Pointer to an INT32, which determines the number of objects pCmsg is
pointing to. When returning, it contains the number of successfully
deleted objects.

RESULT
Success: ARINC_ SUCCESS
Error: NTCAN INVALID HANDLE - An invalid handle was used
NTCAN INVALID PARAMETER - Either pCmsg or pNum was NULL, or one
Of the objects contained invalid
attributes
Use pNum to find the object.
ARINC ERROR_SCHED ENABLED - arincScheduleStart () or arincTxStart ()

Has been called before.

Page 64 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

Functions

Scheduling needs to be stopped, before
deleting objects.

ARINC_ERROR ID NOT_ FOUND - The CAN ID has not been previously
added.

SEE ALSO

arincObjAddX ()

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 65 of 109

ARINC825 LabVIEW Library

8 ARINCS825 LabVIEW Library

INTRODUCTION
The included VIs offer you the possibility to use the ARINC825 time slice scheduling on esd CAN

hardware. In general, there are two sets of VIs.

One set, called A825 VIs (signal-based VIs), provides a project file-based signal approach, probably
most suitable for most LabVIEW users.

The other set, called ARINC VIs (native VIs), offers direct access to the entire ARINC825 library,
tailored for the experienced user with programming knowledge, who wants to have control over every

detail.

REQUIREMENTS

LabVIEW Version: LabVIEW 2013 or later

CAN Interface: esd CAN Interface, best with esd 400 family with IRIG-B
Support (e.g. PMC-CAN/400-4 IRIG-B)

CAN Diriver: esd CAN Driver with NTCAN Library Support

ARINCS825 Library: Version 1.1.15 or later

IRIG-B LabVIEW Library (only|Version 13.1.1 or later

with CAN Interface with IRIG-B):

8.1 Archive contents
The LabVIEW_ARINC825_ VERSION.zip archive contains following folders:

| -- ARINC825 LabVIEW Examples
“-— user.lib
"-- LabVIEW can arinc825_ esd
| -- SubvI
|-- VIs

8.2 Installation

- Install CAN SDK from ARINC825 CD or CAN CD.
(Select IRIG-B Option if you have a CAN interface with IRIG-B option).
- Install ARINC 825 Library from ARINC825 CD.
Copy the user.1lib folder from LabVIEW ARINC825 VERSION.zip into your LabVIEW

installation.

Page 66 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.3 Basic Usage Information

In order to use either set of VIs, you must first acquire a handle that must be passed to all successive
VIs. There are two different handles, one for each set of Vils.

The ARINC (native) handle is returned from "nativeArincHandleOpen.vi" and can be used with the
ARINC Vs only.

The A825 (also called "project handle") is returned from "A825ProjectOpen.vi". It is advised to use
this project handle with the set of A825 VIs, nevertheless it can also be used with the set of ARINC
Vis.

For further information on general functionality of ARINC825 and/or every single VI please have a
look at one or more of the following references:

- Context help of the Vls inside of LabVIEW (probably the easiest and most convenient option)

- Examples included within the archive may give good starting points

- HTML documentation of esd's ARINC825 library (included with the library)

- esd's NTCAN API documentation for further information on CAN (http://esd.eu/en/products/can-sdk)
- ARINC825 specification (http://esd.eu/en/manuals/arinc825-software-manual)

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 67 of 109

http://esd.eu/en/products/can-sdk
http://esd.eu/en/manuals/arinc825-software-manual

ARINC825 LabVIEW Library

8.4 A825 VIs (Signal Based VIs)

The A825 VIs (Signal Based VIs) provide a project file-based signal approach, probably most suitable
for all LabVIEW users.
These VIs are named with the prefix “A825”. Their VI icons look like this (e.g.):

OVERVIEW OF A825 ViIs:
A825Error2String
A825Info
A8250bijectPoll
A8250bhjectSend
A8250bijectTrigger
A825ProjectClose
A825ProjectOpen
A825ScheduleStart
A825ScheduleStop
A825SignalPoll
A825SignalTrigger
A825SignalUpdate
A825Status
A825StatusReset
A825TimeGet
A825TxObjectDisable
A825TxObjectUpdate

The parameters of the A825 VIs are described in the online help. Click with the right mouse button on
a parameter to open the context menu which contains further information about this parameter.

An example of a project file is given in chapter: “Example of a Project File”, page 76.

Page 68 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.1 A8B25Error2String

¥ inError
outErrorText

Convert any error code from the ARINCE25 VT's into a human readable string.

EXPORT int CALLTYPE A825Error2String(const int inError, char * const cutErrorText);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 69 of 109

ARINC825 LabVIEW Library

8.4.2 A825Info

FErTOr in (no errol
error out ¥

function return ¥
outMumbMets *
outSernalMurmber

Provides information about the esd CAN hardware in the system.

EXPORT int CALLTYPE A825Info(int32_t * const outMumbMets, char * outSenalMumbers);

Page 70 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.3 A8250DbjectPoll

Ferror in (no errol

¢ inCanld

v inHndProject
error out H

function return ¥

outllata H
cutFlags »
cutlen r

outTime ¥

Retrieve the current state of an ARINCE25 chject, referenced by a CANID. This may be an RX as well as TX object.

MNote:
One ARINCE25 object may contain multiple signals.

EXPORT int CALLTYPE AB250bjectPoll{const uint32_t inHndProject, const int32_t inCanld, uintd_t * const cutLen, uinté4_t * const outData, uint32_t * const cutFlags, uintdd_t * const cutTime);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 71 of 109

ARINC825 LabVIEW Library

8.4.4 AB250bjectSend

Ferror in (no errol

r inCanld

r inData

v inHndProject
r inLen

error out ¥
function return ¥

Manually send an ARINCEZ25 object (identical to CAM frame in this case).
If there's an ARINCE2S object with the sarme CAMN ID defined in the project, this object will get updated in the process.

EXPORT int CALLTYPE A8250bjectSend(const uint32_t inHndProject, const int32_t inCanld, const uintd_t inLen, const uintd4_t inData);

Page 72 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.5 A8250DbjectTrigger

Ferror in (no errol

¢ inCanld

v inHndProject
error out H

function return ¥

Manually trigger the transmission of an ARINCE25 object in its current state.

EXPORT int CALLTYPE AB250bjectTrigger(const uint32_t inHndProject, const int32_t inCanld);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 73 of 109

ARINC825 LabVIEW Library

8.4.6 AB25ProjectClose

FError in (no errol

v inHndProject
error out H

function return K

Close a project, formerly opened with "A825 Project Openai”,

Mote: This has to be called BEFORE stopping your LabView application, in order to assure a correct cleanup!

EXPORT int CALLTYPE AB25ProjectClose(const uint32_t inHndProject);

Page 74 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.7 AB25ProjectOpen

Ferror in (no errol

v inFilename

v incutBaud

¢ inouthet

rinoutTimelntery

v inoutTime5start
error out H

function return K

inoutBaud out ¥
inoutMet out »
incutTirmelnters+
inoutTirmeStart
cutdrincd25Libr
outBoardld ¥

outBoardstatus ¥

outCanCtr Type*
outCanLibraryVer
cutDriverVersiort

outFeatures

outFirmwareyer »

outHardwareVerr
cutHndProject ¥
outMumObjects:
outMumbSignals »

outSernalMurmber

outTimeFreq ¥

Open a project file and return a project handle as reference for all successive ARINCE25 VT's,
The various inputs may be used to override certain parameters of the specified project file,

Mote: In contrast to the ARINCB25-C-API "AB25 Project Open.vi” provides some static information, nermally provided by arincStatus().
This is done for the users convenience and should be selfexplanatory in its use,

EXPORT int CALLTYPE AB25ProjectOpen(const char * const inFilename, int * const inouthet, uint32_t * const inoutBaud, uintGd_t * const outTimeFreq, uint4_t * const inoutTimeStart, uintd_t * const inoutTimelnterval, uint32_t *
hnnst outNumObjects, uint32_t * const outMumSignals, uint32_t * const inoutlrigBInput, uint32_t * const inoutlrigBMode, uint32_t * const outHndProject);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 75 of 109

ARINC825 LabVIEW Library

8.4.7.1 Example of a Project File

The VI A825ProjectOpen opens a project file. For example:

LabView ARINC825 project file
Comment lines are allowed everywhere and have to be preceded by a hash character '#'

The project file needs at least a "ARINC825Config" section.
Sections are defined by section name in square brackets ("[", "]").

There should be only one project file per CAN bus.

All project files on the same CAN board should have the same IRIG-B configuration,
otherwise, the last one loaded will take effect.

Two more sections may be used:
"ARINC8250bjects" to define ARINC825/CAN objects
"ARINC825Signals" to map LabView signal names into CAN objects

Numerical values may be specified in decimal or hexadecimal (beginning with "0x")
otation.

To separate values, space as well as tabs may be used.

H= o D S S S S S S S S S S S S S S H S

[ARINC825Config]

Following values may be set (omitted values are set to default):

Net (default: 0) - Number of CAN bus

Baud (default: 0 (1MBit/s)) - Baud rate on CAN bus

Timeslice (default: 0x0000000080000000 (0.5s)) - Duration of time slice

IRIGBInput (default: 0) - To choose input of IRIG-B signal
(0: Analog Front, 1: Digital
Front)

IRIGBMode (default: 0) - To choose evaluation year in
IRIB-B signal

(0: No year information,

1: Year embedded in IRIG-B
signal)

Net=0

Baud=0

Timeslice=0x1312D00

[ARINC8250bjects]

Each object is defined by CAN ID, ARINC 825 group (G), ARINC 825 column (M),

ARINC 825 slice index (N), length of CAN frame (LEN) and optionally up to eight
data bytes (D0-D7)

At first three RX objects (set G = -1)...

CANID G M N LEN DO D1 D2 D3 D4 D5 D6 D7
0x20000100 -1 0 0 1

0x20000101 -1 0 O 8

0x20000102 -1 0 O 8

... and then three more TX objects

0x20000000 0 O O 8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x20000001 1 O O 8 0x00 0x00 0x00 0x00 0x00 0x00 O0x00 0x00
0x20000002 2 0 0 4 0x00 0x00 0x00 0x00

[ARINC825Signals]

NAME: Signal name, 16 characters at max (case insensitive, may obviously NOT begin
with '#')

CANID: CAN ID of CAN object the signal is mapped to

BitMin: Range [0..BitMax] (beginning with "byte 0, bit 0" up to "byte 7 bit 7")

BitMax: Range [BitMin..63] (beginning with "byte 0 bit 0" up to "byte 7 bit 7")

Page 76 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

NAME
Temperaturel
Pressurel
Temperature?2
Pressure?2

CurrentX
CurrentY

ButtonA
ButtonB
ButtonC
ButtonD

SelectorsS

LED1
LED2
LED3
LED4

#PositionX
#PositionY

CANID

0x20000000
0x20000000
0x20000000
0x20000000

0x20000001
0x20000001

0x20000002
0x20000002
0x20000002
0x20000002

0x20000002

0x20000100
0x20000100
0x20000100
0x20000100

0x20000101
0x20000102

BitMin

0
16
32
48

24
25
26
27

w N PO

0
0

BitMax
15
31
47
63

31
63

24
25
26
27

w N = O

63

ARINC 825 Library

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

Page 77 of 109

ARINC825 LabVIEW Library

8.4.8 A825ScheduleStart

b errar in (no errol
b inHndProject
error out ¥

function return ¥

Start the ARINCE25 timeslice scheduling, after your project has been loaded and everything is configured as needed.

Mote: If you are using CAN hardware with special timestamp sources (e.g. [RIG-B), you need to assure,
that your tirnebase is stable BEFORE starting the scheduler.

EXPORT int CALLTYPE AB255cheduleStart(const uint32_t inHndProject);

Page 78 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.9 A825ScheduleStop

FError in (no errol

v inHndProject
error out H

function return ¥

Stop the ARIMCEZ25 timeslice scheduling. This is needed in order to perform configuration changes.

EXPORT int CALLTYPE AB255cheduleStop(const uint32_t inHndProject);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 79 of 109

ARINC825 LabVIEW Library

8.4.10 A825SignalPoll

Ferror in (no errol

v inHndProject

v inSignalname

error out b

function return ¥

outData r

cutFlags »

outTime H

Get the current value of a signal defined in your project. The signal is referenced by its name.

EXPORT int CALLTYPE A8255ignalPoll{const uint32_t inHndProject, const char ®
const inSignalname, uintéd_t * const cutData, uint32_t * const cutFlags, uintGd_t * const ocutTime);

Page 80 of 109

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

ARINC 825 Library

ARINC825 LabVIEW Library

8.4.11 A825SignalTrigger

*errorin (no errol
v inHndProject
b inSignalname

error out ¥
function return ¥

Triggers the transmission of the entire ARINCE25 object the referenced signal is located in.
Of course all other signals located within the same chject are transmitted as well (obvicusly).

EXPORT int CALLTYPE AB255ignalTrigger{const uint32_t inHndProject, const char * const inSignalname);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 81 of 109

ARINC825 LabVIEW Library

8.4.12 A825SignalUpdate

Ferror in (no errol
b inData

b inHndProject
b inSignalname

error out ¥
function return ¥

Change the value of a signal. Most commonly used on signals located in ARINCE25 objects scheduled for transmission,

Mote: This VT does not trigger the transmission itself,

EXPORT int CALLTYPE AB255ignallUpdate(const uint32_t inHndProject, const char * const inSignalname, const uinté4_t inData);

Page 82 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.13 A825Status

FErTor in (no errol
v inHndProject
error out ¥

function return ¥

autCanErrorCour

cutCanErrorCour
outCanStatus ¥
ocutErrorCode »
cutErrorCodeTire
cutErrorCount »

outErrorLast ¥

autErrorLastTim®+

cutErrorLostFrart
outRxCount ¥
outRxLastTime »
cutTime ¢
outTxCount »
outTxLastTime »

Provides a bunch of status information.

MNote: In contrast to the ARINCB25-C-API "A825 Status.vi” provides information subject to change,
instead of providing all infos nermally provided by arincStatus(). This is done for the users convenience
and should be selfexplanatery in its use. The static information is to be found as output of "A825 Project Openavi”,

EXPORT int CALLTYPE AB255tatus{const uint32_t inHndProject, uint64_t * const cutTime, uint32_t * const cutRxCount, uinté4_t * const cutRxlastTime, uint32_t * const cutTxCount, uintéd_t *
const outTxLastTime, uint32_t * const outErrorCount, int32_t * const outErrorLast, uintdd_t * const outErrorLastTime, uint32_t * const outErrorCode, uintdd_t * const outErrorCodeTime, uint8_t *
const outCanStatus, uint8_t * const outCanErrorCountRux, uintd_t * const outCanErrorCountTx, uint32_t * const outErrorLostFrames);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 83 of 109

ARINC825 LabVIEW Library

8.4.14 A825StatusReset

FError in (no errol
v inHndProject
error out ¥

function return ¥

Resets the information delivered by "AB25 Status.wvi”, such as error counters, TX- and RX-frame counters,

Mote:
The CAM RX- and TX-error counters will not be reset by this function, This is not even possible with most CAN controllers. With

EXPORT int CALLTYPE AB255tatusReset(const uint32_t inHndProject);

Page 84 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.15 A825TimeGet

Ferror in (no errol
v inHndProject
error out H
function return ¥
outTime r
outTimeStatus »

Get current timestamp.

EXPORT int CALLTYPE A825TimeGet{const uint32_t inHndProject, uintdd_t * const cutTime, uint32_t * const cutlrigBStatus);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 85 of 109

ARINC825 LabVIEW Library

8.4.16 A825TxObjectDisable

rerror in (no errol

v inCanld

v inFlagDisable

v inHndProject
error out ¢

function return ¥

While ARINCE25 scheduling is in process, this VI can be used to temporarily disable an ARINCE25 ohject,
rmeaning it will not be scheduled, unless it is reenabled again with this VI,

EXPORT int CALLTYPE AB25Tx0ObjectDisable(const uint32_t inHndProject, const int32_t inCanld, const int32_t inFlagDisable);

Page 86 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.4.17 A825TxObjectUpdate

Ferror in (no errol

g inCanld

* inData

b inHndProject
* inLen

error out ¥
function return ¥

Update the contents of an ARINCE2S object.

Mote: This VI does not trigger the transmission itself,

EXPORT int CALLTYPE A825Tx0ObjectUpdate(const uint32_t inHndProject, const int32_t inCanld, const uint8_t inLen, const uintéd_t inData);

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 87 of 109

ARINC825 LabVIEW Library

8.5 ARINC VIs (Native VIs)

The ARINC Vis (Native VIs) offer direct access to the entire ARINC825 library, tailored for the
experienced user with programming knowledge, who wants to have control over every detail.
These VIs are named with the prefix “ARINC”. Their VI icons look like this (e.g.):

-

OVERVIEW OF ARINC Vis:
ArincBaudrateGet
ArincBaudrateSet
ArincClose
ArincError2String
ArincHandleOpen
ArincintervalGet
ArincintervalSet
ArincObjAdd
ArincObjDelete
ArincPoll
ArincRxStart
ArincRxStop
ArincScheduleStart
ArincScheduleStop
ArincStatus
ArincStatusReset
ArincTimeGet
ArincTxObjDisable
ArincTxObjUpdate
ArincTxStart
ArincTxStop
ArincWaitForTimeslot

Page 88 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.1 ArincBaudrateGet

B

Ferror in (no errol

¢ inHnd
error out H

function return ¥
outBaud ¢

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincBaudrateGet().

EXPORT int CALLTYPE nativeArincBaudrateGet{const uint32_t inHnd, const uint32_t * cutBaud):

See page 40 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 89 of 109

ARINC825 LabVIEW Library

8.5.2 ArincBaudrateSet

E

Ferror in (no errol

r inBaud

r inHnd
error out H

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincBaudrateSet().

EXPORT int CALLTYPE nativefrincBaudrateSet{const uint32_t inHnd, const uint32_t inBaud):

See page 38 for the ARINC 825 library function description.

Page 90 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.3 ArincClose

]

FError in (no errol

¢ inHnd
error out H

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincClase().

EXPORT int CALLTYPE nativefrincClose(const uint32_t inHnd):

See page 37 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 91 of 109

ARINC825 LabVIEW Library

8.5.4 ArincError2String

i

r inError
outErrorText o

Convert any error code from the ARINCE25 VI's into a hurnan readable string.

EXPORT int CALLTYPE nativeArincError2String(const int inError, char * const cutErrorT ext);

See page 44 for the ARINC 825 library function description.

Page 92 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.5 ArincHandleOpen

FError in (no errol
* inMet
error out ¥

function return ¥
outdrincB25Libr
autBoardld ¥

cutBoardstatus »
cutCanCtri Type*
cutCanLibraryVer
cutDriveryersior®

outFeatures ¥

autFirmwareVer »

outFreq b
outHardwareVerr
outHnd r

outSerialMumber

The "native" VI set directly calls ARINCE25 library functions. Please refer to the documentation of arincHandleOpen().

Mote: This VI provides some more outputs than the arincHandleOpen(] library call.
The ARINCE25 library delivers the same information via arincStatus().

EXPORT int CALLTYPE nativeArincHandleOpen(const uint32_t inMet, uint32_t * const cutHnd, uinté4_t * const cutFreq, uintl6_t * const cutHardwareVersion, uintlé_t * const outFirmwareVersion,
uintl6_t * const outDriverVersion, uintlG_t * const outCanlibranyVersion, uint32_t * const outBoardstatus, char * const cutBoardld, char * const outSerialMumber, uintl6_t * const outFeatures,
uintlé_t * const outArincB25LibraryVersion, uintd_t * const outCanCtrlType);

See page 36 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 93 of 109

ARINC825 LabVIEW Library

8.5.6 ArinciIntervalGet

i

Ferrorin (no errol
* inHnd

error out b

function return ¥

outTime r
outTimeSstart »

The "native" VI set directly calls ARINCE2S library functions,
Pleasze refer to the documentation of arinclntervalGet().

EXPORT int CALLTYPE natveArincInterval Get{const uint32_t inHnd, uintdd_t * const outTime, uintdd_t * const outTimeStart):

See page 48 for the ARINC 825 library function description.

Page 94 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.7 ArinclntervalSet

B

Ferror in (no errol

* inHnd
¥ inTime
b inTimeStart

error out b

function return ¥

The "native” VI set directly calls ARINCE25 library functions,
Please refer to the documentation of arincIntervalSet().

Mote:
May only be used, while scheduling is NOT started.

EXPORT int CALLTYPE nativeArincIntervalSet{const uint32_t inHnd, const uintdd_t inTime, const uintdd_t inTimeStart):

See page 47 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 95 of 109

ARINC825 LabVIEW Library

8.5.8 ArincObjAdd

El

Ferror in (no errol

FinARIMC_CRMSG

r inHnd
error out H

function return ¥
inoutMum out ¥

The "native" VI set directly calls ARINCE2S library functions.
Please refer to the documentation of arincObjectAdd().

EXPORT int CALLTYPE nativelArincObjAdd{const uint32_t inHnd, ARINC_CMS3G_T * const inCmsg, int32_t * const inoutMum];

See page 62 for the ARINC 825 library function description.

Page 96 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.9 ArincObjDelete

|

Ferror in (no errol
FinARIMC_CRMSG
¢ inHnd
error out H
function return ¥

The "native” VI set directly calls ARINCE2S library functions.
Please refer to the documentation of arincObjectDelete().

EXPORT int CALLTYPE nativeArincObjDelete(const uint32_t inHnd, ARINC_CMSG_T * const inCmsg, int32_t * const inoutMum);

See page 64 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 97 of 109

ARINC825 LabVIEW Library

8.5.10 ArincPoll

-

Ferrorin (no errol
FinARIMC_CRMSG
* inHnd

error out b

function return ¥

inoutMum out ¥
aut&RIMNC_Ch S

The "native" VI set directly calls ARINCE2S library functions.
Please refer to the documentation of anincPoll().

EXPORT int CALLTYPE nativeArincPeoll{const uint32_t inHnd, ARINC_CMSG_T * const inoutCmsg, int32_t * const inoutMum);

See page 57 for the ARINC 825 library function description.

8.5.11 ArincRxStart

E

FError in (no errol
* inHnd
error out ¥

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincRxStart().

EXPORT int CALLTYPE nativefrincRx5tart{const uint32_t inHnd):

See page 49 for the ARINC 825 library function description.

Page 98 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.12 ArincRxStop

B

Ferror in (no errol

¢ inHnd
error out H

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincRxStop().

EXPORT int CALLTYPE nativelrincRx5top(const uint32_t inHnd);

See page 50 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 99 of 109

ARINC825 LabVIEW Library

8.5.13 ArincScheduleStart

&l

FError in (no errol
* inHnd
error out ¥

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincScheduleStart().

EXPORT int CALLTYPE nativefrincScheduleStart{const uint32_t inHnd):

See page 54 for the ARINC 825 library function description.

8.5.14 ArincScheduleStop

|

FError in (no errol
* inHnd
error out ¥

function return ¥

The "native” VI set directly calls ARINCE25 library functions,
Please refer to the documentation of arincScheduleStop().

EXPORT int CALLTYPE nativefrincScheduleStopiconst uint32_t inHndProject);

See page 56 for the ARINC 825 library function description.

Page 100 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.15 ArincStatus

]

kerror in (no errol

* inHnd

error out b

function return ¥

outCanErrorCour

ocutCanErrorCour

outCanstatus »

outErrorCode »

outErrorCodeTirr

outErrorCount »

outErrorLast

outErrorLastTim+

outErrorLostFrart

outRxCount ¥

outRxLastTime

outTime H

outTxCount ¥

outTxLastTime ¥

The "native” VI set directly calls ARINCE25 library functions,
Please refer to the documentation of arincStatusReset().

EXPORT int CALLTYPE nativefinincStatusReset(const uint32_t inHnd);

See page 42 for the ARINC 825 library function description.

ARINC 825 Library

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

Page 101 of 109

ARINC825 LabVIEW Library

8.5.16 ArincStatusReset

i

FEFTOr in (no errol

r inHnd
error out H

function return K

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincStatusReset().

EXPORT int CALLTYPE nativefrincStatusReset(const uint32_t inHnd):

See page 43 for the ARINC 825 library function description.

Page 102 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.17 ArincTimeGet

i

Ferror in (no errol
¢ inHnd
error out H
function return ¥
outTime r
outTimeStatus ¥

The "native" VI set directly calls ARINCE2S library functions.
Please refer to the documentation of arincTimeGet().

EXPORT int CALLTYPE nativelrincTimeGet{const uint32_t inHnd, uintdd_t * const cutTime, uint32_t * const outlrigBStatus);

See page 46 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 103 of 109

ARINC825 LabVIEW Library

8.5.18 ArincTxObjDisable

e

rerror in (no errol
+inARIMC_CMSG
v inFlag
v inHnd

error out ¥

function return ¥
inoutMum out ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincTxObjectDisable(]).

EXPORT int CALLTYPE nativeArincTxObjDisable(const uint32_t inHnd, ARINC_CMSG_T * const inCmsg, int32_t * const inoutMum, int32_t inFlag);

See page 59 for the ARINC 825 library function description.

Page 104 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.19 ArincTxObjUpdate

A

Ferror in (no errol
FinARIMC_CRMSG
¢ inHnd
error out H
function return ¥
inoutMum out ¥

The "native” VI set directly calls ARINCEZS library functions.
Please refer to the docurnentation of arincTxObjUpdate().

EXPORT int CALLTYPE nativefrincTxObjUpdate(const uint32_t inHnd, ARINC_CMSG_T * const inoutCmsg, int32_t * const inoutMum);

See page 58 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 105 of 109

ARINC825 LabVIEW Library

8.5.20 ArincTxStart

s

FEFTOr in (no errol

r inHnd
error out H

function return K

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincTxStart().

EXPORT int CALLTYPE nativefrincTx5tart{const uint32_t inHnd):

See page 51 for the ARINC 825 library function description.

Page 106 of 109 Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 ARINC 825 Library

ARINC825 LabVIEW Library

8.5.21 ArincTxStop

e

Ferror in (no errol

¢ inHnd
error out H

function return ¥

The "native” VI set directly calls ARINCE25 library functions.
Please refer to the documentation of arincTxStop().

EXPORT int CALLTYPE nativelrincTxStop(const uint32_t inHnd);

See page 53 for the ARINC 825 library function description.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 107 of 109

ARINC825 LabVIEW Library

8.5.22 ArincWaitForTimeslot

El

Ferror in (no errol

]

inHnd

]

inTimeout

error out

k

function return ¥

The "native” VI set directly calls ARINCE25 library functions,
Please refer to the documentation of arincWaitForTimeslot().

EXPORT int CALLTYPE nativefrincWaitForTimeslot{const uint32_t inHnd, const uint32_t inTimeout):

See page 61 for the ARINC 825 library function description.

Page 108 of 109

Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5

ARINC 825 Library

Order Information

O Order Information

Type Properties Order No.

ARINC825-LCD ARINC 825 object licence for Windows® and Linux® C.1140.06
Windows/Linux CD+Licence

Usable with all esd ACC based CAN interfaces
- object licence for Windows/Linux

- ARINC 825 dllI's/lib's

- Lab VIEW VI-Set for ARINC 825

- documentation
ARINCS825-LCD RTX ARINCS825-LCD RTX/RTX64 C.1140.16
CD+Licence CD+Licence

Usable with all esd ACC based CAN interfaces
- object licence for RTX/RTX64

- ARINC 825 dllI's/lib's

- documentation

ARINC825-LCD QNX ARINC825-LCD QNX® C.1140.17
CD+Licence

CD+Licence

Usable with all esd ACC based CAN interfaces
- object licence for QNX

- ARINC 825 dllI's/lib's

- documentation

ARIN(_:825-LCD VxWorks ARINC825-LCD VxWorks® C.1140.18
CD+Licence

CD+Licence

Usable with all esd ACC based CAN interfaces
- object licence for VxWorks

- ARINC 825 dlI's/lib's

- documentation

For detailed information about the driver availability of your special operating system, please contact our sales team.
Table 1: Order information

PDF Manuals
For the availability of the manuals see table below.
Please download the manuals as PDF documents from our esd website https://www.esd.eu for free.

Manuals Order No.
ARINC 825 Library-ME | Software manual in English C.1140.21

Table 2: Available Manuals

Printed Manuals
If you need a printout of the manual additionally, please contact our sales team (sales@esd.eu) for a
guotation. Printed manuals may be ordered for a fee.

ARINC 825 Library Software Manual Doc.-Nr.: C.1140.21 / Rev. 1.5 Page 109 of 109

https://www.esd.eu/
mailto:sales@esd.eu

